Alzheimer's Disease and Cancer: Common Targets

Page: [983 - 1000] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

There is growing epidemiologic evidence of an inverse association between cancer and AD. In addition, both cell survival and death are regulated by the same signaling pathways, and their abnormal regulation may be implicated in the occurrence and development of cancer and AD. Research shows that there may be a common molecular mechanism between cancer and AD. This review will discuss the role of GSK3, DAPK1, PP2A, P53 and CB2R in the pathogenesis of cancer and AD and describe the current research status of drug development based on these targets.

Graphical Abstract

[1]
Demir, Y.; Türkeş, C.; Küfrevioğlu, Ö.İ.; Beydemir, Ş.J.C. Molecular docking studies and the effect of fluorophenylthiourea derivatives on glutathione-dependent enzymes. Biodiversity, 2023, 20(1), e202200656.
[2]
Yıldız, M.L.; Demir, Y.; Küfrevioğlu, Ö.I.J.J.O.M.R. Screening of in vitro and in silico effect of Fluorophenylthiourea compounds on glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase enzymes. J. Mol. Recognit., 2022, 35(12), e2987.
[3]
Türkeş, C.; Demir, Y.; Beydemir, Ş.J.C. Infection medications: Assessment in-vitro glutathione S-Transferase inhibition and molecular docking study. ChemistrySelect, 2021, 6(43), 11915-11924.
[4]
Yarchoan, M.; James, B.D.; Shah, R.C.; Arvanitakis, Z.; Wilson, R.S.; Schneider, J.; Bennett, D.A.; Arnold, S.E. Association of cancer history with Alzheimer’s disease dementia and neuropathology. J. Alzheimers Dis., 2017, 56(2), 699-706.
[http://dx.doi.org/10.3233/JAD-160977] [PMID: 28035936]
[5]
Driver, J.A. Understanding the link between cancer and neurodegeneration. J. Geriatr. Oncol., 2012, 3(1), 58-67.
[http://dx.doi.org/10.1016/j.jgo.2011.11.007] [PMID: 24071493]
[6]
Palabıyık, E.; Sulumer, A.N.; Uguz, H.; Avcı, B.; Askın, S.; Askın, H.; Demir, Y.J.J.O.M.R. Assessment of hypolipidemic and anti-inflammatory properties of walnut (Juglans regia) seed coat extract and modulates some metabolic enzymes activity in triton WR-1339-induced hyperlipidemia in rat kidney, liver, and heart. J. Mol. Recognit., 2023, 36(3), e3004.
[7]
Özaslan, M.S.; Sağlamtaş, R.; Demir, Y.; Genç, Y.; Saraçoğlu, İ.; Gülçin, İ.J.C. Biodiversity, isolation of some phenolic compounds from plantago subulata l. and determination of their antidiabetic, anticholinesterase, antiepileptic and antioxidant activity. Chem. Biodivers., 2022, 19(8), e202200280.
[8]
Anil, D.A.; Aydin, B.O.; Demir, Y.; Turkmenoglu, B. Design, synthesis, biological evaluation and molecular docking studies of novel 1H-1,2,3-Triazole derivatives as potent inhibitors of carbonic anhydrase, acetylcholinesterase and aldose reductase. J. Mol. Struct., 2022, 1257, 132613.
[http://dx.doi.org/10.1016/j.molstruc.2022.132613]
[9]
Mahmudov, I.; Demir, Y.; Sert, Y.; Abdullayev, Y.; Sujayev, A.; Alwasel, S.H.; Gulcin, I. Synthesis and inhibition profiles of N-benzyl- and N-allyl aniline derivatives against carbonic anhydrase and acetylcholinesterase – A molecular docking study. Arab. J. Chem., 2022, 15(3), 103645.
[http://dx.doi.org/10.1016/j.arabjc.2021.103645]
[10]
Salech, F.; SanMartín, C.D.; Concha-Cerda, J.; Romero-Hernández, E.; Ponce, D.P.; Liabeuf, G.; Rogers, N.K.; Murgas, P.; Bruna, B.; More, J.; Behrens, M.I. Senescence markers in peripheral blood mononuclear cells in amnestic mild cognitive impairment and alzheimer’s disease. Int. J. Mol. Sci., 2022, 23(16), 9387.
[http://dx.doi.org/10.3390/ijms23169387] [PMID: 36012652]
[11]
Vincent, I.; Zheng, J.H.; Dickson, D.W.; Kress, Y.; Davies, P. Mitotic phosphoepitopes precede paired helical filaments in Alzheimer’s disease. Neurobiol. Aging, 1998, 19(4), 287-296.
[http://dx.doi.org/10.1016/S0197-4580(98)00071-2] [PMID: 9733160]
[12]
Gulen, M.F.; Samson, N.; Keller, A.; Schwabenland, M.; Liu, C.; Glück, S.; Thacker, V.V.; Favre, L.; Mangeat, B.; Kroese, L.J.; Krimpenfort, P.; Prinz, M.; Ablasser, A. cGAS–STING drives ageing-related inflammation and neurodegeneration. Nature, 2023, 620(7973), 374-380.
[http://dx.doi.org/10.1038/s41586-023-06373-1] [PMID: 37532932]
[13]
Güleç, Ö.; Türkeş, C.; Arslan, M.; Demir, Y.; Yeni, Y.; Hacımüftüoğlu, A.; Ereminsoy, E.; Küfrevioğlu, Ö.İ.; Beydemir, Ş. Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1,3,4-oxadiazol structural motif. Mol. Divers., 2022, 26(5), 2825-2845.
[http://dx.doi.org/10.1007/s11030-022-10422-8] [PMID: 35397086]
[14]
Aydin, B.O.; Anil, D.; Demir, Y. Synthesis of N-alkylated pyrazolo[3,4- d]pyrimidine analogs and evaluation of acetylcholinesterase and carbonic anhydrase inhibition properties. Arch. Pharm., 2021, 354(5), 2000330.
[http://dx.doi.org/10.1002/ardp.202000330] [PMID: 33502038]
[15]
Lee, T.H.; Pastorino, L.; Lu, K.P. Peptidyl-prolyl cis–trans isomerase Pin1 in ageing, cancer and Alzheimer disease. Expert Rev. Mol. Med., 2011, 13, e21.
[http://dx.doi.org/10.1017/S1462399411001906] [PMID: 21682951]
[16]
Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature, 2001, 411(6835), 355-365.
[http://dx.doi.org/10.1038/35077225] [PMID: 11357143]
[17]
Kim, P.M.; Kornberg, M.D. Targeting PKC in microglia to promote remyelination and repair in the CNS. Curr. Opin. Pharmacol., 2022, 62, 103-108.
[http://dx.doi.org/10.1016/j.coph.2021.11.008] [PMID: 34965482]
[18]
Hooper, C.; Killick, R.; Lovestone, S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem., 2008, 104(6), 1433-1439.
[http://dx.doi.org/10.1111/j.1471-4159.2007.05194.x] [PMID: 18088381]
[19]
Mangiatordi, G.F.; Intranuovo, F.; Delre, P.; Abatematteo, F.S.; Abate, C.; Niso, M.; Creanza, T.M.; Ancona, N.; Stefanachi, A.; Contino, M. Cannabinoid receptor subtype 2 (CB2R) in a multitarget approach: Perspective of an innovative strategy in cancer and neurodegeneration. J. Med. Chem., 2020, 63(23), 14448-14469.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01357] [PMID: 33094613]
[20]
Lanni, C.; Masi, M.; Racchi, M.; Govoni, S. Cancer and Alzheimer’s disease inverse relationship: An age-associated diverging derailment of shared pathways. Mol. Psychiatry, 2021, 26(1), 280-295.
[http://dx.doi.org/10.1038/s41380-020-0760-2] [PMID: 32382138]
[21]
Majd, S.; Power, J.; Majd, Z.J.F.I.N. Alzheimer’s disease and cancer: When two monsters cannot be together. Front. Neurosci., 2019, 13, 155.
[http://dx.doi.org/10.3389/fnins.2019.00155]
[22]
Ospina-Romero, M.; Glymour, M.M.; Hayes-Larson, E.; Mayeda, E.R.; Graff, R.E.; Brenowitz, W.D.; Ackley, S.F.; Witte, J.S.; Kobayashi, L.C. Association between alzheimer disease and cancer with evaluation of study biases. JAMA Netw. Open, 2020, 3(11), e2025515.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.25515] [PMID: 33185677]
[23]
Shi, H.; Tang, B.; Liu, Y.W.; Wang, X.F.; Chen, G.J. Alzheimer disease and cancer risk: A meta-analysis. J. Cancer Res. Clin. Oncol., 2015, 141(3), 485-494.
[http://dx.doi.org/10.1007/s00432-014-1773-5] [PMID: 25015770]
[24]
Sherzai, A.Z.; Parasram, M.; Haider, J.M.; Sherzai, D. Alzheimer disease and cancer. Alzheimer Dis. Assoc. Disord., 2020, 34(2), 122-127.
[http://dx.doi.org/10.1097/WAD.0000000000000369] [PMID: 31990712]
[25]
Roe, C.M.; Fitzpatrick, A.L.; Xiong, C.; Sieh, W.; Kuller, L.; Miller, J.P.; Williams, M.M.; Kopan, R.; Behrens, M.I.; Morris, J.C. Cancer linked to Alzheimer disease but not vascular dementia. Neurology, 2010, 74(2), 106-112.
[http://dx.doi.org/10.1212/WNL.0b013e3181c91873] [PMID: 20032288]
[26]
Driver, J.A.; Beiser, A.; Au, R.; Kreger, B.E.; Splansky, G.L.; Kurth, T.; Kiel, D.P.; Lu, K.P.; Seshadri, S.; Wolf, P.A. Inverse association between cancer and Alzheimer’s disease: Results from the Framingham Heart Study. BMJ, 2012, 344, e1442.
[http://dx.doi.org/10.1136/bmj.e1442] [PMID: 22411920]
[27]
Musicco, M.; Adorni, F.; Di Santo, S.; Prinelli, F.; Pettenati, C.; Caltagirone, C.; Palmer, K.; Russo, A. Inverse occurrence of cancer and Alzheimer disease: A population-based incidence study. Neurology, 2013, 81(4), 322-328.
[http://dx.doi.org/10.1212/WNL.0b013e31829c5ec1] [PMID: 23843468]
[28]
Yaşar, Ü.; Gönül, İ.; Türkeş, C.; Demir, Y.; Beydemir, Ş.J.C. Transition-metal complexes of bidentate Schiff-base ligands: in vitro and in silico evaluation as non-classical carbonic anhydrase and potential acetylcholinesterase inhibitors. ChemistrySelect, 2021, 6(29), 7278-7284.
[29]
Aso, E.; Ferrer, I. CB2 cannabinoid receptor as potential target against alzheimer’s disease. Front. Neurosci., 2016, 10, 243.
[http://dx.doi.org/10.3389/fnins.2016.00243] [PMID: 27303261]
[30]
Li, Y.; Macyczko, J.R.; Liu, C.C.; Bu, G. ApoE4 reduction: An emerging and promising therapeutic strategy for Alzheimer’s disease. Neurobiol. Aging, 2022, 115, 20-28.
[http://dx.doi.org/10.1016/j.neurobiolaging.2022.03.011] [PMID: 35453035]
[31]
Xiong, N.; Schiller, M.R.; Li, J.; Chen, X.; Lin, Z. Severe COVID-19 in Alzheimer’s disease: APOE4’s fault again? Alzheimers Res. Ther., 2021, 13(1), 111.
[http://dx.doi.org/10.1186/s13195-021-00858-9] [PMID: 34118974]
[32]
Missiroli, S.; Genovese, I.; Perrone, M.; Vezzani, B.; Vitto, V.A.M.; Giorgi, C. The role of mitochondria in inflammation: From cancer to neurodegenerative disorders. J. Clin. Med., 2020, 9(3), 740.
[33]
Wang, J.; Tan, L.; Wang, H.F.; Tan, C.C.; Meng, X.F.; Wang, C.; Tang, S.W.; Yu, J.T. Anti-inflammatory drugs and risk of Alzheimer’s disease: An updated systematic review and meta-analysis. J. Alzheimers Dis., 2015, 44(2), 385-396.
[http://dx.doi.org/10.3233/JAD-141506] [PMID: 25227314]
[34]
Sever, B.; Türkeş, C.; Altıntop, M.D.; Demir, Y.; Akalın Çiftçi, G.; Beydemir, Ş.J.A.d.P. Novel metabolic enzyme inhibitors designed through the molecular hybridization of thiazole and pyrazoline scaffolds. Archiv der Pharmazie, 2021, 354(12), 2100294.
[http://dx.doi.org/10.1002/ardp.202100294]
[35]
Nagaraj, S.; Zoltowska, K.M.; Laskowska-Kaszub, K.; Wojda, U. microRNA diagnostic panel for Alzheimer’s disease and epigenetic trade-off between neurodegeneration and cancer. Ageing Res. Rev., 2019, 49, 125-143.
[http://dx.doi.org/10.1016/j.arr.2018.10.008] [PMID: 30391753]
[36]
Dziaman, T.; Gackowski, D.; Guz, J.; Linowiecka, K.; Bodnar, M.; Starczak, M.; Zarakowska, E.; Modrzejewska, M.; Szpila, A.; Szpotan, J.; Gawronski, M.; Labejszo, A.; Liebert, A.; Banaszkiewicz, Z.; Klopocka, M.; Foksinski, M.; Marszalek, A.; Olinski, R. Characteristic profiles of DNA epigenetic modifications in colon cancer and its predisposing conditions-benign adenomas and inflammatory bowel disease. Clin. Epigen., 2018, 10(1), 72.
[http://dx.doi.org/10.1186/s13148-018-0505-0] [PMID: 29875879]
[37]
Angers, S.; Moon, R.T. Proximal events in Wnt signal transduction. Nat. Rev. Mol. Cell Biol., 2009, 10(7), 468-477.
[http://dx.doi.org/10.1038/nrm2717] [PMID: 19536106]
[38]
Liu, X. Overstimulation can create health problems due to increases in PI3K/Akt/GSK3 insensitivity and GSK3 activity. Springerplus, 2014, 3(1), 356.
[http://dx.doi.org/10.1186/2193-1801-3-356] [PMID: 25089247]
[39]
Yoshino, Y.; Ishioka, C. Inhibition of glycogen synthase kinase-3 beta induces apoptosis and mitotic catastrophe by disrupting centrosome regulation in cancer cells. Sci. Rep., 2015, 5(1), 13249.
[http://dx.doi.org/10.1038/srep13249] [PMID: 26292722]
[40]
Noma, T.; Takahashi-Yanaga, F.; Arioka, M.; Mori, Y.; Sasaguri, T. Inhibition of GSK-3 reduces prostaglandin E2 production by decreasing the expression levels of COX-2 and mPGES-1 in monocyte/macrophage lineage cells. Biochem. Pharmacol., 2016, 116, 120-129.
[http://dx.doi.org/10.1016/j.bcp.2016.07.014] [PMID: 27453433]
[41]
Deng, J.; Habib, A.; Obregon, D.F.; Barger, S.W.; Giunta, B.; Wang, Y.J.; Hou, H.; Sawmiller, D.; Tan, J. Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of GSK 3β signaling pathway. J. Neurochem., 2015, 135(3), 630-637.
[http://dx.doi.org/10.1111/jnc.13351] [PMID: 26342176]
[42]
Luo, G.; Chen, L.; Burton, C.R.; Xiao, H.; Sivaprakasam, P.; Krause, C.M.; Cao, Y.; Liu, N.; Lippy, J.; Clarke, W.J.; Snow, K.; Raybon, J.; Arora, V.; Pokross, M.; Kish, K.; Lewis, H.A.; Langley, D.R.; Macor, J.E.; Dubowchik, G.M. discovery of isonicotinamides as highly selective, brain penetrable, and orally active glycogen synthase kinase-3 inhibitors. J. Med. Chem., 2016, 59(3), 1041-1051.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01550] [PMID: 26751161]
[43]
Berg, S.; Bergh, M.; Hellberg, S.; Högdin, K.; Lo-Alfredsson, Y.; Söderman, P.; von Berg, S.; Weigelt, T.; Ormö, M.; Xue, Y.; Tucker, J.; Neelissen, J.; Jerning, E.; Nilsson, Y.; Bhat, R. Discovery of novel potent and highly selective glycogen synthase kinase-3β (GSK3β) inhibitors for Alzheimer’s disease: Design, synthesis, and characterization of pyrazines. J. Med. Chem., 2012, 55(21), 9107-9119.
[http://dx.doi.org/10.1021/jm201724m] [PMID: 22489897]
[44]
Boulahjar, R.; Ouach, A.; Bourg, S.; Bonnet, P.; Lozach, O.; Meijer, L.; Guguen-Guillouzo, C.; Le Guevel, R.; Lazar, S.; Akssira, M.; Troin, Y.; Guillaumet, G.; Routier, S. Advances in tetrahydropyrido[1,2- a]isoindolone (valmerins) series: Potent glycogen synthase kinase 3 and cyclin dependent kinase 5 inhibitors. Eur. J. Med. Chem., 2015, 101, 274-287.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.046] [PMID: 26142492]
[45]
Ouach, A.; Boulahjar, R.; Vala, C.; Bourg, S.; Bonnet, P.; Guguen-Guillouzo, C.; Ravache, M.; Le Guevel, R.; Lozach, O.; Lazar, S.; Troin, Y.; Meijer, L.; Ruchaud, S.; Akssira, M.; Guillaumet, G.; Routier, S. Novel optimization of valmerins (tetrahydropyrido[1,2-a]isoindolones) as potent dual CDK5/GSK3 inhibitors. Eur. J. Med. Chem., 2016, 115, 311-325.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.072] [PMID: 27019296]
[46]
Aoki, M.; Yokota, T.; Sugiura, I.; Sasaki, C.; Hasegawa, T.; Okumura, C.; Ishiguro, K.; Kohno, T.; Sugio, S.; Matsuzaki, T. Structural insight into nucleotide recognition in tau-protein kinase I/glycogen synthase kinase 3β. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(3), 439-446.
[http://dx.doi.org/10.1107/S090744490302938X] [PMID: 14993667]
[47]
Maqbool, M.; Hoda, N. GSK3 Inhibitors in the Therapeutic Development of Diabetes, Cancer and neurodegeneration: past, present and future. Curr. Pharm. Des., 2017, 23(29), 4332-4350.
[PMID: 28714403]
[48]
Wadhwa, P.; Jain, P.; Jadhav, H.R. Glycogen synthase kinase 3 (GSK3): Its role and inhibitors. Curr. Top. Med. Chem., 2020, 20(17), 1522-1534.
[http://dx.doi.org/10.2174/1568026620666200516153136] [PMID: 32416693]
[49]
Kim, N.; Chen, D.; Zhou, X.Z.; Lee, T.H. Death-associated protein kinase 1 phosphorylation in neuronal cell death and neurodegenerative disease. Int. J. Mol. Sci., 2019, 20(13), 3131.
[50]
Chen, D.; Zhou, X.Z.; Lee, T.H. Death-associated protein kinase 1 as a promising drug target in cancer and Alzheimer’s disease. Rec. Pat. Antican. Drug Discov., 2019, 14(2), 144-157.
[http://dx.doi.org/10.2174/1574892814666181218170257] [PMID: 30569876]
[51]
Duan, D.X.; Chai, G.S.; Ni, Z.F.; Hu, Y.; Luo, Y.; Cheng, X.S.; Chen, N.N.; Wang, J.Z.; Liu, G.P. Phosphorylation of tau by death-associated protein kinase 1 antagonizes the kinase-induced cell apoptosis. J. Alzheimers Dis., 2013, 37(4), 795-808.
[http://dx.doi.org/10.3233/JAD-130377] [PMID: 23948915]
[52]
Gandesiri, M.; Chakilam, S.; Ivanovska, J.; Benderska, N.; Ocker, M.; Di Fazio, P.; Feoktistova, M.; Gali-Muhtasib, H.; Rave-Fränk, M.; Prante, O.; Christiansen, H.; Leverkus, M.; Hartmann, A.; Schneider-Stock, R. DAPK plays an important role in panobinostat-induced autophagy and commits cells to apoptosis under autophagy deficient conditions. Apoptosis, 2012, 17(12), 1300-1315.
[http://dx.doi.org/10.1007/s10495-012-0757-7] [PMID: 23011180]
[53]
Zhang, H.; Chen, G.G.; Zhang, Z.; Chun, S.; Leung, B.C.S.; Lai, P.B.S. Induction of autophagy in hepatocellular carcinoma cells by SB203580 requires activation of AMPK and DAPK but not p38 MAPK. Apoptosis, 2012, 17(4), 325-334.
[http://dx.doi.org/10.1007/s10495-011-0685-y] [PMID: 22170404]
[54]
Wu, J.; Hu, C.; Gu, Q.; Li, Y.; Song, M. Trichostatin A sensitizes cisplatin-resistant A549 cells to apoptosis by up-regulating death-associated protein kinase. Acta Pharmacol. Sin., 2010, 31(1), 93-101.
[http://dx.doi.org/10.1038/aps.2009.183] [PMID: 20048748]
[55]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[56]
Wu, B.; Yao, H.; Wang, S.; Xu, R. DAPK1 modulates a curcumin-induced G2/M arrest and apoptosis by regulating STAT3, NF-κB, and caspase-3 activation. Biochem. Biophys. Res. Commun., 2013, 434(1), 75-80.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.063] [PMID: 23545262]
[57]
Mirzoeva, S.; Sawkar, A.; Zasadzki, M.; Guo, L.; Velentza, A.V.; Dunlap, V.; Bourguignon, J.J.; Ramstrom, H.; Haiech, J.; Van Eldik, L.J.; Watterson, D.M. Discovery of a 3-amino-6-phenyl-pyridazine derivative as a new synthetic antineuroinflammatory compound. J. Med. Chem., 2002, 45(3), 563-566.
[http://dx.doi.org/10.1021/jm015573g] [PMID: 11806708]
[58]
Okamoto, M.; Takayama, K.; Shimizu, T.; Ishida, K.; Takahashi, O.; Furuya, T. Identification of death-associated protein kinases inhibitors using structure-based virtual screening. J. Med. Chem., 2009, 52(22), 7323-7327.
[http://dx.doi.org/10.1021/jm901191q] [PMID: 19877644]
[59]
O’Connor, C.M.; Perl, A.; Leonard, D.; Sangodkar, J.; Narla, G. Therapeutic targeting of PP2A. Int. J. Biochem. Cell Biol., 2018, 96, 182-193.
[http://dx.doi.org/10.1016/j.biocel.2017.10.008] [PMID: 29107183]
[60]
Clark, A.R.; Ohlmeyer, M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol. Ther., 2019, 201, 181-201.
[http://dx.doi.org/10.1016/j.pharmthera.2019.05.016] [PMID: 31158394]
[61]
Li, M.; Guo, H.; Damuni, Z. Purification and characterization of two potent heat-stable protein inhibitors of protein phosphatase 2A from bovine kidney. Biochemistry, 1995, 34(6), 1988-1996.
[http://dx.doi.org/10.1021/bi00006a020] [PMID: 7531497]
[62]
Brinkmann, V. FTY720 (fingolimod) in multiple sclerosis: Therapeutic effects in the immune and the central nervous system. Br. J. Pharmacol., 2009, 158(5), 1173-1182.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00451.x] [PMID: 19814729]
[63]
Asle-Rousta, M.; Kolahdooz, Z.; Dargahi, L.; Ahmadiani, A.; Nasoohi, S. Prominence of central sphingosine-1-phosphate receptor-1 in attenuating aβ-induced injury by fingolimod. J. Mol. Neurosci., 2014, 54(4), 698-703.
[http://dx.doi.org/10.1007/s12031-014-0423-3] [PMID: 25239520]
[64]
Turner, N.; Lim, X.Y.; Toop, H.D.; Osborne, B.; Brandon, A.E.; Taylor, E.N.; Fiveash, C.E.; Govindaraju, H.; Teo, J.D.; McEwen, H.P.; Couttas, T.A.; Butler, S.M.; Das, A.; Kowalski, G.M.; Bruce, C.R.; Hoehn, K.L.; Fath, T.; Schmitz-Peiffer, C.; Cooney, G.J.; Montgomery, M.K.; Morris, J.C.; Don, A.S. A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism. Nat. Commun., 2018, 9(1), 3165.
[http://dx.doi.org/10.1038/s41467-018-05613-7] [PMID: 30131496]
[65]
Chen, K-F.; Liu, C-Y.; Lin, Y-C.; Yu, H-C.; Liu, T-H.; Hou, D-R.; Chen, P-J.; Cheng, A-L. CIP2A mediates effects of bortezomib on phospho-Akt and apoptosis in hepatocellular carcinoma cells. Oncogene, 2010, 29(47), 6257-6266.
[http://dx.doi.org/10.1038/onc.2010.357] [PMID: 20729919]
[66]
Wu, J.; Ding, M.; Mao, N.; Wu, Y.; Wang, C.; Yuan, J.; Miao, X.; Li, J.; Shi, Z. Celastrol inhibits chondrosarcoma proliferation, migration and invasion through suppression CIP2A/c-MYC signaling pathway. J. Pharmacol. Sci., 2017, 134(1), 22-28.
[http://dx.doi.org/10.1016/j.jphs.2016.12.007] [PMID: 28522217]
[67]
Liu, C.Y.; Huang, T.T.; Huang, C.T.; Hu, M.H.; Wang, D.S.; Wang, W.L.; Tsai, W.C.; Lee, C.H.; Lau, K.Y.; Yang, H.P.; Chen, M.H.; Shiau, C.W.; Tseng, L.M.; Chen, K.F. EGFR-independent Elk1/CIP2A signalling mediates apoptotic effect of an erlotinib derivative TD52 in triple-negative breast cancer cells. Eur. J. Cancer, 2017, 72, 112-123.
[http://dx.doi.org/10.1016/j.ejca.2016.11.012] [PMID: 28027514]
[68]
Yu, H-C.; Hung, M-H.; Chen, Y-L.; Chu, P-Y.; Wang, C-Y.; Chao, T-T.; Liu, C-Y.; Shiau, C-W.; Chen, K-F. Erlotinib derivative inhibits hepatocellular carcinoma by targeting CIP2A to reactivate protein phosphatase 2A. Cell Death Dis., 2014, 5(7), e1359.
[http://dx.doi.org/10.1038/cddis.2014.325] [PMID: 25077545]
[69]
Gutierrez, A.; Pan, L.; Groen, R.W.J.; Baleydier, F.; Kentsis, A.; Marineau, J.; Grebliunaite, R.; Kozakewich, E.; Reed, C.; Pflumio, F.; Poglio, S.; Uzan, B.; Clemons, P.; VerPlank, L.; An, F.; Burbank, J.; Norton, S.; Tolliday, N.; Steen, H.; Weng, A.P.; Yuan, H.; Bradner, J.E.; Mitsiades, C.; Look, A.T.; Aster, J.C. Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia. J. Clin. Invest., 2014, 124(2), 644-655.
[http://dx.doi.org/10.1172/JCI65093] [PMID: 24401270]
[70]
Jackson, J.B.; Pallas, D.C. Circumventing cellular control of PP2A by methylation promotes transformation in an Akt-dependent manner. Neoplasia, 2012, 14(7), 585-599.
[http://dx.doi.org/10.1593/neo.12768] [PMID: 22904676]
[71]
Van Dross, R.; Soliman, E.; Jha, S.; Johnson, T.; Mukhopadhyay, S. Receptor-dependent and receptor-independent endocannabinoid signaling: A therapeutic target for regulation of cancer growth. Life Sci., 2013, 92(8-9), 463-466.
[http://dx.doi.org/10.1016/j.lfs.2012.09.025] [PMID: 23069587]
[72]
Jia, N.; Zhang, S.; Shao, P.; Bagia, C.; Janjic, J.M.; Ding, Y.; Bai, M. Cannabinoid CB2 receptor as a new phototherapy target for the inhibition of tumor growth. Mol. Pharm., 2014, 11(6), 1919-1929.
[http://dx.doi.org/10.1021/mp5001923] [PMID: 24779700]
[73]
Arévalo-Martín, Á.; Vela, J.M.; Molina-Holgado, E.; Borrell, J.; Guaza, C. Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J. Neurosci., 2003, 23(7), 2511-2516.
[http://dx.doi.org/10.1523/JNEUROSCI.23-07-02511.2003] [PMID: 12684434]
[74]
Tolón, R.M.; Núñez, E.; Pazos, M.R.; Benito, C.; Castillo, A.I.; Martínez-Orgado, J.A.; Romero, J. The activation of cannabinoid CB2 receptors stimulates in situ and in vitro beta-amyloid removal by human macrophages. Brain Res., 2009, 1283, 148-154.
[http://dx.doi.org/10.1016/j.brainres.2009.05.098] [PMID: 19505450]
[75]
González-Naranjo, P.; Pérez-Macias, N.; Pérez, C.; Roca, C.; Vaca, G.; Girón, R.; Sánchez-Robles, E.; Martín-Fontelles, M.I.; de Ceballos, M.L.; Martin-Requero, A.; Campillo, N.E.; Páez, J.A. Indazolylketones as new multitarget cannabinoid drugs. Eur. J. Med. Chem., 2019, 166, 90-107.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.030] [PMID: 30685536]
[76]
Klegeris, A.; Bissonnette, C.J.; McGeer, P.L. Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br. J. Pharmacol., 2003, 139(4), 775-786.
[http://dx.doi.org/10.1038/sj.bjp.0705304] [PMID: 12813001]
[77]
Ferrisi, R.; Ceni, C.; Bertini, S.; Macchia, M.; Manera, C.; Gado, F. Medicinal Chemistry approach, pharmacology and neuroprotective benefits of CB2R modulators in neurodegenerative diseases. Pharmacol. Res., 2021, 170, 105607.
[http://dx.doi.org/10.1016/j.phrs.2021.105607] [PMID: 34089867]
[78]
Reiner, A.; Heldt, S.; Presley, C.; Guley, N.; Elberger, A.; Deng, Y.; D’Surney, L.; Rogers, J.; Ferrell, J.; Bu, W.; Del Mar, N.; Honig, M.; Gurley, S.; Ii, B. Motor, visual and emotional deficits in mice after closed-head mild traumatic brain injury are alleviated by the novel CB2 inverse agonist SMM-189. Int. J. Mol. Sci., 2014, 16(1), 758-787.
[http://dx.doi.org/10.3390/ijms16010758] [PMID: 25561230]
[79]
Rodrigues, D.A.; Pinheiro, P.S.M.; Sagrillo, F.S.; Bolognesi, M.L.; Fraga, C.A.M. Histone deacetylases as targets for the treatment of neurodegenerative disorders: Challenges and future opportunities. Med. Res. Rev., 2020, 40(6), 2177-2211.
[http://dx.doi.org/10.1002/med.21701] [PMID: 32588916]
[80]
Beck, J.; Turnquist, C.; Horikawa, I.; Harris, C. Targeting cellular senescence in cancer and aging: Roles of p53 and its isoforms. Carcinogenesis, 2020, 41(8), 1017-1029.
[http://dx.doi.org/10.1093/carcin/bgaa071] [PMID: 32619002]
[81]
Lanni, C.; Racchi, M.; Memo, M.; Govoni, S.; Uberti, D. p53 at the crossroads between cancer and neurodegeneration. Free Radic. Biol. Med., 2012, 52(9), 1727-1733.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.034] [PMID: 22387179]
[82]
Rodier, F.; Campisi, J.; Bhaumik, D. Two faces of p53: aging and tumor suppression. Nucleic Acids Res., 2007, 35(22), 7475-7484.
[http://dx.doi.org/10.1093/nar/gkm744] [PMID: 17942417]
[83]
de la Monte, S.M.; Sohn, Y.K.; Wands, J.R. Correlates of p53- and Fas (CD95)-mediated apoptosis in Alzheimer’s disease. J. Neurol. Sci., 1997, 152(1), 73-83.
[http://dx.doi.org/10.1016/S0022-510X(97)00131-7] [PMID: 9395128]
[84]
Vu, B.; Wovkulich, P.; Pizzolato, G.; Lovey, A.; Ding, Q.; Jiang, N.; Liu, J.J.; Zhao, C.; Glenn, K.; Wen, Y.; Tovar, C.; Packman, K.; Vassilev, L.; Graves, B. Discovery of RG7112: A small-molecule MDM2 inhibitor in clinical development. ACS Med. Chem. Lett., 2013, 4(5), 466-469.
[http://dx.doi.org/10.1021/ml4000657] [PMID: 24900694]
[85]
Spinnler, C.; Hedström, E.; Li, H.; de Lange, J.; Nikulenkov, F.; Teunisse, A F A.S.; Verlaan-de Vries, M.; Grinkevich, V.; Jochemsen, A.G.; Selivanova, G. Abrogation of Wip1 expression by RITA-activated p53 potentiates apoptosis induction via activation of ATM and inhibition of HdmX. Cell Death Differ., 2011, 18(11), 1736-1745.
[http://dx.doi.org/10.1038/cdd.2011.45] [PMID: 21546907]
[86]
Miller, J.J.; Kwan, K.; Gaiddon, C.; Storr, T. A role for bioinorganic chemistry in the reactivation of mutant p53 in cancer. Eur. J. Biochem., 2022, 27(4-5), 393-403.
[http://dx.doi.org/10.1007/s00775-022-01939-2] [PMID: 35488931]
[87]
Yu, X.; Blanden, A.R.; Narayanan, S.; Jayakumar, L.; Lubin, D.; Augeri, D.; David Kimball, S.; Loh, S.N.; Carpizo, D.R. Small molecule restoration of wildtype structure and function of mutant p53 using a novel zinc-metallochaperone based mechanism. Oncotarget, 2014, 5(19), 8879-8892.
[http://dx.doi.org/10.18632/oncotarget.2432] [PMID: 25294809]
[88]
Gilleran, J.A.; Yu, X.; Blayney, A.J.; Bencivenga, A.F.; Na, B.; Augeri, D.J.; Blanden, A.R.; Kimball, S.D.; Loh, S.N.; Roberge, J.Y.; Carpizo, D.R. Benzothiazolyl and benzoxazolyl hydrazones function as zinc metallochaperones to reactivate mutant p53. J. Med. Chem., 2021, 64(4), 2024-2045.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01360] [PMID: 33538587]
[89]
Zaman, S.; Yu, X.; Bencivenga, A.F.; Blanden, A.R.; Liu, Y.; Withers, T.; Na, B.; Blayney, A.J.; Gilleran, J.; Boothman, D.A.; Loh, S.N.; Kimball, S.D.; Carpizo, D.R. Combinatorial therapy of zinc metallochaperones with mutant p53 reactivation and diminished copper binding. Mol. Cancer Ther., 2019, 18(8), 1355-1365.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1080] [PMID: 31196889]
[90]
Pei, L.; Shang, Y.; Jin, H.; Wang, S.; Wei, N.; Yan, H.; Wu, Y.; Yao, C.; Wang, X.; Zhu, L.Q.; Lu, Y. DAPK1-p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J. Neurosci., 2014, 34(19), 6546-6556.
[http://dx.doi.org/10.1523/JNEUROSCI.5119-13.2014] [PMID: 24806680]
[91]
Nudelman, K.N.H.; McDonald, B.C.; Lahiri, D.K.; Saykin, A.J. Biological hallmarks of cancer in Alzheimer’s Disease. Mol. Neurobiol., 2019, 56(10), 7173-7187.
[http://dx.doi.org/10.1007/s12035-019-1591-5] [PMID: 30993533]
[92]
Green, D.R.; Kroemer, G. Cytoplasmic functions of the tumour suppressor p53. Nature, 2009, 458(7242), 1127-1130.
[http://dx.doi.org/10.1038/nature07986] [PMID: 19407794]
[93]
Oueslati, I.; Bchir, N.; Khiari, K.; Elfeleh, E.; Abdallah, N.B. Dysgénésie gonadique partielle 46,XY: A propos d’un cas. Ann. Endocrinol., 2016, 77(4), 453-454.
[http://dx.doi.org/10.1016/j.ando.2016.07.594]
[94]
Liby, K.T.; Sporn, M.B. Rexinoids for prevention and treatment of cancer: Opportunities and challenges. Curr. Top. Med. Chem., 2016, 17(6), 721-730.
[http://dx.doi.org/10.2174/1568026616666160617090702] [PMID: 27320330]