Intestinal Barrier Function and Neurodegenerative Disease

Page: [1134 - 1142] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Neurodegenerative diseases are caused by the loss of neurons and/or their myelin sheaths, which deteriorate over time and become dysfunctional. Alzheimer's disease, Parkinson's disease, and multiple sclerosis are among the most prominent neurodegenerative diseases that affect millions of older adults worldwide. Despite extensive research over several decades, controversies still surround the etiology of neurodegenerative diseases, and many of them remain incurable. Meanwhile, an increasing number of new mechanistic studies related to the microbiota-gut-brain axis have emerged, among which the relationship between the function of the intestinal barrier and neurodegenerative diseases has received widespread attention. As one of the first lines of defense between the body and the external environment, the impaired function of the intestinal barrier is closely related to the development of neurodegenerative pathologies. Among them, the microbiota-gut-brain axis disorder characterized by intestinal barrier disruption mainly includes impaired function of the intestinal microbial barrier, chemical barrier, mechanical barrier, and immune barrier. This review focuses on the structure and molecular mechanisms of the various layers of the intestinal barrier as well as their relationship with neurodegenerative lesions. In recent years, intestinal barrier repair therapies have provided new ideas for the studied disease treatment modalities. We believe that a better understanding of the role of the intestinal barrier in neurodegenerative diseases would provide new insights for the development of viable therapeutic strategies for patients.

Graphical Abstract

[1]
Focus on neurodegenerative disease. Nat Neurosci 2018; 21(10): 1293.
[http://dx.doi.org/10.1038/s41593-018-0250-x] [PMID: 30258240]
[2]
Xiao Y, Wang SK, Zhang Y, et al. Role of extracellular vesicles in neurodegenerative diseases. Prog Neurobiol 2021; 201: 102022.
[http://dx.doi.org/10.1016/j.pneurobio.2021.102022] [PMID: 33617919]
[3]
Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement 2013; 9(1): 63-75.e2.
[http://dx.doi.org/10.1016/j.jalz.2012.11.007] [PMID: 23305823]
[4]
Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med 2003; 348(14): 1356-64.
[http://dx.doi.org/10.1056/NEJM2003ra020003] [PMID: 12672864]
[5]
Hou Y, Dan X, Babbar M, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 2019; 15(10): 565-81.
[http://dx.doi.org/10.1038/s41582-019-0244-7] [PMID: 31501588]
[6]
Heavener KS, Bradshaw EM. The aging immune system in Alzheimer’s and Parkinson’s diseases. Semin Immunopathol 2022; 44(5): 649-57.
[http://dx.doi.org/10.1007/s00281-022-00944-6] [PMID: 35505128]
[7]
Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med 2004; 10(S7) (Suppl.): S10-7.
[http://dx.doi.org/10.1038/nm1066] [PMID: 15272267]
[8]
Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019; 24(8): 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[9]
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443(7113): 787-95.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[10]
Voet S, Srinivasan S, Lamkanfi M, van Loo G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med 2019; 11(6): e10248.
[http://dx.doi.org/10.15252/emmm.201810248] [PMID: 31015277]
[11]
Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease. Cell 2016; 167(6): 1469-1480.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.018] [PMID: 27912057]
[12]
Hung CC, Chang CC, Huang CW, Nouchi R, Cheng CH. Gut microbiota in patients with Alzheimer’s disease spectrum: a systematic review and meta-analysis. Aging (Albany NY) 2022; 14(1): 477-96.
[http://dx.doi.org/10.18632/aging.203826] [PMID: 35027502]
[13]
Shi H, Ge X, Ma X, et al. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome 2021; 9(1): 223.
[http://dx.doi.org/10.1186/s40168-021-01172-0] [PMID: 34758889]
[14]
Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut 2020; 69(12): 2232-43.
[http://dx.doi.org/10.1136/gutjnl-2020-322260] [PMID: 32917747]
[15]
Leonardi I, Gao IH, Lin WY, et al. Mucosal fungi promote gut barrier function and social behavior via Type 17 immunity. Cell 2022; 185(5): 831-846.e14.
[http://dx.doi.org/10.1016/j.cell.2022.01.017] [PMID: 35176228]
[16]
Trzeciak P, Herbet M. Role of the intestinal microbiome, intestinal barrier and psychobiotics in depression. Nutrients 2021; 13(3): 927.
[http://dx.doi.org/10.3390/nu13030927] [PMID: 33809367]
[17]
Julio-Pieper M, Bravo JA. Intestinal barrier and behavior. Int Rev Neurobiol 2016; 131: 127-41.
[http://dx.doi.org/10.1016/bs.irn.2016.08.006] [PMID: 27793215]
[18]
Chopyk DM, Grakoui A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders. Gastroenterology 2020; 159(3): 849-63.
[http://dx.doi.org/10.1053/j.gastro.2020.04.077] [PMID: 32569766]
[19]
Lewis CV, Taylor WR. Intestinal barrier dysfunction as a therapeutic target for cardiovascular disease. Am J Physiol Heart Circ Physiol 2020; 319(6): H1227-33.
[http://dx.doi.org/10.1152/ajpheart.00612.2020] [PMID: 32986965]
[20]
Cui Y, Wang Q, Chang R, Zhou X, Xu C. Intestinal barrier function–non-alcoholic fatty liver disease interactions and possible role of gut microbiota. J Agric Food Chem 2019; 67(10): 2754-62.
[http://dx.doi.org/10.1021/acs.jafc.9b00080] [PMID: 30798598]
[21]
Michels N, Zouiouich S, Vanderbauwhede B, Vanacker J, Indave Ruiz BI, Huybrechts I. Human microbiome and metabolic health: An overview of systematic reviews. Obes Rev 2022; 23(4): e13409.
[http://dx.doi.org/10.1111/obr.13409] [PMID: 34978141]
[22]
Sharma R, Young C, Neu J. Molecular modulation of intestinal epithelial barrier: contribution of microbiota. J Biomed Biotechnol 2010; 2010: 1-15.
[http://dx.doi.org/10.1155/2010/305879] [PMID: 20150966]
[23]
Chen J, Chia N, Kalari KR, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep 2016; 6(1): 28484.
[http://dx.doi.org/10.1038/srep28484] [PMID: 27346372]
[24]
Zhang K, Hornef MW, Dupont A. The intestinal epithelium as guardian of gut barrier integrity. Cell Microbiol 2015; 17(11): 1561-9.
[http://dx.doi.org/10.1111/cmi.12501] [PMID: 26294173]
[25]
Gustafsson JK, Johansson MEV. The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol 2022; 19(12): 785-803.
[http://dx.doi.org/10.1038/s41575-022-00675-x] [PMID: 36097076]
[26]
Groschwitz KR, Hogan SP. Intestinal barrier function: Molecular regulation and disease pathogenesis. J Allergy Clin Immunol 2009; 124(1): 3-20.
[http://dx.doi.org/10.1016/j.jaci.2009.05.038] [PMID: 19560575]
[27]
Stahl M, Tremblay S, Montero M, et al. The Muc2 mucin coats murine Paneth cell granules and facilitates their content release and dispersion. Am J Physiol Gastrointest Liver Physiol 2018; 315(2): G195-205.
[http://dx.doi.org/10.1152/ajpgi.00264.2017] [PMID: 29698056]
[28]
Fitzpatrick Z, Frazer G, Ferro A, et al. Gut-educated IgA plasma cells defend the meningeal venous sinuses. Nature 2020; 587(7834): 472-6.
[http://dx.doi.org/10.1038/s41586-020-2886-4] [PMID: 33149302]
[29]
Zhao M, Xiong X, Ren K, et al. Deficiency in intestinal epithelial O-GlcNAcylation predisposes to gut inflammation. EMBO Mol Med 2018; 10(8): e8736.
[http://dx.doi.org/10.15252/emmm.201708736] [PMID: 29941542]
[30]
Wang S, Xia P, Chen Y, et al. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell 2017; 171(1): 201-216.e18.
[http://dx.doi.org/10.1016/j.cell.2017.07.027] [PMID: 28844693]
[31]
Persson EK, Scott CL, Mowat AM, Agace WW. Dendritic cell subsets in the intestinal lamina propria: Ontogeny and function. Eur J Immunol 2013; 43(12): 3098-107.
[http://dx.doi.org/10.1002/eji.201343740] [PMID: 23966272]
[32]
Gronke K, Kofoed-Nielsen M, Diefenbach A. Isolation and flow cytometry analysis of innate lymphoid cells from the intestinal lamina propria. Methods Mol Biol 2017; 1559: 255-65.
[http://dx.doi.org/10.1007/978-1-4939-6786-5_17] [PMID: 28063049]
[33]
Spencer J, Sollid LM. The human intestinal B-cell response. Mucosal Immunol 2016; 9(5): 1113-24.
[http://dx.doi.org/10.1038/mi.2016.59] [PMID: 27461177]
[34]
Brandtzaeg P, Farstad IN, Johansen FE, et al. The B-cell system of human mucosae and exocrine glands. Immunol Rev 1999; 171(1): 45-87.
[http://dx.doi.org/10.1111/j.1600-065X.1999.tb01342.x] [PMID: 10582165]
[35]
Martínez-López M, Iborra S, Conde-Garrosa R, et al. Microbiota sensing by mincle-syk axis in dendritic cells regulates interleukin-17 and -22 production and promotes intestinal barrier integrity. Immunity 2019; 50(2): 446-461.e9.
[http://dx.doi.org/10.1016/j.immuni.2018.12.020] [PMID: 30709742]
[36]
Corr SC, Gahan CCGM, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol Med Microbiol 2008; 52(1): 2-12.
[http://dx.doi.org/10.1111/j.1574-695X.2007.00359.x] [PMID: 18081850]
[37]
Kurokawa K, Hayakawa Y, Koike K. Plasticity of intestinal epithelium: Stem cell niches and regulatory signals. Int J Mol Sci 2020; 22(1): 357.
[http://dx.doi.org/10.3390/ijms22010357] [PMID: 33396437]
[38]
Darwich AS, Aslam U, Ashcroft DM, Rostami-Hodjegan A. Meta-analysis of the turnover of intestinal epithelia in preclinical animal species and humans. Drug Metab Dispos 2014; 42(12): 2016-22.
[http://dx.doi.org/10.1124/dmd.114.058404] [PMID: 25233858]
[39]
Herath M, Hosie S, Bornstein JC, Franks AE, Hill-Yardin EL. The Role of the Gastrointestinal Mucus System in Intestinal Homeostasis: Implications for Neurological Disorders. Front Cell Infect Microbiol 2020; 10: 248.
[http://dx.doi.org/10.3389/fcimb.2020.00248] [PMID: 32547962]
[40]
Gregorieff A, Clevers H. Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 2005; 19(8): 877-90.
[http://dx.doi.org/10.1101/gad.1295405] [PMID: 15833914]
[41]
Tian H, Biehs B, Chiu C, et al. Opposing activities of Notch and Wnt signaling regulate intestinal stem cells and gut homeostasis. Cell Rep 2015; 11(1): 33-42.
[http://dx.doi.org/10.1016/j.celrep.2015.03.007] [PMID: 25818302]
[42]
VanDussen KL, Carulli AJ, Keeley TM, et al. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 2012; 139(3): 488-97.
[http://dx.doi.org/10.1242/dev.070763] [PMID: 22190634]
[43]
McCauley HA, Liu CY, Attia AC, et al. TGFβ signaling inhibits goblet cell differentiation via SPDEF in conjunctival epithelium. Development 2014; 141(23): 4628-39.
[http://dx.doi.org/10.1242/dev.117804] [PMID: 25377551]
[44]
Zhu M, Wei R, Li Y, et al. Bisphenol chemicals disturb intestinal homeostasis via Notch/Wnt signaling and induce mucosal barrier dysregulation and inflammation. Sci Total Environ 2022; 828: 154444.
[http://dx.doi.org/10.1016/j.scitotenv.2022.154444] [PMID: 35278557]
[45]
Ríos JD, Zoukhri D, Rawe IM, Hodges RR, Zieske JD, Dartt DA. Immunolocalization of muscarinic and VIP receptor subtypes and their role in stimulating goblet cell secretion. Invest Ophthalmol Vis Sci 1999; 40(6): 1102-11.
[PMID: 10235543]
[46]
Pellegrini C, Fornai M, D’Antongiovanni V, Antonioli L, Bernardini N, Derkinderen P. The intestinal barrier in disorders of the central nervous system. Lancet Gastroenterol Hepatol 2023; 8(1): 66-80.
[http://dx.doi.org/10.1016/S2468-1253(22)00241-2] [PMID: 36334596]
[47]
Gustafsson JK, Davis JE, Rappai T, et al. Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis. eLife 2021; 10: e67292.
[http://dx.doi.org/10.7554/eLife.67292] [PMID: 34677124]
[48]
Keir ME, Yi T, Lu TT, Ghilardi N. The role of IL-22 in intestinal health and disease. J Exp Med 2020; 217(3): e20192195.
[http://dx.doi.org/10.1084/jem.20192195] [PMID: 32997932]
[49]
Jeon MK, Klaus C, Kaemmerer E, Gassler N. Intestinal barrier: Molecular pathways and modifiers. World J Gastrointest Pathophysiol 2013; 4(4): 94-9.
[http://dx.doi.org/10.4291/wjgp.v4.i4.94] [PMID: 24244877]
[50]
Gu NX, Guo YR, Lin SE, et al. Frizzled 7 modulates goblet and Paneth cell fate, and maintains homeostasis in mouse intestine. Development 2023; 150(4): dev200932.
[http://dx.doi.org/10.1242/dev.200932] [PMID: 36691900]
[51]
Cotter D, Honavar M, Lovestone S, et al. Disturbance of Notch-1 and Wnt signalling proteins in neuroglial balloon cells and abnormal large neurons in focal cortical dysplasia in human cortex. Acta Neuropathol 1999; 98(5): 465-72.
[http://dx.doi.org/10.1007/s004010051111] [PMID: 10541869]
[52]
Sani G, Napoletano F, Forte AM, et al. The wnt pathway in mood disorders. Curr Neuropharmacol 2012; 10(3): 239-53.
[http://dx.doi.org/10.2174/157015912803217279] [PMID: 23449817]
[53]
Zhang Y, Yuan X, Wang Z, Li R. The canonical Wnt signaling pathway in autism. CNS Neurol Disord Drug Targets 2014; 13(5): 765-70.
[http://dx.doi.org/10.2174/1871527312666131223114149] [PMID: 24365182]
[54]
Hoseth EZ, Krull F, Dieset I, et al. Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder. Transl Psychiatry 2018; 8(1): 55.
[http://dx.doi.org/10.1038/s41398-018-0102-1] [PMID: 29507296]
[55]
Medina MA, Andrade VM, Caracci MO, et al. Wnt/β-catenin signaling stimulates the expression and synaptic clustering of the autism-associated Neuroligin 3 gene. Transl Psychiatry 2018; 8(1): 45.
[http://dx.doi.org/10.1038/s41398-018-0093-y] [PMID: 29503438]
[56]
Dengler-Crish CM, Ball HC, Lin L, Novak KM, Cooper LN. Evidence of Wnt/β-catenin alterations in brain and bone of a tauopathy mouse model of Alzheimer’s disease. Neurobiol Aging 2018; 67: 148-58.
[http://dx.doi.org/10.1016/j.neurobiolaging.2018.03.021] [PMID: 29660685]
[57]
Berwick DC, Harvey K. The importance of Wnt signalling for neurodegeneration in Parkinson’s disease. Biochem Soc Trans 2012; 40(5): 1123-8.
[http://dx.doi.org/10.1042/BST20120122] [PMID: 22988876]
[58]
Matus S, Glimcher LH, Hetz C. Protein folding stress in neurodegenerative diseases: a glimpse into the ER. Curr Opin Cell Biol 2011; 23(2): 239-52.
[http://dx.doi.org/10.1016/j.ceb.2011.01.003] [PMID: 21288706]
[59]
Mháille AN, McQuaid S, Windebank A, et al. Increased expression of endoplasmic reticulum stress-related signaling pathway molecules in multiple sclerosis lesions. J Neuropathol Exp Neurol 2008; 67(3): 200-11.
[http://dx.doi.org/10.1097/NEN.0b013e318165b239] [PMID: 18344911]
[60]
Guerini FR, Bolognesi E, Chiappedi M, et al. SNAP-25 single nucleotide polymorphisms are associated with hyperactivity in autism spectrum disorders. Pharmacol Res 2011; 64(3): 283-8.
[http://dx.doi.org/10.1016/j.phrs.2011.03.015] [PMID: 21497654]
[61]
Durdiaková J, Warrier V, Banerjee-Basu S, Baron-Cohen S, Chakrabarti B. STX1A and Asperger syndrome: a replication study. Mol Autism 2014; 5(1): 14.
[http://dx.doi.org/10.1186/2040-2392-5-14] [PMID: 24548729]
[62]
Hamada N, Iwamoto I, Tabata H, Nagata K. MUNC18–1 gene abnormalities are involved in neurodevelopmental disorders through defective cortical architecture during brain development. Acta Neuropathol Commun 2017; 5(1): 92.
[http://dx.doi.org/10.1186/s40478-017-0498-5] [PMID: 29191246]
[63]
Cantarel BL, Waubant E, Chehoud C, et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med 2015; 63(5): 729-34.
[64]
Miyake S, Kim S, Suda W, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One 2015; 10(9): e0137429.
[http://dx.doi.org/10.1371/journal.pone.0137429] [PMID: 26367776]
[65]
Jangi S, Gandhi R, Cox LM, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 2016; 7(1): 12015.
[http://dx.doi.org/10.1038/ncomms12015] [PMID: 27352007]
[66]
Buscarinu MC, Fornasiero A, Romano S, et al. The contribution of gut barrier changes to multiple sclerosis pathophysiology. Front Immunol 2019; 10: 1916.
[http://dx.doi.org/10.3389/fimmu.2019.01916] [PMID: 31555257]
[67]
Camara-Lemarroy CR, Metz L, Meddings JB, Sharkey KA, Wee Yong V. The intestinal barrier in multiple sclerosis: implications for pathophysiology and therapeutics. Brain 2018; 141(7): 1900-16.
[http://dx.doi.org/10.1093/brain/awy131] [PMID: 29860380]
[68]
Cekanaviciute E, Yoo BB, Runia TF, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA 2017; 114(40): 10713-8.
[http://dx.doi.org/10.1073/pnas.1711235114] [PMID: 28893978]
[69]
Saresella M, Marventano I, Barone M, et al. Alterations in circulating fatty acid are associated with gut microbiota dysbiosis and inflammation in multiple sclerosis. Front Immunol 2020; 11: 1390.
[http://dx.doi.org/10.3389/fimmu.2020.01390] [PMID: 32733460]
[70]
Lange LS, Shiner M. Small-bowel abnormalities in multiple sclerosis. Lancet 1976; 308(7999): 1319-22.
[http://dx.doi.org/10.1016/S0140-6736(76)91972-3] [PMID: 63801]
[71]
Gupta JK, Ingegno AP, Cook AW, Pertschuk LP. Multiple sclerosis and malabsorption. Am J Gastroenterol 1977; 68(6): 560-5.
[PMID: 612212]
[72]
Nouri M, Bredberg A, Weström B, Lavasani S. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PLoS One 2014; 9(9): e106335.
[http://dx.doi.org/10.1371/journal.pone.0106335] [PMID: 25184418]
[73]
Secher T, Kassem S, Benamar M, et al. Oral administration of the probiotic strain Escherichia coli nissle 1917 reduces susceptibility to neuroinflammation and repairs experimental autoimmune encephalomyelitis-induced intestinal barrier dysfunction. Front Immunol 2017; 8: 1096.
[http://dx.doi.org/10.3389/fimmu.2017.01096] [PMID: 28959254]
[74]
König J, Wells J, Cani PD, et al. Human intestinal barrier function in health and disease. Clin Transl Gastroenterol 2016; 7(10): e196.
[http://dx.doi.org/10.1038/ctg.2016.54] [PMID: 27763627]
[75]
Candelli M, Franza L, Pignataro G, et al. Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases. Int J Mol Sci 2021; 22(12): 6242.
[http://dx.doi.org/10.3390/ijms22126242] [PMID: 34200555]
[76]
Finsterer J, Leutmezer F. Celiac disease with cerebral and peripheral nerve involvement mimicking multiple sclerosis. J Med Life 2014; 7(3): 440-4.
[PMID: 25408772]
[77]
Teixeira B, Bittencourt VCB, Ferreira TB, et al. Low sensitivity to glucocorticoid inhibition of in vitro Th17-related cytokine production in multiple sclerosis patients is related to elevated plasma lipopolysaccharide levels. Clin Immunol 2013; 148(2): 209-18.
[http://dx.doi.org/10.1016/j.clim.2013.05.012] [PMID: 23778260]
[78]
Escribano BM, Medina-Fernández FJ, Aguilar-Luque M, et al. Lipopolysaccharide binding protein and oxidative stress in a multiple sclerosis model. Neurotherapeutics 2017; 14(1): 199-211.
[http://dx.doi.org/10.1007/s13311-016-0480-0] [PMID: 27718209]
[79]
Patten DA, Collett A. Exploring the immunomodulatory potential of microbial-associated molecular patterns derived from the enteric bacterial microbiota. Microbiology (Reading) 2013; 159(Pt_8): 1535-44.
[http://dx.doi.org/10.1099/mic.0.064717-0] [PMID: 23851280]
[80]
Miranda-Hernandez S, Baxter AG. Role of toll-like receptors in multiple sclerosis. Am J Clin Exp Immunol 2013; 2(1): 75-93.
[PMID: 23885326]
[81]
Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep 2017; 7(1): 13537.
[http://dx.doi.org/10.1038/s41598-017-13601-y] [PMID: 29051531]
[82]
Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging 2017; 49: 60-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.019] [PMID: 27776263]
[83]
Boren E, Gershwin ME. Inflamm-aging: autoimmunity, and the immune-risk phenotype. Autoimmun Rev 2004; 3(5): 401-6.
[http://dx.doi.org/10.1016/j.autrev.2004.03.004] [PMID: 15288008]
[84]
Kumar M, Babaei P, Ji B, Nielsen J. Human gut microbiota and healthy aging: Recent developments and future prospective. Nutr Healthy Aging 2016; 4(1): 3-16.
[http://dx.doi.org/10.3233/NHA-150002] [PMID: 28035338]
[85]
Kim H, Kim S, Shin SJ, et al. Gram-negative bacteria and their lipopolysaccharides in Alzheimer’s disease: pathologic roles and therapeutic implications. Transl Neurodegener 2021; 10(1): 49.
[http://dx.doi.org/10.1186/s40035-021-00273-y] [PMID: 34876226]
[86]
Zhang R, Miller RG, Gascon R, et al. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol 2009; 206(1-2): 121-4.
[http://dx.doi.org/10.1016/j.jneuroim.2008.09.017] [PMID: 19013651]
[87]
Cirillo C, Sarnelli G, Turco F, et al. Proinflammatory stimuli activates human-derived enteroglial cells and induces autocrine nitric oxide production. Neurogastroenterol Motil 2011; 23(9): e372-82.
[http://dx.doi.org/10.1111/j.1365-2982.2011.01748.x] [PMID: 21762414]
[88]
Cani PD, Osto M, Geurts L, Everard A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 2012; 3(4): 279-88.
[http://dx.doi.org/10.4161/gmic.19625] [PMID: 22572877]
[89]
Moreno-Navarrete JM, Sabater M, Ortega F, Ricart W, Fernández-Real JM. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS One 2012; 7(5): e37160.
[http://dx.doi.org/10.1371/journal.pone.0037160] [PMID: 22629362]
[90]
Hao X, Ding N, Zhang Y, et al. Benign regulation of the gut microbiota: The possible mechanism through which the beneficial effects of manual acupuncture on cognitive ability and intestinal mucosal barrier function occur in APP/PS1 mice. Front Neurosci 2022; 16: 960026.
[http://dx.doi.org/10.3389/fnins.2022.960026] [PMID: 35992924]
[91]
Ou Z, Deng L, Lu Z, et al. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr Diabetes 2020; 10(1): 12.
[http://dx.doi.org/10.1038/s41387-020-0115-8] [PMID: 32321934]
[92]
Kirik D, Rosenblad C, Burger C, et al. Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 2002; 22(7): 2780-91.
[http://dx.doi.org/10.1523/JNEUROSCI.22-07-02780.2002] [PMID: 11923443]
[93]
Holmqvist S, Chutna O, Bousset L, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 2014; 128(6): 805-20.
[http://dx.doi.org/10.1007/s00401-014-1343-6] [PMID: 25296989]
[94]
Kelly LP, Carvey PM, Keshavarzian A, et al. Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson’s disease. Mov Disord 2014; 29(8): 999-1009.
[http://dx.doi.org/10.1002/mds.25736] [PMID: 24898698]
[95]
Forsyth CB, Shannon KM, Kordower JH, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One 2011; 6(12): e28032.
[http://dx.doi.org/10.1371/journal.pone.0028032] [PMID: 22145021]
[96]
Chen SJ, Chen CC, Liao HY, et al. Association of fecal and plasma levels of short-chain fatty acids with gut microbiota and clinical severity in patients with parkinson disease. Neurology 2022; 98(8): e848-58.
[http://dx.doi.org/10.1212/WNL.0000000000013225] [PMID: 34996879]
[97]
Keshavarzian A, Green SJ, Engen PA, et al. Colonic bacterial composition in Parkinson’s disease. Mov Disord 2015; 30(10): 1351-60.
[http://dx.doi.org/10.1002/mds.26307] [PMID: 26179554]
[98]
Scheperjans F, Aho V, Pereira PAB, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 2015; 30(3): 350-8.
[http://dx.doi.org/10.1002/mds.26069] [PMID: 25476529]
[99]
Heintz-Buschart A, Pandey U, Wicke T, et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord 2018; 33(1): 88-98.
[http://dx.doi.org/10.1002/mds.27105] [PMID: 28843021]
[100]
Perez-Pardo P, Dodiya HB, Engen PA, et al. Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut 2019; 68(5): 829-43.
[http://dx.doi.org/10.1136/gutjnl-2018-316844] [PMID: 30554160]
[101]
Chiang HL, Lin CH. Altered gut microbiome and intestinal pathology in parkinson’s disease. J Mov Disord 2019; 12(2): 67-83.
[http://dx.doi.org/10.14802/jmd.18067] [PMID: 31158941]
[102]
Clairembault T, Leclair-Visonneau L, Coron E, et al. Structural alterations of the intestinal epithelial barrier in Parkinson’s disease. Acta Neuropathol Commun 2015; 3(1): 12.
[http://dx.doi.org/10.1186/s40478-015-0196-0] [PMID: 25775153]
[103]
Kuan W L, Bennett N, He X, et al. α-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Exp Neurol 2016; 285(Pt A): 72-81.
[104]
Schoultz I, Keita ÅV. The intestinal barrier and current techniques for the assessment of gut permeability. Cells 2020; 9(8): 1909.
[http://dx.doi.org/10.3390/cells9081909] [PMID: 32824536]
[105]
Barmeyer C, Fromm M, Schulzke JD. Active and passive involvement of claudins in the pathophysiology of intestinal inflammatory diseases. Pflugers Arch 2017; 469(1): 15-26.
[http://dx.doi.org/10.1007/s00424-016-1914-6] [PMID: 27904960]
[106]
Söderholm JD, Streutker C, Yang PC, et al. Increased epithelial uptake of protein antigens in the ileum of Crohn’s disease mediated by tumour necrosis factor. Gut 2004; 53(12): 1817-24.
[http://dx.doi.org/10.1136/gut.2004.041426] [PMID: 15542521]
[107]
Fiorentino M, Sapone A, Senger S, et al. Blood–brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism 2016; 7(1): 49.
[http://dx.doi.org/10.1186/s13229-016-0110-z] [PMID: 27957319]
[108]
Keita ÅV, Alkaissi LY, Holm EB, et al. Enhanced E. coli LF82 translocation through the follicle-associated epithelium in Crohn’s disease is dependent on long polar fimbriae and CEACAM6 expression, and increases paracellular permeability. J Crohn’s Colitis 2020; 14(2): 216-29.
[http://dx.doi.org/10.1093/ecco-jcc/jjz144]
[109]
Wang X, Liu GJ, Gao Q, Li N, Wang R. C-type lectin-like receptor 2 and zonulin are associated with mild cognitive impairment and Alzheimer’s disease. Acta Neurol Scand 2020; 141(3): 250-5.
[http://dx.doi.org/10.1111/ane.13196] [PMID: 31715011]
[110]
Thye AYK, Law JWF, Tan LTH, et al. Exploring the gut microbiome in myasthenia gravis. Nutrients 2022; 14(8): 1647.
[http://dx.doi.org/10.3390/nu14081647] [PMID: 35458209]
[111]
Johnson JS, Spakowicz DJ, Hong BY, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 2019; 10(1): 5029.
[http://dx.doi.org/10.1038/s41467-019-13036-1] [PMID: 31695033]
[112]
Ooijevaar RE, Terveer EM, Verspaget HW, Kuijper EJ, Keller JJ. Clinical application and potential of fecal microbiota transplantation. Annu Rev Med 2019; 70(1): 335-51.
[http://dx.doi.org/10.1146/annurev-med-111717-122956] [PMID: 30403550]
[113]
Costello SP, Hughes PA, Waters O, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis. JAMA 2019; 321(2): 156-64.
[http://dx.doi.org/10.1001/jama.2018.20046] [PMID: 30644982]
[114]
Wang JW, Kuo CH, Kuo FC, et al. Fecal microbiota transplantation: Review and update. J Formos Med Assoc 2019; 118 (Suppl. 1): S23-s31.
[115]
Ooi JH, Waddell A, Lin YD, et al. Dominant effects of the diet on the microbiome and the local and systemic immune response in mice. PLoS One 2014; 9(1): e86366.
[http://dx.doi.org/10.1371/journal.pone.0086366] [PMID: 24489720]
[116]
Mangalam AK, Murray J. Microbial monotherapy with Prevotella histicola for patients with multiple sclerosis. Expert Rev Neurother 2019; 19(1): 45-53.
[http://dx.doi.org/10.1080/14737175.2019.1555473] [PMID: 30513004]
[117]
Xiang S, Ji JL, Li S, et al. Efficacy and safety of probiotics for the treatment of alzheimer’s disease, mild cognitive impairment, and parkinson’s disease: a systematic review and meta-analysis. Front Aging Neurosci 2022; 14: 730036.
[http://dx.doi.org/10.3389/fnagi.2022.730036] [PMID: 35185522]
[118]
Wang QJ, Shen YE, Wang X, et al. Concomitant memantine and Lactobacillus plantarum treatment attenuates cognitive impairments in APP/PS1 mice. Aging (Albany NY) 2020; 12(1): 628-49.
[http://dx.doi.org/10.18632/aging.102645] [PMID: 31907339]
[119]
Wang Y, Wang D, Lv H, et al. Modulation of the gut microbiota and glycometabolism by a probiotic to alleviate amyloid accumulation and cognitive impairments in AD rats. Mol Nutr Food Res 2022; 66(19): 2200265.
[http://dx.doi.org/10.1002/mnfr.202200265] [PMID: 35975737]
[120]
Becker A, Schmartz GP, Gröger L, et al. Effects of resistant starch on symptoms, fecal markers, and gut microbiota in parkinson’s disease-The RESISTA-PD trial. Genomics Proteomics Bioinformatics 2022; 20(2): 274-87.
[http://dx.doi.org/10.1016/j.gpb.2021.08.009] [PMID: 34839011]
[121]
Zhang Y, Wu S, Yi J, et al. Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin Ther 2017; 39(2): 322-36.
[http://dx.doi.org/10.1016/j.clinthera.2016.12.014] [PMID: 28129947]
[122]
Ogbu D, Zhang Y, Claud K, Xia Y, Sun J. Target metabolites to slow down progression of amyotrophic lateral sclerosis in mice. Metabolites 2022; 12(12): 1253.
[http://dx.doi.org/10.3390/metabo12121253] [PMID: 36557291]