Perspective of Secondary Metabolites in Respect of Multidrug Resistance (MDR): A Review

Article ID: e221123223722 Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Aberrant and haphazard use of antibiotics has created the development of antimicrobial resistance which is a bizarre challenge for human civilization. This emerging crisis of antibiotic resistance for microbial pathogens is alarming all the nations posing a global threat to human health. It is difficult to treat bacterial infections as they develop resistance to all antimicrobial resistance. Currently used antibacterial agents inhibit a variety of essential metabolic pathways in bacteria, including macro-molecular synthesis (MMS) pathways (e.g. protein, DNA, RNA, cell wall) most often by targeting a specific enzyme or subcellular component e.g. DNA gyrase, RNA polymerase, ribosomes, transpeptidase. Despite the availability of diverse synthetic molecules, there are still many complications in managing progressive and severe antimicrobial resistance. Currently not even a single antimicrobial agent is available for which the microbes do not show resistance. Thus, the lack of efficient drug molecules for combating microbial resistance requires continuous research efforts to overcome the problem of multidrug-resistant bacteria. The phytochemicals from various plants have the potential to combat the microbial resistance produced by bacteria, fungi, protozoa and viruses without producing any side effects. This review is a concerted effort to identify some of the major active phytoconstituents from various medicinal plants which might have the potential to be used as an alternative and effective strategy to fight against microbial resistance and can promote research for the treatment of MDR.

Graphical Abstract

[1]
Kaushik A, Kaushik M, Lather V, Dua JS. Recent review on subclass B1 metallo-beta-lactamase inhibitors: Swords for Antimicrobial Resistance. Curr Drug Targets 2019; 20(7): 756-62.
[http://dx.doi.org/10.2174/1389450120666181217101812] [PMID: 30556502]
[2]
Catalano A, Iacopetta D, Ceramella J, et al. Multidrug Resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules 2022; 27(3): 616.
[http://dx.doi.org/10.3390/molecules27030616] [PMID: 35163878]
[3]
Tanwar J, Das S, Fatima Z, Hameed S. Multidrug resistance: An emerging crisis. Interdiscip Perspect Infect Dis 2014; 2014: 1-7.
[http://dx.doi.org/10.1155/2014/541340] [PMID: 25140175]
[4]
Singh V. Antimicrobial resistance.In: Microbial pathogens and strategies for combating them: Science, technology and education. Formatex 2013; 1: pp. 291-6.
[5]
Antimicrobial Resistance Global Report on Surveillance. Geneva, Switzerland: World Health Organization 2014.
[6]
Baym M, Stone LK, Kishony R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 2016; 351(6268): aad3292.
[http://dx.doi.org/10.1126/science.aad3292] [PMID: 26722002]
[7]
Brown D. Antibiotic resistance breakers: Can repurposed drugs fill the antibiotic discovery void? Nat Rev Drug Discov 2015; 14(12): 821-32.
[http://dx.doi.org/10.1038/nrd4675] [PMID: 26493767]
[8]
Rana R, Sharma R, Kumar A. Repurposing of existing statin drugs for treatment of microbial infections: How much promising? Infect Disord Drug Targets 2018.
[PMID: 30081793]
[9]
Tyagi AK, Malik A. Liquid and vapour-phase antifungal activities of selected essential oils against candida albicans: microscopic observations and chemical characterization of cymbopogon citratus. BMC Complement Altern Med 2010; 10(1): 65.
[http://dx.doi.org/10.1186/1472-6882-10-65] [PMID: 21067604]
[10]
Randhawa HK, Hundal KK, Ahirrao PN, Jachak SM, Nandanwar HS. Efflux pump inhibitory activity of flavonoids isolated from Alpinia calcarata against methicillin-resistant Staphylococcus aureus. Biologia 2016; 71(5): 484-93.
[http://dx.doi.org/10.1515/biolog-2016-0073]
[11]
Togashi N, Hamashima H, Shiraishi A, Inoue Y, Takano A. Antibacterial activities against Staphylococcus aureus of terpene alcohols with aliphatic carbon chains. J Essent Oil Res 2010; 22(3): 263-9.
[http://dx.doi.org/10.1080/10412905.2010.9700321]
[12]
Revathi S, Govindarajan RK, Rameshkumar N, et al. Anti-cancer, anti-microbial and anti-oxidant properties of Acacia nilotica and their chemical profiling. Biocatal Agric Biotechnol 2017; 11: 322-9.
[http://dx.doi.org/10.1016/j.bcab.2017.08.005]
[13]
Sharifzadeh A, Khosravi AR, Shokri H, Shirzadi H. Potential effect of 2-isopropyl-5-methylphenol (thymol) alone and in combination with fluconazole against clinical isolates of Candida albicans, C. glabrata and C. krusei. J Mycol Med 2018; 28(2): 294-9.
[http://dx.doi.org/10.1016/j.mycmed.2018.04.002] [PMID: 29661606]
[14]
Rabanal RM, Arias A, Prado B, Hernández-Pérez M, Sánchez-Mateo CC. Antimicrobial studies on three species of Hypericum from the Canary Islands. J Ethnopharmacol 2002; 81(2): 287-92.
[http://dx.doi.org/10.1016/S0378-8741(02)00083-1] [PMID: 12065165]
[15]
Shao J, Zhang M, Wang T, Li Y, Wang C. The roles of CDR1, CDR2, and MDR1 in kaempferol-induced suppression with fluconazole-resistant Candida albicans. Pharm Biol 2016; 54(6): 984-92.
[http://dx.doi.org/10.3109/13880209.2015.1091483] [PMID: 26459663]
[16]
Adeshina G, Joseph EO. Antibacterial activity of fresh juices of Allium cepa and zingiberofficinale against multidrug resistant bacteria. Int J Pharma Bio Sci 2011; 2(2): 289-95.
[17]
Almawlah YH, Alaa H, Aljelawi SO. Antibacterial activity of three plant extracts against multidrug resistance Pseudomonas aeruginosa. Asian J Pharm Clin Res 2017; 10(12): 193-7.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i12.21071]
[18]
Sharma D, Rani R, Chaturvedi M, Rohilla P, Yadav JP. In silico and in vitro approach of Allium cepa and isolated quercetin against MDR bacterial strains and Mycobacterium smegmatis. S Afr J Bot 2019; 124: 29-35.
[http://dx.doi.org/10.1016/j.sajb.2019.04.019]
[19]
Sagar NA, Pareek S. Antimicrobial assessment of polyphenolic extracts from onion (Allium cepa L.) skin of fifteen cultivars by sonication-assisted extraction method. Heliyon 2020; 6(11): e05478.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05478] [PMID: 33241150]
[20]
Lekshmi NCJ, Viveka S, Jeeva S, Brindha J. Antimicrobial spectrum of Allium species-a review. Indian J Sci 2015; 15(44): 1-5.
[21]
Widelski J, Popova M, Graikou K, Glowniak K, Chinou I. Coumarins from Angelica lucida L.-antibacterial activities. Molecules 2009; 14(8): 2729-34.
[http://dx.doi.org/10.3390/molecules14082729] [PMID: 19701119]
[22]
Burasheva GS, Abilov ZA, Ahmad VU, Zahid M. Coumarins from the aerial part of Halocnemums trobilaceum. Fitoterapia 2001; 72: 319-21.
[23]
Aćimović MG, Pavlović SĐ, Varga AO, et al. Chemical composition and antibacterial activity of Angelica archangelica root essential oil. Nat Prod Commun 201712(2): 1934578X1701200.
[http://dx.doi.org/10.1177/1934578X1701200216] [PMID: 30428212]
[24]
Park BY, Kim JH, Kwon OK, et al. Coumarins and chromones from Angelica genuflexa. Nat Prod Sci 2005; 11: 79-84.
[25]
Zielińska S, Jezierska-Domaradzka A, Wójciak-Kosior M, Sowa I, Junka A, Matkowski AM. Greater Celandine’s ups and downs—21 centuries of medicinal uses of Chelidoniummajus from the viewpoint of today’s pharmacology. Front Pharmacol 2018; 9: 299.
[http://dx.doi.org/10.3389/fphar.2018.00299] [PMID: 29713277]
[26]
Zielińska S, Wójciak-Kosior M, Dziągwa-Becker M, et al. The activity of isoquinoline alkaloids and extracts from Chelidonium majus against pathogenic bacteria and Candida sp. Toxins 2019; 11(7): 406.
[http://dx.doi.org/10.3390/toxins11070406] [PMID: 31336994]
[27]
Khomarlou N, Aberoomand-Azar P, Lashgari AP, Hakakian A, Ranjbar R, Ayatollahi SA. Evaluation of Antibacterial Activity Against Multidrug-Resistance (MDR) bacteria and antioxidant effects of the ethanolic extract and fractions of chenopodium album (Sub Sp Striatum). Int J Pharm Sci Res 2017; 8(9): 3696-708.
[28]
Efferth T, Olbrich A, Sauerbrey A, Ross DD, Gebhart E, Neugebauer M. Activity of ascaridol from the anthelmintic herb Chenopodium anthelminticum L. against sensitive and multidrug-resistant tumor cells. Anticancer Res 2002; 22(6C): 4221-4.
[PMID: 12553060]
[29]
Wang J, Su B, Jiang H, et al. Traditional uses, phytochemistry and pharmacological activities of the genus Cinnamomum (Lauraceae): A review. Fitoterapia 2020; 146: 104675.
[http://dx.doi.org/10.1016/j.fitote.2020.104675] [PMID: 32561421]
[30]
Sharifi-Rad J, Dey A, Koirala N, et al. Cinnamomum species: Bridging phytochemistry knowledge, pharmacological properties and toxicological safety for health benefits. Front Pharmacol 2021; 12: 600139.
[http://dx.doi.org/10.3389/fphar.2021.600139] [PMID: 34045956]
[31]
Nabavi S, Di Lorenzo A, Izadi M, Sobarzo-Sánchez E, Daglia M, Nabavi S. Antibacterial effects of cinnamon: From farm to food, cosmetic and pharmaceutical industries. Nutrients 2015; 7(9): 7729-48.
[http://dx.doi.org/10.3390/nu7095359] [PMID: 26378575]
[32]
Singh N, Rao AS, Nandal A, et al. Phytochemical and pharmacological review of Cinnamomum verum J. Presl-a versatile spice used in food and nutrition. Food Chem 2021; 338: 127773.
[http://dx.doi.org/10.1016/j.foodchem.2020.127773] [PMID: 32829297]
[33]
Utchariyakiat I, Surassmo S, Jaturanpinyo M, Khuntayaporn P, Chomnawang MT. Efficacy of cinnamon bark oil and cinnamaldehyde on anti-multidrug resistant Pseudomonas aeruginosa and the synergistic effects in combination with other antimicrobial agents. BMC Complement Altern Med 2016; 16(1): 158.
[http://dx.doi.org/10.1186/s12906-016-1134-9] [PMID: 27245046]
[34]
Kumar S, Kumari R, Mishra S. Pharmacological properties and their medicinal uses of Cinnamomum: A review. J Pharm Pharmacol 2019; 71(12): 1735-61.
[http://dx.doi.org/10.1111/jphp.13173] [PMID: 31646653]
[35]
Pratiwi SUT, Lagendijk EL, de Weert S, Idroes R, Hertiani T, Hondel CVD. Effect of Cinnamomum burmannii Nees ex Bl. and MassoiaaromaticaBecc. essential oils on planktonic growth and biofilm formation of pseudomonas aeruginosa and staphylococcus aureus in vitro. Int J Appl Res Nat Prod 2015; 8(2): 1-13.
[36]
Zheng D, Huang C, Huang H, et al. Antibacterial mechanism of curcumin: A review. Chem Biodivers 2020; 17(8): e2000171.
[http://dx.doi.org/10.1002/cbdv.202000171] [PMID: 32533635]
[37]
Mishra B, Indira Priyadarsini K, Bhide MK, Kadam RM, Mohan H. Reactions of superoxide radicals with curcumin: probable mechanisms by optical spectroscopy and EPR. Free Radic Res 2004; 38(4): 355-62.
[http://dx.doi.org/10.1080/10715760310001660259] [PMID: 15190932]
[38]
Adamczak A. Ożarowski M, Karpiński TM. Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals 2020; 13(7): 153.
[http://dx.doi.org/10.3390/ph13070153] [PMID: 32708619]
[39]
Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. BioMed Res Int 2014; 2014: 186864.
[PMID: 24877064]
[40]
Irkin R, Korukluoglu M. Effectiveness of Cymbopogon citratus L. essential oil to inhibit the growth of some filamentous fungi and yeasts. J Med Food 2009; 12(1): 193-7.
[http://dx.doi.org/10.1089/jmf.2008.0108] [PMID: 19298215]
[41]
Tajadin NE, Ahmad SH, Rosenani AB, Azimah H, Munirah M. Chemical composition and citral content in lemongrass (Cymbopogoncitratus) essential oil at three maturity stages. Afr J Biotechnol 2012; 11(11): 2685-93.
[42]
Subramaniam G, Yew XY, Sivasamugham LA. Antibacterial activity of Cymbopogon citratus against clinically important bacteria. S Afr J Chem Eng 2020; 34: 26-30.
[http://dx.doi.org/10.1016/j.sajce.2020.05.010]
[43]
Sessou P, Farougou S, Kaneho S, et al. Bio-efficacy of Cymbopogoncitratus essential oil against foodborne pathogens in culture medium and in traditional cheese wagashi produced in Benin. Int Res J Microbiol 2012; 3(12): 406-15.
[44]
Soares MO, Vinha AF, Barreira SVP, et al. Cymbopogoncitratus EO antimicrobial activity against multi-drug resistant Gram-positive strains and non-Albicans-candida species.In: Microbial pathogens and strategies for combating them: Science, technology and education. Formatex Research Center 2013; pp. 1081-6.
[45]
Shrivastava M, Dwivedi LK. Therapeutic potential of HypericumPerforatum: A review. Int J Pharm Sci Res 2015; 6(12): 4982-8.
[46]
Saddiqe Z, Naeem I, Maimoona A. A review of the antibacterial activity of Hypericum perforatum L. J Ethnopharmacol 2010; 131(3): 511-21.
[http://dx.doi.org/10.1016/j.jep.2010.07.034] [PMID: 20659547]
[47]
Feyzioğlu B, Demircili ME, Özdemir M, Doğan M, Baykan M, Baysal B. Antibacterial effect of hypericin. Afr J Microbiol Res 2013; 7(11): 979-82.
[48]
Debnath S. DigantaDey D, Hazra S, Ghosh S, Ray R, Hazra B. Antibacterial and antifungal activity of Terminalia arjuna Wight &Arn. bark against multi-drug resistant clinical isolates. J Coast Life Med 2013; 1(4): 312-8.
[49]
Upadhyay RK, Pandey MB, Jha RN, Singh VP, Pandey VB. Triterpene glycoside from Terminalia arjuna. J Asian Nat Prod Res 2001; 3(3): 207-12.
[http://dx.doi.org/10.1080/10286020108041392] [PMID: 11491396]
[50]
Khan R, Islam B, Akram M, et al. Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecule 2009; 14(2): 586-97.
[51]
Afanyibo YG, Anani K, Esseh K, et al. Antimicrobial Activities of Syzygiumaromaticum (L.) Merr. & L.M. Perry (Myrtaceae)fruit extracts on six standard microorganismsand their clinical counterpart. Open Access Library 2018; 5: e4951.
[52]
Reji R, Rajasekaran M. Evaluation of synergistic antimicrobial activity of Cinnamomumzeylancium, Trachyspermumammi and Syzygiumaromaticum. Int J Pharm Sci Res 2015; 6: 304-11.
[53]
Alharbi AA. Antibacterial activities of Syzygiumaromaticum oil against local clinical pathogenic bacteria. J Int Stud Sci Eng Technol 2017; 3: 7-11.
[54]
Rehman S, Khan H. Advances in antioxidant potential of natural alkaloids. Curr Bioact Compd 2017; 13(2): 101-8.
[http://dx.doi.org/10.2174/1573407212666160614075157]
[55]
Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial activity of polyphenols and alkaloids in middle eastern plants. Front Microbiol 2019; 10: 911.
[http://dx.doi.org/10.3389/fmicb.2019.00911] [PMID: 31156565]
[56]
Cushnie TPT, Cushnie B, Lamb AJ. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int J Antimicrob Agents 2014; 44(5): 377-86.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001] [PMID: 25130096]
[57]
Yan Y, Li X, Zhang C, Lv L, Gao B, Li M. Research progress on antibacterial activities and mechanisms of natural alkaloids: A review. Antibiotics 2021; 10(3): 318.
[http://dx.doi.org/10.3390/antibiotics10030318] [PMID: 33808601]
[58]
Khare T, Anand U, Dey A, et al. Exploring phytochemicals for combating antibiotic resistance in microbial pathogens. Front Pharmacol 2021; 12: 720726.
[http://dx.doi.org/10.3389/fphar.2021.720726] [PMID: 34366872]
[59]
Mohiuddin AK. Chemistry of secondary metabolites. AnnClin Toxicol 2019; 2(1): 1014.
[60]
Roy A. A review on the alkaloids an important therapeutic compound from plants. IJPB 2017; 3(2): 1-9.
[61]
Kaur RA, Arora SA. Alkaloids-important therapeutic secondary metabolites of plant origin. J Crit Rev 2015; 2(3): 1-8.
[62]
Ahmad S, Abdin MZ, Ansari SH, Garg M, Tamboli ET. In vitro production of alkaloids: Factors, approaches, challenges and prospects. Pharmacogn Rev 2013; 7(1): 27-33.
[http://dx.doi.org/10.4103/0973-7847.112837] [PMID: 23922453]
[63]
Zhang Q, Liang M, Zeng J, et al. Engineering tropane alkaloid production and glyphosate resistance by overexpressing AbCaM1 and G2-EPSPS in Atropa belladonna. Metab Eng 2022; 72: 237-46.
[http://dx.doi.org/10.1016/j.ymben.2022.03.014] [PMID: 35390492]
[64]
Zeng Z, Tian R, Feng J, Yang NA, Yuan L. A systematic review on traditional medicine Toddaliaasiatica (L.) Lam.: Chemistry and medicinal potential. Saudi Pharm J 2021; 29(8): 781-98.
[http://dx.doi.org/10.1016/j.jsps.2021.05.003] [PMID: 34408540]
[65]
Anand U, Nandy S, Mundhra A, Das N, Pandey DK, Dey A. A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic microorganisms. Drug Resist Updat 2020; 51: 100695.
[http://dx.doi.org/10.1016/j.drup.2020.100695] [PMID: 32442892]
[66]
Arayne MS, Sultana N, Bahadur SS. The berberis story: Berberis vulgaris in therapeutics. Pak J Pharm Sci 2007; 20(1): 83-92.
[PMID: 17337435]
[67]
Fei XF, Wang BX, Li TJ, et al. Evodiamine, a constituent of Evodiae Fructus, induces anti-proliferating effects in tumor cells. Cancer Sci 2003; 94(1): 92-8.
[http://dx.doi.org/10.1111/j.1349-7006.2003.tb01358.x] [PMID: 12708481]
[68]
Damanhouri ZA, Ahmad A. A review on therapeutic potential of black pepper (Piper nigrum L.): The king of spices. Int J Med Aromat Plants 2014; 3(3): 161.
[http://dx.doi.org/10.4172/2167-0412.1000161]
[69]
Al-Snafi PDAE. Medical importance of Datura fastuosa (syn: Datura metel) and Datura stramonium-a review. IOSR J Pharm 2017; 7(2): 43-58.
[http://dx.doi.org/10.9790/3013-0702014358]
[70]
Alizadeh Behbahani B, Imani Fooladi AA. Antibacterial activities, phytochemical analysis and chemical composition Makhlaseh extracts against the growth of some pathogenic strain causing poisoning and infection. Microb Pathog 2018; 114: 204-8.
[http://dx.doi.org/10.1016/j.micpath.2017.12.002] [PMID: 29203365]
[71]
Moloudizargari M, Mikaili P, Aghajanshakeri S, Asghari M, Shayegh J. Pharmacological and therapeutic effects of Peganum harmala and its main alkaloids. Pharmacogn Rev 2013; 7(14): 199-212.
[http://dx.doi.org/10.4103/0973-7847.120524] [PMID: 24347928]
[72]
Chao CT, Krueger RR. The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. HortScience 2007; 42(5): 1077-82.
[http://dx.doi.org/10.21273/HORTSCI.42.5.1077]
[73]
Benedek B, Rothwangl-Wiltschnigg K, Rozema E, et al. Yarrow (Achillea millefolium L. s.l.): pharmaceutical quality of commercial samples. Pharmazie 2008; 63(1): 23-6.
[PMID: 18271298]
[74]
Santos HO, Howell S, Teixeira FJ. Beyond tribulus (Tribulus terrestris L.): The effects of phytotherapics on testosterone, sperm and prostate parameters. J Ethnopharmacol 2019; 235: 392-405.
[http://dx.doi.org/10.1016/j.jep.2019.02.033] [PMID: 30790614]
[75]
Shamsudin NF, Ahmed QU, Mahmood S, et al. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules 2022; 27(4): 1149.
[http://dx.doi.org/10.3390/molecules27041149] [PMID: 35208939]
[76]
Górniak I, Bartoszewski R, Króliczewski J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev 2019; 18(1): 241-72.
[http://dx.doi.org/10.1007/s11101-018-9591-z]
[77]
Murti Y, Mishra P. Flavanone: A versatile heterocyclic nucleus. Int J Chemtech Res 2014; 6(5): 3160-78.
[78]
Szparaga A, Kocira S, Kapusta I. Zaguła G. Prototyping extracts from Artemisia absinthium L. for their biostimulating properties yield-enhancing, and farmer income-increasing properties. Ind Crops Prod 2021; 160: 113125.
[http://dx.doi.org/10.1016/j.indcrop.2020.113125]
[79]
Csupor-Löffler B. Activity-guided investigation of antiproliferative secondary metabolites of Asteraceae species. University of Szeged 2012.
[http://dx.doi.org/10.14232/phd.1657]
[80]
Iannuzzi AM, Camero CM. DʼAmbola M, et al. Antiangiogenic Iridoids from Stachysocymastrum and Premnaresinosa. Planta Med 2019; 85(11/12): 1034-9.
[PMID: 30965376]
[81]
Baliga MS, Baliga BRV, Kandathil SM, Bhat HP, Vayalil PK. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res Int 2011; 44(7): 1812-22.
[http://dx.doi.org/10.1016/j.foodres.2010.07.004]
[82]
Patil SM, Ramu R, Shirahatti PS, Shivamallu C, Amachawadi RG. A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon 2021; 7(5): e07054.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07054] [PMID: 34041399]
[83]
El SN, Karakaya S. Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nutr Rev 2009; 67(11): 632-8.
[http://dx.doi.org/10.1111/j.1753-4887.2009.00248.x] [PMID: 19906250]
[84]
Ali KS, Al-hood F, Obad K, Alshakka M. Phytochemical screening and antibacterial activity of Yemeni Henna (Lawsoniainermis) against some bacterial pathogens. J Pharm Biol Sci 2016; 11: 24-7.
[85]
Goel S, Parihar PS, Meshram V. Plant-Derived Quinones as a Source of Antibacterial and Anticancer Agents.In: Biological Natural Products in Drug Discovery. Singapore: Springer 2020.
[86]
Zhang L, Zhang G, Xu S, Song Y. Recent advances of quinones as a privileged structure in drug discovery. Eur J Med Chem 2021; 223(5): 113632.
[http://dx.doi.org/10.1016/j.ejmech.2021.113632] [PMID: 34153576]
[87]
Kazmi MH, Malik A, Hameed S, Akhtar N, Noor Ali S. An anthraquinone derivative from Cassia italica. Phytochemistry 1994; 36(3): 761-3.
[http://dx.doi.org/10.1016/S0031-9422(00)89812-X] [PMID: 7765689]
[88]
Babu PD, Subhasree RS. Antimicrobial activities of Lawsoniainermis- A review. Acad J Plant Sci 2009; 2(4): 231-2.
[89]
Sahoo CR, Sahoo J. Coumarin derivatives as promising antibacterial agent(s). Arab J Chem 2021; 14(2): 102922.
[90]
Detsi A, Kontogiorgis C, Litina DH. Coumarin derivatives: An updated patent review (2015-2016). Expert Opin Ther Pat 2017; 27(11): 1201-26.
[91]
Sun Y, Yang AWH, Lenon GB. Phytochemistry, ethnopharmacology, pharmacokinetics and toxicology of Cnidiummonnieri (L.) Cusson. Int J Mol Sci 2020; 21(3): 1006.
[http://dx.doi.org/10.3390/ijms21031006] [PMID: 32028721]
[92]
Rahimpour Y, Delazar A, Asnaashari S, Asgharian P. The Genus Ferulago: A review on ethnopharmacology, phytochemistry, and pharmacology. Iran J Pharm Res 2021; 20(4): 352-77.
[PMID: 35194452]