A Literature Review Focusing on the Antiviral Activity of [1,2,4] and [1,2,3]-triazoles

Page: [1602 - 1629] Pages: 28

  • * (Excluding Mailing and Handling)

Abstract

Out of a variety of heterocycles, triazole scaffolds have been shown to play a significant part in a wide array of biological functions. Many drug compounds containing a triazole moiety with important antimicrobial, anticancer and antidepressant properties have been commercialized. In addition, the triazole scaffold exhibits remarkable antiviral activity either incorporated into nucleoside analogs or non-nucleosides. Many synthetic techniques have been produced by scientists around the world as a result of their wide-ranging biological function. In this review, we have tried to summarize new synthetic methods produced by diverse research groups as well as provide a comprehensive description of the function of [1,2,4] and [1,2,3]-triazole derivatives as antiviral agents. Antiviral triazole compounds have been shown to target a wide variety of molecular proteins. In addition, several strains of viruses, including the human immunodeficiency virus, SARS virus, hepatitis B and C viruses, influenza virus, Hantavirus, and herpes virus, were discovered to be susceptible to triazole derivatives. This review article covered the reports for antiviral activity of both 1,2,3- and 1,2,4-triazole moieties up to 2022.

Graphical Abstract

Animated Abstract

[1]
Mermer, A.; Keles, T.; Sirin, Y. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg. Chem., 2021, 114, 105076.
[http://dx.doi.org/10.1016/j.bioorg.2021.105076] [PMID: 34157555]
[2]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[3]
Corman, V.M. Hosts and sources of endemic human coronaviruses.Advances in virus research; Elsevier, 2018, pp. 163-188.
[4]
Debing, Y.; Jochmans, D.; Neyts, J. Intervention strategies for emerging viruses: Use of antivirals. Curr. Opin. Virol., 2013, 3(2), 217-224.
[http://dx.doi.org/10.1016/j.coviro.2013.03.001] [PMID: 23562753]
[5]
Xiao, M.; Xu, L.; Lin, D.; Lian, W.; Cui, M.; Zhang, M.; Yan, X.; Li, S.; Zhao, J.; Ye, J.; Liu, A.; Hu, A. Design, synthesis, and bioassay of 4-thiazolinone derivatives as influenza neuraminidase inhibitors. Eur. J. Med. Chem., 2021, 213, 113161.
[http://dx.doi.org/10.1016/j.ejmech.2021.113161] [PMID: 33540229]
[6]
Farghaly, T.A.; Alsaedi, A.M.R.; Alenazi, N.A.; Harras, M.F. Anti-viral activity of thiazole derivatives: An updated patent review. Expert Opin. Ther. Pat., 2022, 32(7), 791-815.
[http://dx.doi.org/10.1080/13543776.2022.2067477] [PMID: 35427454]
[7]
Clercq, E.D. Antivirals and antiviral strategies. Nat. Rev. Microbiol., 2004, 2(9), 704-720.
[http://dx.doi.org/10.1038/nrmicro975] [PMID: 15372081]
[8]
Bassetto, M.; Massarotti, A.; Coluccia, A.; Brancale, A. Structural biology in antiviral drug discovery. Curr. Opin. Pharmacol., 2016, 30, 116-130.
[http://dx.doi.org/10.1016/j.coph.2016.08.014] [PMID: 27611878]
[9]
Blundell, T.L.; Jhoti, H.; Abell, C. High-throughput crystallography for lead discovery in drug design. Nat. Rev. Drug Discov., 2002, 1(1), 45-54.
[http://dx.doi.org/10.1038/nrd706] [PMID: 12119609]
[10]
Rut, W.; Groborz, K.; Zhang, L.; Sun, X.; Zmudzinski, M.; Pawlik, B.; Wang, X.; Jochmans, D.; Neyts, J.; Młynarski, W.; Hilgenfeld, R.; Drag, M. SARS-CoV-2 Mpro inhibitors and activity-based probes for patient-sample imaging. Nat. Chem. Biol., 2021, 17(2), 222-228.
[http://dx.doi.org/10.1038/s41589-020-00689-z] [PMID: 33093684]
[11]
Dai, W.; Zhang, B.; Jiang, X.M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; Li, C.; Li, Y.; Bai, F.; Wang, H.; Cheng, X.; Cen, X.; Hu, S.; Yang, X.; Wang, J.; Liu, X.; Xiao, G.; Jiang, H.; Rao, Z.; Zhang, L.K.; Xu, Y.; Yang, H.; Liu, H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020, 368(6497), 1331-1335.
[http://dx.doi.org/10.1126/science.abb4489] [PMID: 32321856]
[12]
Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov., 2013, 12(6), 447-464.
[http://dx.doi.org/10.1038/nrd4010] [PMID: 23722347]
[13]
Li, Y.; Cao, L.; Li, G.; Cong, F.; Li, Y.; Sun, J.; Luo, Y.; Chen, G.; Li, G.; Wang, P.; Xing, F.; Ji, Y.; Zhao, J.; Zhang, Y.; Guo, D.; Zhang, X. Remdesivir metabolite GS-441524 effectively inhibits SARS-CoV-2 infection in mouse models. J. Med. Chem., 2022, 65(4), 2785-2793.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01929] [PMID: 33523654]
[14]
Singh, U.S.; Mulamoottil, V.A.; Chu, C.K. 2′-Fluoro-6′-methylene carbocyclic adenosine and its phosphoramidate prodrug: A novel anti-HBV agent, active against drug-resistant HBV mutants. Med. Res. Rev., 2018, 38(3), 977-1002.
[http://dx.doi.org/10.1002/med.21490] [PMID: 29406612]
[15]
Zmurko, J.; Marques, R.E.; Schols, D.; Verbeken, E.; Kaptein, S.J.F.; Neyts, J. The viral polymerase inhibitor 7-Deaza-2′-C-Methyladenosine is a potent inhibitor of in vitro Zika virus replication and Delays disease progression in a robust mouse infection model. PLoS Negl. Trop. Dis., 2016, 10(5), e0004695.
[http://dx.doi.org/10.1371/journal.pntd.0004695] [PMID: 27163257]
[16]
Qing, J.; Luo, R.; Wang, Y.; Nong, J.; Wu, M.; Shao, Y.; Tang, R.; Yu, X.; Yin, Z.; Sun, Y. Resistance analysis and characterization of NITD008 as an adenosine analog inhibitor against hepatitis C virus. Antiviral Res., 2016, 126, 43-54.
[http://dx.doi.org/10.1016/j.antiviral.2015.12.010] [PMID: 26724382]
[17]
Denel-Bobrowska, M.; Olejniczak, A.B. Non-nucleoside structured compounds with antiviral activity—past 10 years (2010–2020). Eur. J. Med. Chem., 2022, 231, 114136.
[http://dx.doi.org/10.1016/j.ejmech.2022.114136] [PMID: 35085926]
[18]
Aly, A.A.; Hassan, A.A.; Makhlouf, M.M.; Bräse, S. Chemistry and biological activities of 1,2,4-triazolethiones-antiviral and anti-infective drugs. Molecules, 2020, 25(13), 3036.
[http://dx.doi.org/10.3390/molecules25133036]
[19]
Simurova, N.V.; Maiboroda, O.I. Antiviral activity of 1,2,4-triazole derivatives (microreview). Chem. Heterocycl. Compd., 2021, 57(4), 420-422.
[http://dx.doi.org/10.1007/s10593-021-02919-1] [PMID: 34007087]
[20]
Aggarwal, R.; Sumran, G. An insight on medicinal attributes of 1,2,4-triazoles. Eur. J. Med. Chem., 2020, 205, 112652.
[http://dx.doi.org/10.1016/j.ejmech.2020.112652] [PMID: 32771798]
[21]
Vagish, C.B.; Sudeep, P.; Jayadevappa, H.P.; Kumar, K.A. 1,2,4-triazoles: Synthetic and medicinal perspectives. Int. J. Curr. Res., 2020, 12, 12950-12960.
[22]
Sathyanarayana, R.; Poojary, B. Exploring recent developments on 1,2,4‐triazole: Synthesis and biological applications. J. Chin. Chem. Soc., 2020, 67(4), 459-477.
[http://dx.doi.org/10.1002/jccs.201900304]
[23]
Cao, Y.; Lu, H. Advances in the application of 1,2,4-triazole-containing hybrids as anti-tuberculosis agents. Future Med. Chem., 2021, 13(23), 2107-2124.
[http://dx.doi.org/10.4155/fmc-2020-0295] [PMID: 34698509]
[24]
Sahu, A.; Sahu, P.; Agrawal, R. A recent review on drug modification using 1,2,3-triazole. Curr. Chem. Biol., 2020, 14(2), 71-87.
[http://dx.doi.org/10.2174/2212796814999200807214519]
[25]
Küçükgüzel, Ş.G.; Çıkla-Süzgün, P. Recent advances bioactive 1,2,4-triazole-3-thiones. Eur. J. Med. Chem., 2015, 97, 830-870.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.033]
[26]
Xia, Y.; Qu, F.; Peng, L. Triazole nucleoside derivatives bearing aryl functionalities on the nucleobases show antiviral and anticancer activity. Mini Rev. Med. Chem., 2010, 10(9), 806-821.
[http://dx.doi.org/10.2174/138955710791608316] [PMID: 20482498]
[27]
Sever, B.; Altıntop, M.D.; Demir, Y.; Akalın Çiftçi, G.; Beydemir, Ş.; Özdemir, A. Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds. Bioorg. Chem., 2020, 102, 104110.
[http://dx.doi.org/10.1016/j.bioorg.2020.104110] [PMID: 32739480]
[28]
Sever, B.; Altıntop, M.D.; Demir, Y.; Pekdoğan, M.; Akalın Çiftçi, G.; Beydemir, Ş.; Özdemir, A. An extensive research on aldose reductase inhibitory effects of new 4H-1,2,4-triazole derivatives. J. Mol. Struct., 2021, 1224, 129446.
[http://dx.doi.org/10.1016/j.molstruc.2020.129446]
[29]
Kakakhan, C.; Türkeş, C.; Güleç, Ö.; Demir, Y.; Arslan, M.; Özkemahlı, G.; Beydemir, Ş. Exploration of 1,2,3-triazole linked benzenesulfonamide derivatives as isoform selective inhibitors of human carbonic anhydrase. Bioorg. Med. Chem., 2023, 77, 117111.
[http://dx.doi.org/10.1016/j.bmc.2022.117111] [PMID: 36463726]
[30]
Buza, A.; Türkeş, C.; Arslan, M.; Demir, Y.; Dincer, B.; Nixha, A.R.; Beydemir, Ş. Discovery of novel benzenesulfonamides incorporating 1,2,3-triazole scaffold as carbonic anhydrase I, II, IX, and XII inhibitors. Int. J. Biol. Macromol., 2023, 239, 124232.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.124232] [PMID: 37001773]
[31]
Küçükgüzel, İ.; Rollas, S.; Çevikbaş, A. Synthesis and characterization of certain thiourea derivatives starting from 1,2,4-triazoline-3-thiones as potential antibacterial and antifungal agents. Drug Metabol. Drug Interact., 1995, 12(2), 151-160.
[http://dx.doi.org/10.1515/DMDI.1995.12.2.151] [PMID: 8591693]
[32]
Cai, S.; Li, Q.S.; Borchardt, R.T.; Kuczera, K.; Schowen, R.L. The antiviral drug ribavirin is a selective inhibitor of S-adenosyl-l-homocysteine hydrolase from Trypanosoma cruzi. Bioorg. Med. Chem., 2007, 15(23), 7281-7287.
[http://dx.doi.org/10.1016/j.bmc.2007.08.029] [PMID: 17845853]
[33]
Geisler, J.; Helle, H.; Ekse, D.; Duong, N.K.; Evans, D.B.; Nordbø, Y.; Aas, T.; Lønning, P.E. Letrozole is superior to anastrozole in suppressing breast cancer tissue and plasma estrogen levels. Clin. Cancer Res., 2008, 14(19), 6330-6335.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-5221] [PMID: 18829517]
[34]
Colanceska-Ragenovic, K.; Dimova, V.; Kakurinov, V.; Molnar, D.; Buzarovska, A. Synthesis, antibacterial and antifungal activity of 4-substituted-5-aryl-1,2,4-triazoles. Molecules, 2001, 6(10), 815-824.
[http://dx.doi.org/10.3390/61000815]
[35]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700-111713.
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[36]
Ghannoum, M.A.; Rice, L.B. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev., 1999, 12(4), 501-517.
[http://dx.doi.org/10.1128/CMR.12.4.501] [PMID: 10515900]
[37]
Groll, A.H.; Walsh, T.J. Antifungal chemotherapy: Advances and perspectives. Swiss Med. Wkly., 2002, 132(23-24), 303-311.
[PMID: 12362280]
[38]
Buzdar, A.U.; Robertson, J.F.R.; Eiermann, W.; Nabholtz, J.M. An overview of the pharmacology and pharmacokinetics of the newer generation aromatase inhibitors anastrozole, letrozole, and exemestane. Cancer, 2002, 95(9), 2006-2016.
[http://dx.doi.org/10.1002/cncr.10908] [PMID: 12404296]
[39]
Jaśkowska, J.; Zaręba, P.; Śliwa, P.; Pindelska, E.; Satała, G.; Majka, Z. Microwave-assisted synthesis of trazodone and its derivatives as new 5-HT1A ligands: Binding and docking studies. Molecules, 2019, 24(8), 1609.
[http://dx.doi.org/10.3390/molecules24081609] [PMID: 31018618]
[40]
Gall, M.; Kamdar, B.V.; Collins, R.J. Pharmacology of some metabolites of triazolam, alprazolam, and diazepam prepared by a simple, one-step oxidation of benzodiazepines. J. Med. Chem., 1978, 21(12), 1290-1294.
[http://dx.doi.org/10.1021/jm00210a022] [PMID: 31483]
[41]
Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J., 2011, 6(10), 2696-2718.
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
[42]
Tian, L.; Qiang, T.; Liang, C.; Ren, X.; Jia, M.; Zhang, J.; Li, J.; Wan, M. YuWen, X.; Li, H.; Cao, W.; Liu, H. RNA-dependent RNA polymerase (RdRp) inhibitors: The current landscape and repurposing for the COVID-19 pandemic. Eur. J. Med. Chem., 2021, 213, 113201.
[http://dx.doi.org/10.1016/j.ejmech.2021.113201] [PMID: 33524687]
[43]
Tan, S.L. Ed. Hepatitis C Viruses: Genomes and Molecular Biology; Horizon Bioscience. 2006. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21250392
[44]
Shu, B.; Gong, P. Structural basis of viral RNA-dependent RNA polymerase catalysis and translocation. Proc. Natl. Acad. Sci., 2016, 113(28), E4005-E4014.
[http://dx.doi.org/10.1073/pnas.1602591113] [PMID: 27339134]
[45]
Patick, A.K.; Potts, K.E. Protease inhibitors as antiviral agents. Clin. Microbiol. Rev., 1998, 11(4), 614-627.
[http://dx.doi.org/10.1128/CMR.11.4.614] [PMID: 9767059]
[46]
Horváth, A.; Depré, D.; Vermeulen, W.A.A.; Wuyts, S.L.; Harutyunyan, S.R.; Binot, G.; Cuypers, J.; Couck, W.; Den Heuvel, D.V. Ring-closing metathesis on commercial scale: Synthesis of HCV protease inhibitor simeprevir. J. Org. Chem., 2019, 84(8), 4932-4939.
[http://dx.doi.org/10.1021/acs.joc.8b03124]
[47]
Hajimahdi, Z.; Zarghi, A. Progress in HIV-1 integrase inhibitors: A review of their chemical structure diversity. Iran. J. Pharm. Res., 2016, 15(4), 595-628.
[http://dx.doi.org/10.22037/ijpr.2016.1935] [PMID: 28243261]
[48]
Cattaneo, D.; Sollima, S.; Meraviglia, P.; Milazzo, L.; Minisci, D.; Fusi, M.; Filice, C.; Gervasoni, C. Dolutegravir-based antiretroviral regimens for HIV liver transplant patients in real-life settings. Drugs R D., 2020, 20(2), 155-160.
[http://dx.doi.org/10.1007/s40268-020-00300-9] [PMID: 32189238]
[49]
Carnes, S.K.; Sheehan, J.H.; Aiken, C. Inhibitors of the HIV-1 capsid, a target of opportunity. Curr. Opin. HIV AIDS, 2018, 13(4), 359-365.
[http://dx.doi.org/10.1097/COH.0000000000000472] [PMID: 29782334]
[50]
Thenin-Houssier, S.; Valente, S.T. HIV-1 capsid inhibitors as antiretroviral agents. Curr. HIV Res., 2016, 14(3), 270-282.
[http://dx.doi.org/10.2174/1570162X14999160224103555] [PMID: 26957201]
[51]
Alymova, I.; Taylor, G.; Portner, A. Neuraminidase inhibitors as antiviral agents. Curr. Drug Targets Infect. Disord., 2005, 5(4), 401-409.
[http://dx.doi.org/10.2174/156800505774912884] [PMID: 16535861]
[52]
Gubareva, L.; Mohan, T. Antivirals targeting the neuraminidase. Cold Spring Harb. Perspect. Med., 2022, 12(1), a038455.
[http://dx.doi.org/10.1101/cshperspect.a038455] [PMID: 32152244]
[53]
Kacprzak, K.; Skiera, I.; Piasecka, M.; Paryzek, Z. Alkaloids and isoprenoids modification by copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition (click chemistry): toward new functions and molecular architectures. Chem. Rev., 2016, 116(10), 5689-5743.
[http://dx.doi.org/10.1021/acs.chemrev.5b00302] [PMID: 27115045]
[54]
Johansson, J.R.; Beke-Somfai, T.; Said Stålsmeden, A.; Kann, N. Ruthenium-catalyzed azide alkyne cycloaddition reaction: Scope, mechanism, and applications. Chem. Rev., 2016, 116(23), 14726-14768.
[http://dx.doi.org/10.1021/acs.chemrev.6b00466] [PMID: 27960271]
[55]
Totobenazara, J.; Burke, A.J. New click-chemistry methods for 1,2,3-triazoles synthesis: Recent advances and applications. Tetrahedron Lett., 2015, 56(22), 2853-2859.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.136]
[56]
Haddad, R.; Yousif, E.; Ahmed, A. Synthesis and characterization of transition metal complexes of 4-Amino-5-pyridyl-4H-1,2,4-triazole-3-thiol. Springerplus, 2013, 2(1), 510-519.
[http://dx.doi.org/10.1186/2193-1801-2-510] [PMID: 24133653]
[57]
Cohen, V.I. Preparation of some 3-hydroxy- and 3-mercapto-1,2,4-triazoles. Reaction of aliphatic selenone esters with semicarbazide and thiosemicarbazide derivatives. J. Heterocycl. Chem., 1978, 15(2), 237-240.
[http://dx.doi.org/10.1002/jhet.5570150211]
[58]
Gao, Y.; Na, L.X.; Xu, Z.; Zhang, S.; Wang, A.P.; Lü, K.; Guo, H.Y.; Liu, M.L. Design, synthesis and antibacterial evaluation of 1-[(1 R, 2 S)-2-fluorocyclopropyl]ciprofloxacin-1,2,4-triazole-5(4 H)-thione Hybrids. Chem. Biodivers., 2018, 15(10), e1800261.
[http://dx.doi.org/10.1002/cbdv.201800261] [PMID: 29987907]
[59]
Almazroia, L.; Shah, R.K.; El-Metwaly, N.M.; Farghaly, T.A. New catalytic approach for nano-sized V(IV), Cr(III), Mn(II) and Fe(III)-triazole complexes: Detailed spectral, electrochemical and analytical studies. Res. Chem. Intermed., 2019, 45(4), 1943-1971.
[http://dx.doi.org/10.1007/s11164-018-03714-y]
[60]
Abdelli, A.; Azzouni, S.; Plais, R.; Gaucher, A.; Efrit, M.L.; Prim, D. Recent advances in the chemistry of 1,2,4-triazoles: Synthesis, reactivity and biological activities. Tetrahedron Lett., 2021, 86, 153518.
[http://dx.doi.org/10.1016/j.tetlet.2021.153518]
[61]
Küçükgüzel, İ.; Tatar, E.; Küçükgüzel, Ş.G.; Rollas, S.; De Clercq, E. Synthesis of some novel thiourea derivatives obtained from 5-[(4-aminophenoxy)methyl]-4-alkyl/aryl-2,4-dihydro-3H-1,2,4-triazole-3-thiones and evaluation as antiviral/anti-HIV and anti-tuberculosis agents. Eur. J. Med. Chem., 2008, 43(2), 381-392.
[http://dx.doi.org/10.1016/j.ejmech.2007.04.010] [PMID: 17583388]
[62]
Xiao, T.; Tang, J.F.; Meng, G.; Pannecouque, C.; Zhu, Y.Y.; Liu, G.Y.; Xu, Z.Q.; Wu, F.S.; Gu, S.X.; Chen, F.E. Indazolyl-substituted piperidin-4-yl-aminopyrimidines as HIV-1 NNRTIs: Design, synthesis and biological activities. Eur. J. Med. Chem., 2020, 186, 111864.
[http://dx.doi.org/10.1016/j.ejmech.2019.111864] [PMID: 31767136]
[63]
Curreli, F.; Ahmed, S.; Benedict Victor, S.M.; Iusupov, I.R.; Belov, D.S.; Markov, P.O.; Kurkin, A.V.; Altieri, A.; Debnath, A.K. Preclinical optimization of gp120 entry-antagonists as anti- HIV-1 agents with improved cytotoxicity and ADME properties through rational design, synthesis, and antiviral evaluation. J. Med. Chem., 2020, 63(4), 1724-1749.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02149] [PMID: 32031803]
[64]
De La Rosa, M.; Kim, H.W.; Gunic, E.; Jenket, C.; Boyle, U.; Koh, Y.; Korboukh, I.; Allan, M.; Zhang, W.; Chen, H.; Xu, W.; Nilar, S.; Yao, N.; Hamatake, R.; Lang, S.A.; Hong, Z.; Zhang, Z.; Girardet, J.L. Tri-substituted triazoles as potent non-nucleoside inhibitors of the HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett., 2006, 16(17), 4444-4449.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.048] [PMID: 16806925]
[65]
Akhtar, T.; Hameed, S.; Al-Masoudi, N.A.; Khan, K.M. Synthesis and anti-HIV activity of new chiral 1,2,4-triazoles and 1,3,4-thiadiazoles. Heteroatom Chem., 2007, 18(3), 316-322.
[http://dx.doi.org/10.1002/hc.20282]
[66]
Kirschberg, T.A.; Balakrishnan, M.; Huang, W.; Hluhanich, R.; Kutty, N.; Liclican, A.C.; McColl, D.J.; Squires, N.H.; Lansdon, E.B. Triazole derivatives as non-nucleoside inhibitors of HIV-1 reverse transcriptase—Structure–activity relationships and crystallographic analysis. Bioorg. Med. Chem. Lett., 2008, 18(3), 1131-1134.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.127] [PMID: 18083512]
[67]
Johns, B.A.; Weatherhead, J.G.; Allen, S.H.; Thompson, J.B.; Garvey, E.P.; Foster, S.A.; Jeffrey, J.L.; Miller, W.H. The use of oxadiazole and triazole substituted naphthyridines as HIV-1 integrase inhibitors. Part 1: Establishing the pharmacophore. Bioorg. Med. Chem. Lett., 2009, 19(6), 1802-1806.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.090] [PMID: 19217781]
[68]
Zhan, P.; Chen, X.; Li, X.; Li, D.; Tian, Y.; Chen, W.; Pannecouque, C.; De Clercq, E.; Liu, X. Arylazolylthioacetanilide. Part 8☆: Design, synthesis and biological evaluation of Novel 2-(2-(2,4-Dichlorophenyl)-2H-1,2,4-triazol-3-ylthio)-N-arylacetamides As Potent HIV-1 inhibitors. Eur. J. Med. Chem., 2011, 46(10), 5039-5045.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.011] [PMID: 21872971]
[69]
Mitrasinovic, P.M. Advances in the structure-based design of the influenza A neuraminidase inhibitors. Curr. Drug Targ., 2010, 11(3), 315-326.
[http://dx.doi.org/10.2174/138945010790711932]
[70]
Schwerdtfeger, S.M.; Melzig, M.F. Sialidases in biological systems. Pharmazie, 2010, 65(8), 551-561.
[PMID: 20824954]
[71]
Massari, S.; Nannetti, G.; Desantis, J.; Muratore, G.; Sabatini, S.; Manfroni, G.; Mercorelli, B.; Cecchetti, V.; Palù, G.; Cruciani, G.; Loregian, A.; Goracci, L.; Tabarrini, O. A broad anti-influenza hybrid small molecule that potently disrupts the interaction of polymerase acidic protein–basic protein 1 (PA-PB1) subunits. J. Med. Chem., 2015, 58(9), 3830-3842.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00012] [PMID: 25856229]
[72]
Ji, K.; Zhang, G.N.; Zhao, J.Y.; Zhu, M.; Wang, M.H.; Wang, J.X.; Cen, S.; Wang, Y.C.; Li, W.Y. Design, synthesis, and anti-influenza A virus activity evaluation of novel indole containing derivatives of triazole. Bioorg. Med. Chem. Lett., 2022, 64, 128681.
[http://dx.doi.org/10.1016/j.bmcl.2022.128681] [PMID: 35304224]
[73]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[74]
World Health Organization Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected: Interim guidance., 2020. Available from: [https://www.who.int/emergencies/diseases/novel-coronavirus-2019/tech]
[75]
Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep., 2020, 72(6), 1479-1508.
[http://dx.doi.org/10.1007/s43440-020-00155-6] [PMID: 32889701]
[76]
Kavitha, K.; Sivakumar, S.; Ramesh, B. 1,2,4 triazolo[1,5-a] pyrimidin-7-ones as novel SARS-CoV-2 Main protease inhibitors: In silico screening and molecular dynamics simulation of potential COVID-19 drug candidates. Biophys. Chem., 2020, 267, 106478.
[http://dx.doi.org/10.1016/j.bpc.2020.106478] [PMID: 33022567]
[77]
Gower, E.; Estes, C.; Blach, S.; Razavi-Shearer, K.; Razavi, H. Global epidemiology and genotype distribution of the hepatitis C virus infection. J. Hepatol., 2014, 61(1)(Suppl.), S45-S57.
[http://dx.doi.org/10.1016/j.jhep.2014.07.027] [PMID: 25086286]
[78]
Megan, H.; Megan, H.; Jerome, D.; Frank, N.; Raffaele De, F.; Matthias, G. Mechanism of hepatitis C Virus RNA polymerase inhibition with dihydroxypyrimidines. Antimicrob. Agents Chemother., 2010, 977-983.
[79]
Koch, U.; Attenni, B.; Malancona, S.; Colarusso, S.; Conte, I.; Di Filippo, M.; Harper, S.; Pacini, B.; Giomini, C.; Thomas, S.; Incitti, I.; Tomei, L.; De Francesco, R.; Altamura, S.; Matassa, V.G.; Narjes, F. 2-(2-Thienyl)-5,6-dihydroxy-4-carboxypyrimidines as inhibitors of the hepatitis C virus NS5B polymerase: Discovery, SAR, modeling, and mutagenesis. J. Med. Chem., 2006, 49(5), 1693-1705.
[http://dx.doi.org/10.1021/jm051064t] [PMID: 16509585]
[80]
Zhu, R.; Wang, M.; Xia, Y.; Qu, F.; Neyts, J.; Peng, L. Arylethynyltriazole acyclonucleosides inhibit hepatitis C virus replication. Bioorg. Med. Chem. Lett., 2008, 18(11), 3321-3327.
[http://dx.doi.org/10.1016/j.bmcl.2008.04.026] [PMID: 18445526]
[81]
Wan, J.; Xia, Y.; Liu, Y.; Wang, M.; Rocchi, P.; Yao, J.; Qu, F.; Neyts, J.; Iovanna, J.L.; Peng, L. Discovery of novel arylethynyltriazole ribonucleosides with selective and effective antiviral and antiproliferative activity. J. Med. Chem., 2009, 52(4), 1144-1155.
[http://dx.doi.org/10.1021/jm800927r] [PMID: 19170598]
[82]
Çıkla-Süzgün, P.; Kaushik-Basu, N.; Basu, A.; Arora, P.; Talele, T.T.; Durmaz, I.; Çetin-Atalay, R.; Küçükgüzel, Ş.G. Anti-cancer and anti-hepatitis C virus NS5B polymerase activity of etodolac 1,2,4-triazoles. J. Enzyme Inhib. Med. Chem., 2015, 30(5), 778-785.
[http://dx.doi.org/10.3109/14756366.2014.971780] [PMID: 25676325]
[83]
Chandy, S.; Mathai, D. Globally emerging hantaviruses: An overview. Indian J. Med. Microbiol., 2017, 35(2), 165-175.
[http://dx.doi.org/10.4103/ijmm.IJMM_16_429] [PMID: 28681802]
[84]
Jonsson, C.B.; Figueiredo, L.T.M.; Vapalahti, O. A global perspective on hantavirus ecology, epidemiology, and disease. Clin. Microbiol. Rev., 2010, 23(2), 412-441.
[http://dx.doi.org/10.1128/CMR.00062-09] [PMID: 20375360]
[85]
Chung, D.H.; Kumarapperuma, S.C.; Sun, Y.; Li, Q.; Chu, Y.K.; Arterburn, J.B.; Parker, W.B.; Smith, J.; Spik, K.; Ramanathan, H.N.; Schmaljohn, C.S.; Jonsson, C.B. Synthesis of 1-β-d-ribofuranosyl-3-ethynyl-[1,2,4]triazole and its in vitro and in vivo efficacy against Hantavirus. Antiviral Res., 2008, 79(1), 19-27.
[http://dx.doi.org/10.1016/j.antiviral.2008.02.003] [PMID: 18394724]
[86]
Álvarez, D.M.; Castillo, E.; Duarte, L.F.; Arriagada, J.; Corrales, N.; Farías, M.A.; Henríquez, A.; Agurto-Muñoz, C.; González, P.A. Current antivirals and novel botanical molecules interfering with herpes simplex virus infection. Front. Microbiol., 2020, 11, 139.
[http://dx.doi.org/10.3389/fmicb.2020.00139] [PMID: 32117158]
[87]
Lolis, M.S.; González, L.; Cohen, P.J.; Schwartz, R.A. Drug-resistant herpes simplex virus in HIV infected patients. Acta Dermatovenerol. Croat., 2008, 16(4), 204-208.
[PMID: 19111144]
[88]
Gudmundsson, K.S.; Johns, B.A.; Allen, S.H. Pyrazolopyridines with potent activity against herpesviruses: Effects of C5 substituents on antiviral activity. Bioorg. Med. Chem. Lett., 2008, 18(3), 1157-1161.
[http://dx.doi.org/10.1016/j.bmcl.2007.11.120] [PMID: 18086523]
[89]
Osama, I.; El-Sabbagh Mohamed, M.; Baraka Samy, M.; Christophe Pannecouqu, I.; Gracielau, A.; Robert, S.; Balzarini, J.; Rashad, A.A. Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur. J. Med. Chem., 2009, 44, 3746-3753.
[90]
Saito, Y.; Escuret, V.; Durantel, D.; Zoulim, F.; Schinazi, R.F.; Agrofoglio, L.A. Synthesis of 1,2,3-triazolo-carbanucleoside analogues of ribavirin targeting an HCV in replicon. Bioorg. Med. Chem., 2003, 11(17), 3633-3639.
[http://dx.doi.org/10.1016/S0968-0896(03)00349-3] [PMID: 12901908]
[91]
Whiting, M.; Tripp, J.C.; Lin, Y.C.; Lindstrom, W.; Olson, A.J.; Elder, J.H.; Sharpless, K.B.; Fokin, V.V. Rapid discovery and structure-activity profiling of novel inhibitors of human immunodeficiency virus type 1 protease enabled by the copper(I)-catalyzed synthesis of 1,2,3-triazoles and their further functionalization. J. Med. Chem., 2006, 49(26), 7697-7710.
[http://dx.doi.org/10.1021/jm060754+] [PMID: 17181152]
[92]
Olomola, T.O.; Klein, R.; Lobb, K.A.; Sayed, Y.; Kaye, P.T. Towards the synthesis of coumarin derivatives as potential dual-action HIV-1 protease and reverse transcriptase inhibitors. Tetrahedron Lett., 2010, 51(48), 6325-6328.
[http://dx.doi.org/10.1016/j.tetlet.2010.09.121]
[93]
Gopi, H.; Cocklin, S.; Pirrone, V.; McFadden, K.; Tuzer, F.; Zentner, I.; Ajith, S.; Baxter, S.; Jawanda, N.; Krebs, F.C.; Chaiken, I.M. Introducing metallocene into a triazole peptide conjugate reduces its off-rate and enhances its affinity and antiviral potency for HIV-1 gp120. J. Mol. Recognit., 2009, 22(2), 169-174.
[http://dx.doi.org/10.1002/jmr.892] [PMID: 18498083]
[94]
McFadden, K.; Fletcher, P.; Rossi, F. Kantharaju; Umashankara, M.; Pirrone, V.; Rajagopal, S.; Gopi, H.; Krebs, F.C.; Martin-Garcia, J.; Shattock, R.J.; Chaiken, I. Antiviral breadth and combination potential of peptide triazole HIV-1 entry inhibitors. Antimicrob. Agents Chemother., 2012, 56(2), 1073-1080.
[http://dx.doi.org/10.1128/AAC.05555-11] [PMID: 22083481]
[95]
Bastian, AR. Cell-free HIV-1 virucidal action by modified peptide triazole inhibitors of Env gp120. ChemMedChem, 2011, 6(8), 1318.
[http://dx.doi.org/10.1002/cmdc.201100177]
[96]
Umashankara, M.; McFadden, K.; Zentner, I.; Schön, A.; Rajagopal, S.; Tuzer, F.; Kuriakose, S.A.; Contarino, M.; LaLonde, J.; Freire, E.; Chaiken, I. The active core in a triazole peptide dual-site antagonist of HIV-1 gp120. ChemMedChem, 2010, 5(11), 1871-1879.
[http://dx.doi.org/10.1002/cmdc.201000222] [PMID: 20677318]
[97]
Huang, W.; Groothuys, S.; Heredia, A.; Kuijpers, B.H.M.; Rutjes, F.P.J.T.; van Delft, F.L.; Wang, L.X. Enzymatic glycosylation of triazole-linked GlcNAc/Glc-peptides: Synthesis, stability and anti-HIV activity of triazole-linked HIV-1 gp41 glycopeptide C34 analogues. ChemBioChem, 2009, 10(7), 1234-1242.
[http://dx.doi.org/10.1002/cbic.200800741] [PMID: 19353609]
[98]
Giffin, M.J.; Heaslet, H.; Brik, A.; Lin, Y.C.; Cauvi, G.; Wong, C.H.; McRee, D.E.; Elder, J.H.; Stout, C.D.; Torbett, B.E. A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J. Med. Chem., 2008, 51(20), 6263-6270.
[http://dx.doi.org/10.1021/jm800149m] [PMID: 18823110]
[99]
da Silva, F.C.; de Souza, M.C.B.V.; Frugulhetti, I.I.P.; Castro, H.C.; Souza, S.L.O.; de Souza, T.M.L.; Rodrigues, D.Q.; Souza, A.M.T.; Abreu, P.A.; Passamani, F.; Rodrigues, C.R.; Ferreira, V.F. Synthesis, HIV-RT inhibitory activity and SAR of 1-benzyl-1H-1,2,3-triazole derivatives of carbohydrates. Eur. J. Med. Chem., 2009, 44(1), 373-383.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.047] [PMID: 18486994]
[100]
Kumar, S.; Arya, D.P. Recognition of HIV TAR RNA by triazole linked neomycin dimers. Bioorg. Med. Chem. Lett., 2011, 21(16), 4788-4792.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.058] [PMID: 21757341]
[101]
de Lourdes, G.; Ferreira, M.; Pinheiro, L.C.S.; Santos-Filho, O.A. Design, synthesis, and antiviral activity of new 1H-1,2,3-triazole nucleoside ribavirin analogs. Med. Chem. Res., 2014, 23, 1501-1511.
[http://dx.doi.org/10.1007/s00044-013-0762-6]
[102]
Tian, Y.; Liu, Z.; Liu, J.; Huang, B.; Kang, D.; Zhang, H.; De Clercq, E.; Daelemans, D.; Pannecouque, C.; Lee, K.H.; Chen, C.H.; Zhan, P.; Liu, X. Targeting the entrance channel of NNIBP: Discovery of diarylnicotinamide 1,4-disubstituted 1,2,3-triazoles as novel HIV-1 NNRTIs with high potency against wild-type and E138K mutant virus. Eur. J. Med. Chem., 2018, 151, 339-350.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.059] [PMID: 29635166]
[103]
Hilimire, T.A.; Chamberlain, J.M.; Anokhina, V.; Bennett, R.P.; Swart, O.; Myers, J.R.; Ashton, J.M.; Stewart, R.A.; Featherston, A.L.; Gates, K.; Helms, E.D.; Smith, H.C.; Dewhurst, S.; Miller, B.L. HIV-1 Frameshift RNA-targeted triazoles inhibit propagation of replication-competent and multi-drug-resistant HIV in human cells. ACS Chem. Biol., 2017, 12(6), 1674-1682.
[http://dx.doi.org/10.1021/acschembio.7b00052] [PMID: 28448121]
[104]
Yan, L.; Yin, Z.; Niu, L.; Shao, J.; Chen, H.; Li, X. Synthesis of pentacyclic iminosugars with constrained butterfly-like conformation and their HIV-RT inhibitory activity. Bioorg. Med. Chem. Lett., 2018, 28(3), 425-428.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.025] [PMID: 29269212]
[105]
Wu, G.; Zalloum, W.A.; Meuser, M.E.; Jing, L.; Kang, D.; Chen, C.H.; Tian, Y.; Zhang, F.; Cocklin, S.; Lee, K.H.; Liu, X.; Zhan, P. Discovery of phenylalanine derivatives as potent HIV-1 capsid inhibitors from click chemistry-based compound library. Eur. J. Med. Chem., 2018, 158, 478-492.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.029] [PMID: 30243152]
[106]
Sun, L.; Huang, T.; Dick, A.; Meuser, M.E.; Zalloum, W.A.; Chen, C.H.; Ding, X.; Gao, P.; Cocklin, S.; Lee, K.H.; Zhan, P.; Liu, X. Design, synthesis and structure-activity relationships of 4-phenyl-1H-1,2,3-triazole phenylalanine derivatives as novel HIV-1 capsid inhibitors with promising antiviral activities. Eur. J. Med. Chem., 2020, 190, 112085.
[http://dx.doi.org/10.1016/j.ejmech.2020.112085] [PMID: 32066010]
[107]
Al-Hujaj, H.H.; Jassem, A.M.; Al-Masoudi, N.A.; Abdul, F.; Almashal, K. A click synthesis, molecular docking, cytotoxicity on breast cancer (MDA-MB 231) and Anti-HIV activities of new 1,4-disubstituted-1,2,3-triazole thymine derivatives. Russ. J. Bioorganic Chem., 2020, 46(3), 360-370.
[http://dx.doi.org/10.1134/S1068162020030024]
[108]
de Alencar, D.M.; Gonçalves, J.; Vieira, A.; Cerqueira, S.A.; Sebastião, C.; Leitão, M.I.P.S.; Francescato, G.; Antenori, P.; Soares, H.; Petronilho, A. Development of triazoles and triazolium salts based on AZT and their anti-viral activity against HIV-1. Molecules, 2021, 26(21), 6720.
[http://dx.doi.org/10.3390/molecules26216720] [PMID: 34771129]
[109]
He, Y.W.; Dong, C.Z.; Zhao, J.Y.; Ma, L.L.; Li, Y.H.; Aisa, H.A. 1,2,3-triazole-containing derivatives of rupestonic acid: Click-chemical synthesis and antiviral activities against influenza viruses. Eur. J. Med. Chem., 2014, 76, 245-255.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.029] [PMID: 24583605]
[110]
Głowacka, I.E.; Balzarini, J.; Andrei, G.; Snoeck, R.; Schols, D.; Piotrowska, D.G. Design, synthesis, antiviral and cytostatic activity of ω-(1H-1,2,3-triazol-1-yl)(polyhydroxy)alkylphosphonates as acyclic nucleotide analogues. Bioorg. Med. Chem., 2014, 22(14), 3629-3641.
[http://dx.doi.org/10.1016/j.bmc.2014.05.020] [PMID: 24906510]
[111]
El-Sayed, W.A.; Khalaf, H.S.; Mohamed, S.F.; Hussien, H.A.; Kutkat, O.M.; Amr, A.E. Synthesis and antiviral activity of 1,2,3-triazole glycosides based substituted pyridine via click cycloaddition. Russ. J. Gen. Chem., 2017, 87(10), 2444-2453.
[http://dx.doi.org/10.1134/S1070363217100279]
[112]
Elkanzi, N.A.A.; El-Sofany, W.I.; Gaballah, S.T.; Mohamed, A.M.; Kutkat, O.; El-Sayed, W.A. Synthesis, molecular modeling, and antiviral activity of novel triazole nucleosides and their analogs. Russ. J. Gen. Chem., 2019, 89(9), 1896-1904.
[http://dx.doi.org/10.1134/S1070363219090263]
[113]
Ju, H.; Xiu, S.; Ding, X.; Shang, M.; Jia, R.; Huang, B.; Zhan, P.; Liu, X. Discovery of novel 1,2,3-triazole oseltamivir derivatives as potent influenza neuraminidase inhibitors targeting the 430-cavity. Eur. J. Med. Chem., 2020, 187, 111940.
[http://dx.doi.org/10.1016/j.ejmech.2019.111940] [PMID: 31835169]
[114]
Andreeva, O.V.; Garifullin, B.F.; Zarubaev, V.V.; Slita, A.V.; Yesaulkova, I.L.; Saifina, L.F.; Shulaeva, M.M.; Belenok, M.G.; Semenov, V.E.; Kataev, V.E. Synthesis of 1,2,3-triazolyl nucleoside analogues and their antiviral activity. Mol. Divers., 2021, 25(1), 473-490.
[http://dx.doi.org/10.1007/s11030-020-10141-y] [PMID: 32930935]
[115]
Karypidou, K.; Ribone, S.R.; Quevedo, M.A.; Persoons, L.; Pannecouque, C.; Helsen, C.; Claessens, F.; Dehaen, W. Synthesis, biological evaluation and molecular modeling of a novel series of fused 1,2,3-triazoles as potential anti-coronavirus agents. Bioorg. Med. Chem. Lett., 2018, 28(21), 3472-3476.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.019] [PMID: 30286952]
[116]
Seliem, I.A.; Panda, S.S.; Girgis, A.S.; Moatasim, Y.; Kandeil, A.; Mostafa, A.; Ali, M.A.; Nossier, E.S.; Rasslan, F.; Srour, A.M.; Sakhuja, R.; Ibrahim, T.S.; Abdel-samii, Z.K.M.; Al-Mahmoudy, A.M.M. New quinoline-triazole conjugates: Synthesis, and antiviral properties against SARS-CoV-2. Bioorg. Chem., 2021, 114, 105117.
[http://dx.doi.org/10.1016/j.bioorg.2021.105117] [PMID: 34214752]
[117]
Song, W.H.; Liu, M.M.; Zhong, D.W.; Zhu, Y.; Bosscher, M.; Zhou, L.; Ye, D.Y.; Yuan, Z.H. Tetrazole and triazole as bioisosteres of carboxylic acid: Discovery of diketo tetrazoles and diketo triazoles as anti-HCV agents. Bioorg. Med. Chem. Lett., 2013, 23(16), 4528-4531.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.045] [PMID: 23856047]
[118]
Liu, M.; Xu, Q.; Guo, S.; Zuo, R.; Hong, Y.; Luo, Y.; Li, Y.; Gong, P.; Liu, Y. Design, synthesis, and structure-activity relationships of novel imidazo[4,5-c]pyridine derivatives as potent non-nucleoside inhibitors of hepatitis C virus NS5B. Bioorg. Med. Chem., 2018, 26(9), 2621-2631.
[http://dx.doi.org/10.1016/j.bmc.2018.04.029] [PMID: 29681484]
[119]
Liu, Y.; Peng, Y.; Lu, J.; Wang, J.; Ma, H.; Song, C.; Liu, B.; Qiao, Y.; Yu, W.; Wu, J.; Chang, J. Design, synthesis, and biological evaluation of new 1,2,3-triazolo-2′-deoxy-2′-fluoro- 4′-azido nucleoside derivatives as potent anti-HBV agents. Eur. J. Med. Chem., 2018, 143, 137-149.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.028] [PMID: 29174810]
[120]
Abuduaini, T.; Roy, V.; Marlet, J.; Gaudy-Graffin, C.; Brand, D.; Baronti, C.; Touret, F.; Coutard, B.; McBrayer, T.R.; Schinazi, R.F.; Agrofoglio, L.A. Synthesis and antiviral evaluation of (1,4-disubstituted-1,2,3-triazol)-(E)-2-methyl-but-2-enyl nucleoside phosphonate prodrugs. Molecules, 2021, 26(5), 1493.
[http://dx.doi.org/10.3390/molecules26051493] [PMID: 33803417]
[121]
Santos-Fernandes, É.; Beltrame, C.O.; Byrd, C.M.; Cardwell, K.B.; Schnellrath, L.C.; Medaglia, M.L.G.; Hruby, D.E.; Jordan, R.; Damaso, C.R. Increased susceptibility of Cantagalo virus to the antiviral effect of ST-246®. Antiviral Res., 2013, 97(3), 301-311.
[http://dx.doi.org/10.1016/j.antiviral.2012.11.010] [PMID: 23257396]
[122]
Jordão, A.K.; Afonso, P.P.; Ferreira, V.F.; de Souza, M.C.B.V.; Almeida, M.C.B.; Beltrame, C.O.; Paiva, D.P.; Wardell, S.M.S.V.; Wardell, J.L.; Tiekink, E.R.T.; Damaso, C.R.; Cunha, A.C. Antiviral evaluation of N-amino-1,2,3-triazoles against Cantagalo virus replication in cell culture. Eur. J. Med. Chem., 2009, 44(9), 3777-3783.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.046] [PMID: 19481841]
[123]
Schwartz, O.; Albert, M.L. Biology and pathogenesis of chikungunya virus. Nat. Rev. Microbiol., 2010, 8(7), 491-500.
[http://dx.doi.org/10.1038/nrmicro2368] [PMID: 20551973]
[124]
Gigante, A.; Canela, M.D.; Delang, L.; Priego, E.M.; Camarasa, M.J.; Querat, G.; Neyts, J.; Leyssen, P.; Pérez-Pérez, M.J. Identification of [1,2,3]triazolo[4,5-d]pyrimidin-7(6H)-ones as novel inhibitors of Chikungunya virus replication. J. Med. Chem., 2014, 57(10), 4000-4008.
[http://dx.doi.org/10.1021/jm401844c] [PMID: 24800626]
[125]
Bok, K.; Green, K.Y. Norovirus gastroenteritis in immunocompromised patients. N. Engl. J. Med., 2012, 367(22), 2126-2132.
[http://dx.doi.org/10.1056/NEJMra1207742] [PMID: 23190223]
[126]
Robilotti, E.; Deresinski, S.; Pinsky, B.A. Norovirus. Clin. Microbiol. Rev., 2015, 28(1), 134-164.
[http://dx.doi.org/10.1128/CMR.00075-14] [PMID: 25567225]
[127]
Tyndall, J.; Fairlie, D. Macrocycles mimic the extended peptide conformation recognized by aspartic, serine, cysteine and metallo proteases. Curr. Med. Chem., 2001, 8(8), 893-907.
[http://dx.doi.org/10.2174/0929867013372715] [PMID: 11375757]
[128]
Reid, R.C.; Kelso, M.J.; Scanlon, M.J.; Fairlie, D.P. Conformationally constrained macrocycles that mimic tripeptide beta-strands in water and aprotic solvents. J. Am. Chem. Soc., 2002, 124(20), 5673-5683.
[http://dx.doi.org/10.1021/ja0256461] [PMID: 12010040]
[129]
Weerawarna, P.M.; Kim, Y.; Galasiti Kankanamalage, A.C.; Damalanka, V.C.; Lushington, G.H.; Alliston, K.R.; Mehzabeen, N.; Battaile, K.P.; Lovell, S.; Chang, K.O.; Groutas, W.C. Structure-based design and synthesis of triazole-based macrocyclic inhibitors of norovirus protease: Structural, biochemical, spectroscopic, and antiviral studies. Eur. J. Med. Chem., 2016, 119, 300-318.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.013] [PMID: 27235842]
[130]
Jordão, A.K.; Ferreira, V.F.; Souza, T.M.L.; de Souza Faria, G.G.; Machado, V.; Abrantes, J.L.; de Souza, M.C.B.V.; Cunha, A.C. Synthesis and anti-HSV-1 activity of new 1,2,3-triazole derivatives. Bioorg. Med. Chem., 2011, 19(6), 1860-1865.
[http://dx.doi.org/10.1016/j.bmc.2011.02.007] [PMID: 21376603]
[131]
Głowacka, I.E.; Balzarini, J.; Wróblewski, A.E. The synthesis, antiviral, cytostatic and cytotoxic evaluation of a new series of acyclonucleotide analogues with a 1,2,3-triazole linker. Eur. J. Med. Chem., 2013, 70, 703-722.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.057] [PMID: 24219992]
[132]
Kaoukabi, H.; Kabri, Y.; Curti, C.; Taourirte, M.; Rodriguez-Ubis, J.C.; Snoeck, R.; Andrei, G.; Vanelle, P.; Lazrek, H.B. Dihydropyrimidinone/1,2,3-triazole hybrid molecules: Synthesis and anti-varicella-zoster virus (VZV) evaluation. Eur. J. Med. Chem., 2018, 155, 772-781.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.028] [PMID: 29945100]
[133]
Cunha, A.C.; Ferreira, V.F.; Vaz, M.G.F.; Cassaro, R.A.A.; Resende, J.A.L.C.; Sacramento, C.Q.; Costa, J.; Abrantes, J.L.; Souza, T.M.L.; Jordão, A.K. Chemistry and anti-herpes simplex virus type 1 evaluation of 4-substituted-1H-1,2,3-triazole-nitroxyl-linked hybrids. Mol. Divers., 2021, 25(4), 2035-2043.
[http://dx.doi.org/10.1007/s11030-020-10094-2]
[134]
Macan, A.M.; Harej, A.; Cazin, I.; Klobučar, M.; Stepanić, V.; Pavelić, K.; Pavelić, S.K.; Schols, D.; Snoeck, R.; Andrei, G.; Raić-Malić, S. Antitumor and antiviral activities of 4-substituted 1,2,3-triazolyl-2,3-dibenzyl-L-ascorbic acid derivatives. Eur. J. Med. Chem., 2019, 184, 111739.
[http://dx.doi.org/10.1016/j.ejmech.2019.111739] [PMID: 31586832]
[135]
Ouahrouch, A.; Taourirte, M.; Schols, D.; Snoeck, R.; Andrei, G.; Engels, J.W.; Lazrek, H.B. Design, synthesis, and antiviral activity of novel ribonucleosides of 1,2,3‐triazolylbenzyl‐aminophosphonates. Arch. Pharm., 2016, 349(1), 30-41.
[http://dx.doi.org/10.1002/ardp.201500292] [PMID: 26575425]
[136]
Bębenek, E.; Jastrzębska, M.; Kadela-Tomanek, M.; Chrobak, E.; Orzechowska, B.; Zwolińska, K.; Latocha, M.; Mertas, A.; Czuba, Z.; Boryczka, S. Novel triazole hybrids of betulin: Synthesis and biological activity profile. Molecules, 2017, 22(11), 1876.
[http://dx.doi.org/10.3390/molecules22111876] [PMID: 29104263]
[137]
Sabat, N.; Ouarti, A.; Migianu-Griffoni, E.; Lecouvey, M.; Ferraris, O.; Gallier, F.; Peyrefitte, C.; Lubin-Germain, N.; Uziel, J. Synthesis, antiviral and antitumor activities investigations of a series of Ribavirin C-nucleoside analogue prodrugs. Bioorg. Chem., 2022, 122, 105723.
[http://dx.doi.org/10.1016/j.bioorg.2022.105723] [PMID: 35278778]