Biotransformation of Cinnamic Acid, Cinnamaldehyde, Furfural and Epoxidation of Cyclohexene by Plant Catalase

Page: [185 - 204] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Background: Epoxides are widely useful in various fields such as pharmaceuticals, pesticides, cosmetics, polymer synthesis, fragrance compounds, and food additives. However, the synthesis of epoxides involves heavy metal catalysts and toxic, unstable organic catalysts which causes serious environmental and safety concerns. In recent years, biocatalysts have received a great deal of interest in the synthesis of olefin-derived epoxides due to their mild reaction conditions, environmental friendliness, good selectivity, and sustainability. This study focuses on catalases as a biocatalyst for potential epoxidation reactions of olefins.

Objective: To determine the possibility of using biocatalyst catalase from a novel source Sechium edule (squash) for epoxidation of olefins in the presence of H2O22.

Methods: UV-Vis spectrophotometer was used to monitor the formation of epoxide from substrates- cyclohexene, cinnamic acid, cinnamaldehyde, furfural in acetonitrile solvent and a suitable aliquot of the enzyme solution in the presence of H2O22. The products formed were analyzed using FTIR and GC-MS. For the immobilized enzyme, chitosan beads activated with TPP were used in place of the enzyme and a similar procedure was followed for the analysis.

Results: Four different olefin substrates (cyclohexene, cinnamic acid, cinnamaldehyde, and furfural) were selected to study the catalysis reaction of epoxidation by the catalase enzyme. The course of the epoxidation was monitored by UV-Vis, FTIR, and GC-MS methods. However, under optimized reaction conditions and spectral analysis, further confirmed by GC-MS, data showed only epoxide formation from cyclohexene. CAT completely catalyzed other olefins like furfural, cinnamic acid, and cinnamaldehyde into its degraded products biochemically. Therefore, cyclohexene was selected for further immobilization studies and the identified metabolites of olefins and their degradation mechanism. Major biodegradation products of cinnamic acid were found to be styrene( m/z 104.0) and benzaldehyde(m/z 105.0). GC-MS data of biotransformation of cinnamaldehyde, identified 2,4 dimethyl benzaldehyde(m/z 133) as the main product. The catalytic biotransformation of furfural investigated by GC-MS data identified 2,5 dimethyl benzaldehyde (m/z 133), dodecanol (m/z 181) and Pentanoic acid, 5 hydroxy, 2,4 dibutyl phenyl ester(m/z 306) as the major product. Three major oxidized products were detected in GC-MS data from the epoxidation of cyclohexene viz., cyclohexane diol(m/z 116), cyclohexene epoxide-1-ol(m/z 110), cyclohexene epoxide-1-one(m/z 110).

Conclusion: In this investigation, catalase purified from Sechium edule(squash) was developed as an efficient catalytic tool for the biotransformation of olefins and selective epoxidation of cyclohexene. Under optimized conditions, the experimental results revealed the main products found in cinnamaldehyde as benzaldehyde (m/z 133.0) and cinnamic acid as benzaldehyde (m/z 133), styrene (m/z 104.0) and benzoic acid (m/z 122.0), while the data from furfural oxidation could not be justified from previous studies. The optimal concentration of CH3CN solvent for cyclohexene epoxidation was found to be 4 mM. Enzymatic characterization of free and immobilized catalase on chitosan was investigated using cyclohexene as a variable substrate and found to be 0.017 mM, 83.33 μmol/min for Km and Vmax values, pH 6.8 and 30˚C for free CAT and 0.03 mM, 200 μmol/min, pH 7.6 and 35˚C for immobilized one. Immobilization increases the thermal stability of the CAT and changes the pH to alkalinity. The possible oxidation of cyclohexene was deduced as the radical chain mechanism for the generation of epoxide with the key products obtained as cyclohexane diol(m/z 116), cyclohexene epoxide-1-ol(m/z 110) and cyclohexene epoxide-1-one(m/z 110). The reusability of the biocatalytic tool opens up the opportunity to reduce the cost of various catalytic reactions. Further studies can focus on the separation and advancement of epoxide yields, improved immobilization strategy for maximum repetitive cycles, and chemo-enzymatic epoxidation on biological olefins.

Graphical Abstract

[1]
Abdulmalek, E.; Arumugam, M.; Mizan, H.N.; Rahman, A.; Basyaruddin, M.; Basri, M. Chemoenzymatic epoxidation of alkenes and reusability study of the phenylacetic acid. Sci World J., 2014, 2014, 756418.
[http://dx.doi.org/10.1155/2014/756418]
[2]
Chen, Q.; Peng, F.; Li, F.; Xia, G.; Zong, M.; Lou, W. Biocatalytic epoxidation of cyclooctene to 1, 2-Epoxycyclooctane by a newly immobilized Aspergillus niger lipase. Catalysts, 2020, 10(7), 781.
[http://dx.doi.org/10.3390/catal10070781]
[3]
Dong, J.; Fernández-Fueyo, E.; Hollmann, F.; Paul, C.E.; Pesic, M.; Schmidt, S.; Wang, Y.; Younes, S.; Zhang, W. Biocatalytic oxidation reactions: A chemist’s perspective. Angew. Chem. Int. Ed., 2018, 57(30), 9238-9261.
[http://dx.doi.org/10.1002/anie.201800343] [PMID: 29573076]
[4]
Patnaik, P. A comprehensive guide to the hazardous properties of chemical substances; John Wiley & Sons, 2007.
[http://dx.doi.org/10.1002/9780470134955]
[5]
Wunschik, D.S.; Ingenbosch, K.N.; Süss, P.; Liebelt, U.; Quint, S.; Dyllick-Brenzinger, M.; Zuhse, R.; Menyes, U.; Hoffmann-Jacobsen, K.; Opwis, K.; Gutmann, J.S. Enzymatic epoxidation of cyclohexene by peroxidase immobilization on a textile and an adapted reactor design. Enzyme Microb. Technol., 2020, 136, 109512.
[http://dx.doi.org/10.1016/j.enzmictec.2020.109512] [PMID: 32331717]
[6]
Alves Moreira, M.; Bergler Bitencourt, T.; da Graça Nascimento, M. Optimization of chemo-enzymatic epoxidation of cyclohexene mediated by lipases. Synth. Commun., 2005, 35(15), 2107-2114.
[http://dx.doi.org/10.1081/SCC-200066705]
[7]
Nolan, L.C.; O’Connor, K.E. Dioxygenase- and monooxygenase-catalysed synthesis of cis-dihydrodiols, catechols, epoxides and other oxygenated products. Biotechnol. Lett., 2008, 30(11), 1879-1891.
[http://dx.doi.org/10.1007/s10529-008-9791-5] [PMID: 18612597]
[8]
Kubo, T.; Peters, M.W.; Meinhold, P.; Arnold, F.H. Enantioselective epoxidation of terminal alkenes to (R)- and (S)-epoxides by engineered cytochromes P450 BM-3. Chemistry, 2006, 12(4), 1216-1220.
[http://dx.doi.org/10.1002/chem.200500584] [PMID: 16240317]
[9]
Zhang, W.; Li, H.; Younes, S.H.H.; Gómez de Santos, P.; Tieves, F.; Grogan, G.; Pabst, M.; Alcalde, M.; Whitwood, A.C.; Hollmann, F. Biocatalytic aromaticity-breaking epoxidation of naphthalene and nucleophilic ring-opening reactions. ACS Catal., 2021, 11(5), 2644-2649.
[http://dx.doi.org/10.1021/acscatal.0c05588] [PMID: 33763289]
[10]
Mutti, F.G. Alkene cleavage catalysed by heme and nonheme enzymes: reaction mechanisms and biocatalytic applications. Bioinorg. Chem. Appl., 2012, 2012, 626909.
[http://dx.doi.org/10.1155/2012/626909]
[11]
Tiran, C.; Lecomte, J.; Dubreucq, E.; Villeneuve, P. Chemo-enzymatic epoxidation of fatty compounds-focus on processes involving a lipase-catalyzed perhydrolysis step. Oléagineux Corps Gras Lipides, 2008, 15, 179-183.
[http://dx.doi.org/10.1051/ocl.2008.0191]
[12]
Xu, Y.; Khaw, N.R.B.J.; Li, Z. Efficient epoxidation of alkenes with hydrogen peroxide, lactone, and lipase. Green Chem., 2009, 11(12), 2047-2051.
[http://dx.doi.org/10.1039/b913077b]
[13]
Geigert, J.; Lee, T.D.; Dalietos, D.J.; Hirano, D.S.; Neidleman, S.L. Epoxidation of alkenes by chloroperoxidase catalysis. Biochem. Biophys. Res. Commun., 1986, 136(2), 778-782.
[http://dx.doi.org/10.1016/0006-291X(86)90507-3] [PMID: 3010998]
[14]
Adam, W.; Lazarus, M.; Saha-Möller, C.R.; Weichold, O.; Hoch, U.; Häring, D. Biotransformations with peroxidases. Adv. Biochem. Eng. Biotechnol., 1999, 63, 73-108.
[http://dx.doi.org/10.1007/3-540-69791-8_4]
[15]
Beiras, R. Chapter 12 - Biotransformation;; Beiras, R.B.T.M.P., Ed.; Elsevier.,, 2018, pp. 205-214. Available from: https://www.sciencedirect.com/science/article/pii/B978012813736900012X
[16]
Rauch, M.C.R.; Tieves, F.; Paul, C.E.; Arends, I.W.C.E.; Alcalde, M.; Hollmann, F. Peroxygenase-catalysed epoxidation of styrene derivatives in Neat Reaction Media. Chem. Cat. Chem., 2019, 11(18), 4519-4523.
[http://dx.doi.org/10.1002/cctc.201901142] [PMID: 31762830]
[17]
Peter, S.; Kinne, M.; Ullrich, R.; Kayser, G.; Hofrichter, M. Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase. Enzyme Microb. Technol., 2013, 52(6-7), 370-376.
[http://dx.doi.org/10.1016/j.enzmictec.2013.02.013] [PMID: 23608506]
[18]
Takio, N.; Yadav, M.; Barman, M.; Yadav, H.S. Purification, characterization, immobilization and kinetic studies of catalase from a novel source Sechium edule. Int. J. Chem. Kinet., 2021, 53(5), 596-610.
[http://dx.doi.org/10.1002/kin.21468]
[19]
Teder, T.; Boeglin, W.E.; Brash, A.R. Oxidation of C18 hydroxy-polyunsaturated fatty acids to epoxide or ketone by catalase-related hemoproteins activated with iodosylbenzene. Lipids, 2017, 52(7), 587-597.
[http://dx.doi.org/10.1007/s11745-017-4271-0] [PMID: 28631071]
[20]
Gao, B.; Boeglin, W.E.; Zheng, Y.; Schneider, C.; Brash, A.R. Evidence for an ionic intermediate in the transformation of fatty acid hydroperoxide by a catalase-related allene oxide synthase from the Cyanobacterium Acaryochloris marina. J. Biol. Chem., 2009, 284(33), 22087-22098.
[http://dx.doi.org/10.1074/jbc.M109.013151] [PMID: 19531485]
[21]
Niisuke, K.; Boeglin, W.E.; Murray, J.J.; Schneider, C.; Brash, A.R. Biosynthesis of a linoleic acid allylic epoxide: mechanistic comparison with its chemical synthesis and leukotriene: A biosynthesis. J. Lipid Res., 2009, 50(7), 1448-1455.
[http://dx.doi.org/10.1194/jlr.M900025-JLR200] [PMID: 19244216]
[22]
Yang, J.Y.; Nocera, D.G. Catalase and epoxidation activity of manganese salen complexes bearing two xanthene scaffolds. J. Am. Chem. Soc., 2007, 129(26), 8192-8198.
[http://dx.doi.org/10.1021/ja070358w] [PMID: 17552520]
[23]
Kilic, Y.; Bolat, S.; Kani, I. A carboxylate-bridged Mn(II) compound with 6-methylanthranilate/bipy: oxidation of alcohols/alkenes and catalase-like activity. J. Coord. Chem., 2018, 71(15), 2293-2303.
[http://dx.doi.org/10.1080/00958972.2018.1469750]
[24]
Magner, E.; Klibanov, A.M. The oxidation of chiral alcohols catalyzed by catalase in organic solvents. Biotechnol. Bioeng., 1995, 46(2), 175-179.
[http://dx.doi.org/10.1002/bit.260460211] [PMID: 18623277]
[25]
Alkan, S.; Gür, A.; Ertan, M.; Savran, A.; Gür, T.; Genel, Y. Immobilization of catalase via adsorption into natural and modified active carbon obtained from walnut in various methods. Afr. J. Biotechnol., 2009, 8(11)
[26]
Sel, E.; Ulu, A. Ateş, B.; Köytepe, S. Comparative study of catalase immobilization via adsorption on P(MMA-co-PEG500MA) structures as an effective polymer support. Polym. Bull., 2021, 78(5), 2663-2684.
[http://dx.doi.org/10.1007/s00289-020-03233-0]
[27]
Ma, L.; Liu, X.; Liang, J.; Zhang, Z. Biotransformations of cinnamaldehyde, cinnamic acid and acetophenone with Mucor. World J. Microbiol. Biotechnol., 2011, 27(9), 2133-2137.
[http://dx.doi.org/10.1007/s11274-011-0677-7]
[28]
Hilton, M.D.; Cain, W.J. Bioconversion of cinnamic Acid to acetophenone by a pseudomonad: Microbial production of a natural flavor compound. Appl. Environ. Microbiol., 1990, 56(3), 623-627.
[http://dx.doi.org/10.1128/aem.56.3.623-627.1990] [PMID: 16348137]
[29]
Monisha, TR; Ismailsab, M; Masarbo, R; Nayak, AS; Karegoudar, TB Degradation of cinnamic acid by a newly isolated bacterium Stenotrophomonas sp. TRMK2. 3 Biotech, 2018, 8(8), 368.
[http://dx.doi.org/10.1007/s13205-018-1390-0]
[30]
Xie, X.G.; Dai, C.C. Biodegradation of a model allelochemical cinnamic acid by a novel endophytic fungus Phomopsis liquidambari. Int. Biodeterior. Biodegradation, 2015, 104, 498-507.
[http://dx.doi.org/10.1016/j.ibiod.2015.08.004]
[31]
Brunati, M.; Marinelli, F.; Bertolini, C.; Gandolfi, R.; Daffonchio, D.; Molinari, F. Biotransformations of cinnamic and ferulic acid with actinomycetes. Enzyme Microb. Technol., 2004, 34(1), 3-9.
[http://dx.doi.org/10.1016/j.enzmictec.2003.04.001]
[32]
Pennacchio, A.; Rossi, M.; Raia, C.A. Synthesis of cinnamyl alcohol from cinnamaldehyde with Bacillus stearothermophilus alcohol dehydrogenase as the isolated enzyme and in recombinant E. coli cells. Appl. Biochem. Biotechnol., 2013, 170(6), 1482-1490.
[http://dx.doi.org/10.1007/s12010-013-0282-3] [PMID: 23686507]
[33]
Zucca, P.; Littarru, M.; Rescigno, A.; Sanjust, E. Cofactor recycling for selective enzymatic biotransformation of cinnamaldehyde to cinnamyl alcohol. Biosci. Biotechnol. Biochem., 2009, 73(5), 1224-1226.
[http://dx.doi.org/10.1271/bbb.90025] [PMID: 19420690]
[34]
Richard Bowen, W.; Lambert, N.; Pug, S.Y.R.; Taylor, F. The yeast alcohol dehydrogenase catalysed conversion of cinnamaldehyde to cinnamyl alcohol. J. Chem. Technol. Biotechnol., 1986, 36(6), 267-272.
[http://dx.doi.org/10.1002/jctb.280360605]
[35]
Arteaga, J.E.; Cerros, K.; Rivera-Becerril, E.; Lara, A.R.; Le Borgne, S.; Sigala, J.C. Furfural biotransformation in Acinetobacter baylyi ADP1 and Acinetobacter schindleri ACE. Biotechnol. Lett., 2021, 43(5), 1043-1050.
[http://dx.doi.org/10.1007/s10529-021-03094-1] [PMID: 33590377]
[36]
Yan, Y.; Bu, C.; Huang, X.; Ouyang, J. Efficient whole-cell biotransformation of furfural to furfuryl alcohol by Saccharomyces cerevisiae NL22. J. Chem. Technol. Biotechnol., 2019, 94(12), 3825-3831.
[http://dx.doi.org/10.1002/jctb.6177]
[37]
Yan, Y.; Bu, C.; He, Q.; Zheng, Z.; Ouyang, J. Efficient bioconversion of furfural to furfuryl alcohol by Bacillus coagulans NL01. RSC Advances, 2018, 8(47), 26720-26727.
[http://dx.doi.org/10.1039/C8RA05098H] [PMID: 35541055]
[38]
Gilbert, B.C.; Lindsay Smith, J.R.; Mairata i Payeras, A.; Oakes, J.; Pons i Prats, R. A mechanistic study of the epoxidation of cinnamic acid by hydrogen peroxide catalysed by manganese l,4,7-trimethyl-l,4,7-triazacyclononane complexes. J. Mol. Catal. Chem., 2004, 219(2), 265-272.
[http://dx.doi.org/10.1016/j.molcata.2004.05.012]
[39]
Yao, R.S.; Sun, M.; Wang, C.L.; Deng, S.S. Degradation of phenolic compounds with hydrogen peroxide catalyzed by enzyme from Serratia marcescens AB 90027. Water Res., 2006, 40(16), 3091-3098.
[http://dx.doi.org/10.1016/j.watres.2006.06.009] [PMID: 16890975]
[40]
Chandran, K.; Nithya, R.; Sankaran, K.; Gopalan, A.; Ganesan, V. Synthesis and characterization of sodium alkoxides. Bull. Mater. Sci., 2006, 29(2), 173-179.
[http://dx.doi.org/10.1007/BF02704612]
[41]
El Khadem, H.S. Spectrometric identification of organic compounds. (Silverstein, Robert M.; Bassler, G. Clayton; Morrill, Terrence C.);; ACS Publications, 1975.
[42]
Peng, X.; Misawa, N.; Harayama, S. Isolation and characterization of thermophilic bacilli degrading cinnamic, 4-coumaric, and ferulic acids. Appl. Environ. Microbiol., 2003, 69(3), 1417-1427.
[http://dx.doi.org/10.1128/AEM.69.3.1417-1427.2003] [PMID: 12620824]
[43]
Chen, H.; Ji, H.; Zhou, X.; Xu, J.; Wang, L. Aerobic oxidative cleavage of cinnamaldehyde to benzaldehyde catalyzed by metalloporphyrins under mild conditions. Catal. Commun., 2009, 10(6), 828-832.
[http://dx.doi.org/10.1016/j.catcom.2008.12.007]
[44]
Wright, P.; Abbot, J. The oxidation of cinnamaldehyde with alkaline hydrogen peroxide. Int. J. Chem. Kinet., 1993, 25(11), 901-911.
[http://dx.doi.org/10.1002/kin.550251104]
[45]
Jadhav, A.L.; Yadav, G.D. A Green process for selective hydrolysis of cinnamaldehyde in water to natural benzaldehyde by using Ti and Zn modified hydrotalcites as catalysts. Curr. Green Chem., 2019, 6(3), 242-254.
[http://dx.doi.org/10.2174/2213346106666191021105244]
[46]
Zhou, X.; Ji, H. Biomimetic kinetics and mechanism of cyclohexene epoxidation catalyzed by metalloporphyrins. Chem. Eng. J., 2010, 156(2), 411-417.
[http://dx.doi.org/10.1016/j.cej.2009.10.066]
[47]
Degirmenci, M.; Acikses, A.; Genli, N. Cyclohexene oxide mid-chain functional macromonomer of poly(ε-caprolactone): Synthesis, characterization, and photoinitiated cationic homo- and copolymerization. J. Appl. Polym. Sci., 2012, 123(5), 2567-2573.
[http://dx.doi.org/10.1002/app.33423]
[48]
El-Korso, S.; Khaldi, I.; Bedrane, S.; Choukchou-Braham, A.; Thibault-Starzyk, F.; Bachir, R. Liquid phase cyclohexene oxidation over vanadia based catalysts with tert-butyl hydroperoxide: Epoxidation versus allylic oxidation. J. Mol. Catal. Chem., 2014, 394, 89-96.
[http://dx.doi.org/10.1016/j.molcata.2014.07.002]
[49]
Farzaneh, F.; Zamanifar, E.; Williams, C.D. V-MCM-41 as selective catalyst for epoxidation of olefins and trans-2-hexene-1-ol. J. Mol. Catal. Chem., 2004, 218(2), 203-209.
[http://dx.doi.org/10.1016/j.molcata.2004.03.046]
[50]
Tong, J.; Zhang, Y.; Li, Z.; Xia, C. Highly effective catalysts of natural polymer supported Salophen Mn(III) complexes for aerobic oxidation of cyclohexene. J. Mol. Catal. Chem., 2006, 249(1-2), 47-52.
[http://dx.doi.org/10.1016/j.molcata.2005.12.031]
[51]
Ameur, N.; Bedrane, S.; Bachir, R.; Choukchou-Braham, A. Influence of nanoparticles oxidation state in gold based catalysts on the product selectivity in liquid phase oxidation of cyclohexene. J. Mol. Catal. Chem., 2013, 374-375, 1-6.
[http://dx.doi.org/10.1016/j.molcata.2013.03.008]
[52]
Jorda, E.; Tuel, A.; Teissier, R.; Kervennal, J. Synthesis, characterization, and activity in the epoxidation of cyclohexene with aqueous H2O2 of catalysts prepared by reaction of TiF4 with silica. J. Catal., 1998, 175(1), 93-107.
[http://dx.doi.org/10.1006/jcat.1998.1982]
[53]
Mazlan, S.Z.; Hanifah, S.A. Effects of temperature and pH on immobilized laccase activity in conjugated methacrylate-acrylate microspheres. Int. J. Polym. Sci., 2017, 2017(4), 1-8.
[http://dx.doi.org/10.1155/2017/5657271]
[54]
Zhou, Q.Z.K.; Chen, X.D. Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis. Biochem. Eng. J., 2001, 9(1), 33-40.
[http://dx.doi.org/10.1016/S1369-703X(01)00118-8]
[55]
Jiang, B.; Zhang, Y. Immobilization of catalase on crosslinked polymeric hydrogels—effect of anion on the activity of immobilized enzyme. Eur. Polym. J., 1993, 29(9), 1251-1254.
[http://dx.doi.org/10.1016/0014-3057(93)90157-B]
[56]
Asgher, M.; Noreen, S.; Bilal, M. Enhancing catalytic functionality of Trametes versicolor IBL-04 laccase by immobilization on chitosan microspheres. Chem. Eng. Res. Des., 2017, 119, 1-11.
[http://dx.doi.org/10.1016/j.cherd.2016.12.011]
[57]
Chen, J.; Zhou, J.; Liu, W.; Bi, Y.; Peng, D. Enzymatic epoxidation of soybean oil in the presence of perbutyric acid. Chem. Pap., 2017, 71(11), 2139-2144.
[http://dx.doi.org/10.1007/s11696-017-0206-8]
[58]
Arabaci, G. Usluoglu, A Catalytic properties and immobilization studies of catalase from Malva sylvestris L. J. Chem., 2013, 2013(1)
[http://dx.doi.org/10.1155/2013/686185]
[59]
Yildiz, H.; Akyilmaz, E.; Dinçkaya, E. Catalase immobilization in cellulose acetate beads and determination of its hydrogen peroxide decomposition level by using a catalase biosensor. Artif. Cells Blood Substit. Immobil. Biotechnol., 2004, 32(3), 443-452.
[http://dx.doi.org/10.1081/BIO-200027507] [PMID: 15508280]
[60]
Kaushal, J. Seema; Singh, G.; Arya, S.K. Immobilization of catalase onto chitosan and chitosan–bentonite complex: A comparative study. Biotechnol. Rep. (Amst.), 2018, 18, e00258.
[http://dx.doi.org/10.1016/j.btre.2018.e00258] [PMID: 29876307]
[61]
İnanan, T. Chitosan Co-polymeric nanostructures for catalase immobilization. React. Funct. Polym., 2019, 135, 94, 102.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.12.013]
[62]
Singh, S.; Singh, A.K.; Singh, M.C.; Pandey, P.K. Immobilization increases the stability and reusability of pigeon pea NADP+ linked glucose-6-phosphate dehydrogenase. Protein J., 2017, 36(1), 49-55.
[http://dx.doi.org/10.1007/s10930-017-9702-5] [PMID: 28176134]
[63]
Li, L.J.; Xia, W.J.; Ma, G.P.; Chen, Y.L.; Ma, Y.Y. A study on the enzymatic properties and reuse of cellulase immobilized with carbon nanotubes and sodium alginate. AMB Express, 2019, 9(1), 112.
[http://dx.doi.org/10.1186/s13568-019-0835-0] [PMID: 31332555]