Antiviral Potential of Traditional Unani Medicine with Special Emphasis on Dengue: A Review

Page: [1317 - 1334] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Dengue fever has become a major public health concern. It is usually related to intravascular leaking, bleeding disorders, and thrombocytopenia and is recognized as a potent threat to humans. The scarcity of anti-dengue medication or vaccine for such a serious disease leads to an upsurge in the usage of traditional medicines for its proper management. India has diverse biodiversity and a long history of using plant-based remedies. Several medicinal plant extracts have been studied for producing anti-dengue viral activity. AYUSH traditional systems provide a plethora of plants that have been reported to be useful in the treatment of fever. Single and compound plant- based formulations in natural form have been used in Unani holistic approaches. This review serves as a new approach to illustrate the most recent evidence regarding the antiviral activity of various plants by providing scientific proof and also to validate the traditional formulations as effective treatments in dengue fever for global acceptance.

Graphical Abstract

[1]
Lemonnier N, Zhou G-B, Prasher B, Mukerji M, Chen Z, Brahmachari SK, et al. Traditional Knowledge-based Medicine: A Review of History, Principles, and Relevance in the Present Context of P4 Systems Medicine. Prog Prev Med 2017; 2(7): e0011.
[2]
Rafatullah S, Alqasoumi S. Unani medicine: An integral part of health care system in Indian subcontinent. Eur J Integr Med 2008; 1: 39-40.
[http://dx.doi.org/10.1016/j.eujim.2008.08.076]
[3]
Bahramsoltani R, Rahimi R. An Evaluation of Traditional Persian Medicine for the Management of SARS-CoV-2. Front Pharmacol 2020; 11(November): 571434.
[http://dx.doi.org/10.3389/fphar.2020.571434] [PMID: 33324206]
[4]
Alam MA, Gani MA, Shama G, Sofi G, Quamri MA. Possible role of Unani Pharmacology in COVID-19 – a narrative review. Rev Environ Health 2021; 36(3): 391-6.
[http://dx.doi.org/10.1515/reveh-2020-0106] [PMID: 33155997]
[5]
Sultana A, Khanam M, Rahman K. Traditional Unani Medicine in Flu-like Epidemics and COVID-19 during Pregnancy: A Literary Research. Cell Med 2021.
[6]
Bachar SC, Mazumder K, Bachar R, Aktar A, Al Mahtab M. A Review of Medicinal Plants with Antiviral Activity Available in Bangladesh and Mechanistic Insight Into Their Bioactive Metabolites on SARS-CoV-2, HIV and HBV. Front Pharmacol 2021; 12: 732891.
[http://dx.doi.org/10.3389/fphar.2021.732891] [PMID: 34819855]
[7]
Kott V, Barbini L, Cruañes M, et al. Antiviral activity in Argentine medicinal plants. J Ethnopharmacol 1998; 64(1): 79-84.
[http://dx.doi.org/10.1016/S0378-8741(98)00098-1] [PMID: 10075125]
[8]
Guzman MG, Halstead SB, Artsob H, et al. Dengue: A continuing global threat. Nat Rev Microbiol 2010; 8(S12) (Suppl.): S7-S16.
[http://dx.doi.org/10.1038/nrmicro2460] [PMID: 21079655]
[9]
Guzman MG, Alvarez M, Halstead SB. Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: An historical perspective and role of antibody-dependent enhancement of infection. Arch Virol 2013; 158(7): 1445-59.
[http://dx.doi.org/10.1007/s00705-013-1645-3] [PMID: 23471635]
[10]
Nshimiyimana Y, Zhou Y. Analysis of risk factors associated with acute respiratory infections among under-five children in Uganda. BMC Public Health 2022; 22(1): 1209.
[http://dx.doi.org/10.1186/s12889-022-13532-y] [PMID: 35715771]
[11]
Ekholuenetale M, Nzoputam CI, Okonji OC, Barrow A, Wegbom AI, Edet CK. Differentials in the Prevalence of Acute Respiratory Infections Among Under-Five Children: An Analysis of 37 Sub-Saharan Countries. Glob Pediatr Health 2023; 10: 2333794X231156715.
[12]
Yousefifard M, Zali A, Mohamed Ali K, et al. Antiviral therapy in management of COVID-19: A systematic review on current evidence. Arch Acad Emerg Med 2020; 8(1): e45.
[PMID: 32309809]
[13]
Strasfeld L, Chou S. Antiviral drug resistance: Mechanisms and clinical implications. Infect Dis Clin North Am 2010; 24(3): 809-33.
[http://dx.doi.org/10.1016/j.idc.2010.07.001]
[14]
Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021; 35(7): 3447-83.
[http://dx.doi.org/10.1002/ptr.7039] [PMID: 33590931]
[15]
Melnyk N, Vlasova I, Skowrońska W, Bazylko A, Piwowarski JP, Granica S. Current Knowledge on Interactions of Plant Materials Traditionally Used in Skin Diseases in Poland and Ukraine with Human Skin Microbiota. Int J Mol Sci 2022; 23(17): 9644.
[http://dx.doi.org/10.3390/ijms23179644] [PMID: 36077043]
[16]
Article R, Quamri MA, Ayman U, Renuka BN. Understanding Humma-e-Wabai (epidemic fever) and Amraz-e-Wabai (epidemic disease) in the light of Unani medicine. J Complement Integr Med 2021; 18(3): 469-76.
[17]
Ahmad S, Zahiruddin S, Parveen B, et al. Indian Medicinal Plants and Formulations and Their Potential Against COVID-19–Preclinical and Clinical Research. Front Pharmacol 2021; 11: 578970.
[http://dx.doi.org/10.3389/fphar.2020.578970] [PMID: 33737875]
[18]
Dhiman M, Sharma L, Dadhich A, Dhawan P, Sharma MM. Traditional Knowledge to Contemporary Medication in the Treatment of Infectious Disease Dengue: A Review. Front Pharmacol 2022; 13: 750494.
[http://dx.doi.org/10.3389/fphar.2022.750494] [PMID: 35359838]
[19]
Anjum N, Akhtar J, Bashir F, Khan AA. Evidence based research studies on diq al-nafas ( asthma ) in unani medicine: A review. Int J Res Ayurveda Pharm 2020; 11(1): 35-40.
[20]
Akhtar MWW, Naseer M. An appraisal of Unani fundamentals in the management of Humma (fever). J Drug Deliv Ther 2019; 9(1-s): 516-9.
[http://dx.doi.org/10.22270/jddt.v9i1-s.2430]
[21]
Nasir A, Siddiqui MY, Mohsin M, Ali W. Concept and management of dengue fever (HUMMA DANAJ) in unani and modern perspective. J Bio Sci Opin 2013; 1(4): 362-5.
[22]
Quamri MA. A review article on Chikungunya Virus and its management in unani system of medicine. European J Pharmaceut Med Res 2021; 8(2): 220-5.
[23]
Siddiqui MA, Ansari S. Therapeutic effect of a unani formulation on hepatitis B surface antigen in chronic hepatitis B: A case series therapeutic effect of a unani formulation on hepatitis b surface antigen in chronic hepatitis B: A case series. Asian J Pharmaceut Clin Res 2015; 8(5)
[24]
Ali J, Akram M. Perception of hepatitis as Warm-e-Kabid in literature of Unani medicine. J Pharm Innov 2008; 7(6): 687-91.
[25]
View A. Classical Unani Approach for Steady Management of Warm-e-Sho ’ batur Riya Muzmin (Chronic Bronchitis). VIEW 2013; 56(3)
[26]
Wilder-Smith A, Renhorn KE, Tissera H, et al. DengueTools: Innovative tools and strategies for the surveillance and control of dengue. Glob Health Action 2012; 5
[http://dx.doi.org/10.3402/gha.v5i0.17273] [PMID: 22451836]
[27]
Sathyapalan DT, Padmanabhan A, Moni M, et al. Efficacy & safety of Carica papaya leaf extract (CPLE) in severe thrombocytopenia (≤30,000/μl) in adult dengue – Results of a pilot study. PLoS One 2020; 15(2): e0228699.
[http://dx.doi.org/10.1371/journal.pone.0228699] [PMID: 32074143]
[28]
Saleh MSM, Kamisah Y. Potential medicinal plants for the treatment of dengue fever and severe acute respiratory syndrome-coronavirus. Biomolecules 2021.
[PMID: 33396926]
[29]
Martin KW, Ernst E. Antiviral agents from plants and herbs: A systematic review. Antivir Ther 2003; 8(2): 77-90.
[http://dx.doi.org/10.1177/135965350300800201] [PMID: 12741619]
[30]
Denaro M, Smeriglio A, Barreca D, et al. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother Res 2020; 34(4): 742-68.
[http://dx.doi.org/10.1002/ptr.6575] [PMID: 31858645]
[31]
Ahhtar MS. Intervention of regimental and pharmacotherapy in the management of saher (Insomnia). Pharma Innov 2017.
[32]
Samal J. Role of AYUSH workforce, therapeutics, and principles in health care delivery with special reference to National Rural Health Mission. Ayu 2015; 36(1): 5-8.
[http://dx.doi.org/10.4103/0974-8520.169010] [PMID: 26730131]
[33]
Mourya D, Yadav P, Ullas PT, et al. Emerging/re-emerging viral diseases & new viruses on the Indian horizon. Indian J Med Res 2019; 149(4): 447-67.
[http://dx.doi.org/10.4103/ijmr.IJMR_1239_18] [PMID: 31411169]
[34]
Fazil M, Nikhat S. Therapeutic and palliative role of a Unani herbal decoction in COVID-19 and similar respiratory viral illnesses: Phytochemical & pharmacological perspective. J Ethnopharmacol 2022; 297: 115526.
[http://dx.doi.org/10.1016/j.jep.2022.115526] [PMID: 35843408]
[35]
Muhammad Yusoff MF, Ab Razak NI. Medieval theoretical principles of medicine in ibn sĪnĀ’s al-qĀnŪn fĪ al-Ṭibb and al-dhahabĪ’s al-Ṭibb al-nabawĪ. Afkar 2020; 22(2)
[36]
Nazli T. TPerception and Practice of People about Unani Medicine attending National Arogya Fair, Visakhapatnam, Andhra Pradesh. J Adv Res Ayurveda Yoga Unani Sidhha & Homeopathy 2020; 1(1-2): 16-24.
[37]
Nikhat S, Fazil M. Overview of Covid-19; its prevention and management in the light of Unani medicine. Sci Total Environ 2020; 728: 138859.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138859] [PMID: 32334163]
[38]
Zaidi Z. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac J Trop Biomed 2013; 3(5): 337-52.
[39]
Inklebarger J, Gyer G, Galanis N, Ghulam A, Michael J. Cinchona Bark for the Treatment of Covid-19 Pneumonia: A Modern Review of the Potential Anti-Viral Therapuetic Applications of an Old Treatment. Int J Med Sci Clin Inven 2020; 7(5): 14795-4801.
[40]
Große M, Ruetalo N, Layer M. Quinine Inhibits Infection of Human Cell Lines with SARS-CoV-2. Viruses 2021; 13(4): 647.
[41]
Anonymous. The Unani pharmacopoeia of India Part I (ІI) 2007; 5
[42]
Arunachalam K, Yang X. Tinospora cordifolia (Willd.) Miers: Protection mechanisms and strategies against oxidative stress-related diseases J Ethnopharmacol 2022; 283: 114540.
[http://dx.doi.org/10.1016/j.jep.2021.114540]
[43]
Balkrishna A, Khandrika L, Varshney A. Giloy Ghanvati ( Tinospora cordifolia (Willd.) Hook. f. and Thomson) Reversed SARS-CoV-2 Viral Spike-Protein Induced Disease Phenotype in the Xenotransplant Model of Humanized Zebrafish. Front Pharmacol 2021; 12: 635510.
[44]
Philip S, Tom G, Vasumathi AV. Evaluation of the anti-inflammatory activity of Tinospora cordifolia (Willd.) Miers chloroform extract – a preclinical study. J Pharm Pharmacol 2018; 70(8): 1113-25.
[45]
Anonymous. The Unani pharmacopoeia of India Part I (І) 2007; 1: 5.
[46]
Singh RK. Acute - Toxicity , Anti-Inflammatory and Bronchial Smooth Muscles Investigation of Sisymbrium Irio Linn (Seeds) in Experimental Animal Models. 2015; 0357: 48-53.
[47]
Tiwari M, Bhargava P. Current updates on sisymbrium irio linn: A traditional medicinal plant. 2015; Plant Arch 2021; 21(1)
[48]
Anonymous. The Unani pharmacopoeia of India Part I (VI). New Dehli: Vedams eBooks 2009.
[49]
Shukla S, Mehta A, Mehta P, Vyas SP, Shukla S, Bajpai VK. Studies on anti-inflammatory, antipyretic and analgesic properties of Caesalpinia bonducella F. seed oil in experimental animal models. Food Chem Toxicol 2010; 48(1): 61-4.
[http://dx.doi.org/10.1016/j.fct.2009.09.015] [PMID: 19766160]
[50]
Hussin MH. Review on potential antiviral and immunomodulatory properties of Piper Longum. IOP Conf Ser Mater Sci Eng 2021; 1145(1): 012099.
[51]
Jiang ZY, Liu WF, Zhang XM, Luo J, Ma YB, Chen JJ. Anti-HBV active constituents from Piper longum. Bioorg Med Chem Lett 2013; 23(7): 2123-7.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.118] [PMID: 23434420]
[52]
Lakhera S, Devlal K, Ghosh A, Rana M, Longum P. Results in Chemistry in silico investigation of phytoconstituents of medicinal herb ‘ Piper Longum ’ against SARS-CoV-2 by molecular docking and molecular dynamics analysis. Results Chem 2021; 3: 100199.
[http://dx.doi.org/10.1016/j.rechem.2021.100199] [PMID: 34603947]
[53]
Kumari M, Ashok BK, Ravishankar B, Pandya TN, Acharya R. Anti-inflammatory activity of two varieties of Pippali (Piper longum Linn.). Ayu 2012; 33(2): 307-10.
[54]
Pharmacopoeia TI. Table 2: Recovery studies of clotrimazole. 2009.
[55]
Bhitre MJ. Antiinflammatory activity of the fruits of Piper longum Linn. Asian J Chem 2008; 20(6): 4357-60.
[56]
Usmani MI. Tanqeeh ul Mufradat. (1st ed..). Dehli: Famous Offset Press 2008; 22.
[57]
Mohamadein MM, Farrag RM, Mekawey AAI. Antiviral and Antidermatophytic Activity of a Compound Extracted from Cuminum cyminum. Seeds 2015; 8(2): 573-80.
[58]
Siddiqui AJ, Danciu C, Ashraf SA, et al. Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses. Plants 2020; 9(9): 1244.
[http://dx.doi.org/10.3390/plants9091244] [PMID: 32967179]
[59]
Sokeng SD. Acute and chronic anti-inflammatory effects of the aqueous extract of Acacia nilotica (L.) Del. (Fabaceae) pods. Acad J Med Plants 2013; 1(1): 001-5.
[60]
Jiang L. Insights Into the Antiviral Pathways of the Silkworm Bombyx mori. Front Immunol 2021; 12: 639092.
[http://dx.doi.org/10.3389/fimmu.2021.639092]
[61]
Taylor P, Mazzanti G, Battinelli L, Pompeo C, Serrilli AM. Inhibitory activity of Melissa officinalis L. extract on Herpes simplex virus type 2 replication. Nat Prod Res 2008; 22(16): 1433-40.
[62]
Kamboj A. Antiviral activity of plant polyphenols. J Pharma Res 2008; 5(5): 2402-12.
[63]
Bounihi A, Hajjaj G, Alnamer R, Cherrah Y, Zellou A. in vivo potential anti-inflammatory activity of melissa officinalis l. essential oil. Adv Pharmacol Sci 2013; 2013: 1-7.
[http://dx.doi.org/10.1155/2013/101759] [PMID: 24381585]
[64]
ESCOP Monogr. Melissae folium: Melissa leaf. 1996. Available From: https://escop.com/downloads/melissa-leaf/
[65]
AYUSH. The Unani pharmacopoeia of India Part I (ІI). New Dehli: Vedams eBooks 2008; 5.
[66]
Abolhassani M. Antiviral activity of borage (Echium amoenum). Arch Med Sci 2010; 6(3): 366-9.
[PMID: 22371772]
[67]
Bonaterra GA, Bronischewski K, Hunold P, et al. nti-inflammatory and Anti-oxidative Effects of Phytohustil® and Root Extract of Althaea officinalis L. on Macrophages in vitro. Front Pharmacol 2020; 11: 290.
[68]
Anonymous. The Unani pharmacopoeia of India Part I (V). New Dehli: Vedams eBooks 2009.
[69]
Byrami G, Boskabady MH, Jalali S, Farkhondeh T. The effect of the extract of Crocus sativus on tracheal responsiveness and plasma levels of IL-4, IFN-γ, total NO and nitrite in ovalbumin sensitized Guinea-pigs. J Ethnopharmacol 2013; 147(2): 530-5.
[http://dx.doi.org/10.1016/j.jep.2013.03.014] [PMID: 23506987]
[70]
Abdi H, Aganj Z, Hosseinzadeh H, Mosaffa F. Crocin restores the balance of Th1/Th2 immune cell response in ConA-treated human lymphocytes. Pharmacol Rep 2022; 74(3): 513-22.
[http://dx.doi.org/10.1007/s43440-022-00362-3] [PMID: 35294736]
[71]
Bouslama L, Benzekri R, Nsaibia S, Papetti A, Limam F. Identification of an antiviral compound isolated from Pistacia lentiscus. Arch Microbiol 2020; 202(9): 2569-78.
[http://dx.doi.org/10.1007/s00203-020-01980-2] [PMID: 32671418]
[72]
Maxia A, Sanna C, Frau MA, Piras A, Karchuli MS, Kasture V. Anti-inflammatory activity of Pistacia lentiscus essential oil: Involvement of IL-6 and TNF-α. Nat Prod Commun 2011; 6(10): 1543-2.
[http://dx.doi.org/10.1177/1934578X1100601033] [PMID: 22164803]
[73]
Hong EH, Song JH, Kang KB, Sung SH, Ko HJ, Yang H. Anti-influenza activity of betulinic acid from Zizyphus Jujuba on influenza A/PR/8 virus. Biomol Ther (Seoul) 2015; 23(4): 345-9.
[http://dx.doi.org/10.4062/biomolther.2015.019] [PMID: 26157551]
[74]
Ansari AP, N ZA, Rather SA, Rafeeqi TA, Beigh BS. Immune boosting and anti-influenza effects of an Unani decoction in influenza like illness and COVID-19 like epidemics: A rationale approach. Int J Res Med Sci 2020; 8(12): 4544.
[http://dx.doi.org/10.18203/2320-6012.ijrms20205340]
[75]
Zarubaev VV, Pushkina EA, Borisevich SS, et al. Selection of influenza virus resistant to the novel camphor-based antiviral camphecene results in loss of pathogenicity. Virology 2018; 524(August): 69-77.
[http://dx.doi.org/10.1016/j.virol.2018.08.011] [PMID: 30165308]
[76]
dos Santos E, Leitão MM, Aguero Ito CN, et al. Analgesic and anti-inflammatory articular effects of essential oil and camphor isolated from Ocimum kilimandscharicum Gürke leaves. J Ethnopharmacol 2021; 269: 113697.
[http://dx.doi.org/10.1016/j.jep.2020.113697] [PMID: 33316364]
[77]
Li H, Huang L, Zhou A, Li X, Sun J. [Study on antiinflammatory effect of different chemotype of Cinnamomum camphora on rat arthritis model induced by Freund’s adjuvant]. Zhongguo Zhongyao Zazhi 2009; 34(24): 3251-4.
[PMID: 20353012]
[78]
Tafrihi M, Imran M, Tufail T, et al. The wonderful activities of the genus Mentha: Not only antioxidant properties. Molecules 2021; 26(4): 1118.
[http://dx.doi.org/10.3390/molecules26041118] [PMID: 33672486]
[79]
Farnaz M. Phyto-chemical analysis, anti-allergic and anti-inflammatory activity of Mentha arvensis in animals. Afr J Pharm Pharmacol 2012; 6(9): 613-9.
[80]
Roy S, Chaurvedi P, Chowdhary A. Evaluation of antiviral activity of essential oil of Trachyspermum Ammi against Japanese encephalitis virus. Pharmacognosy Res 2015; 7(3): 263-7.
[http://dx.doi.org/10.4103/0974-8490.157977]
[81]
Jamshidi M. The Effect of Aqueous Extract of Trachyspermum ammi Seeds and Ibuprofen on In fl ammatory Gene Expression in the Cartilage Tissue of Rats with Collagen-Induced Arthritis. J Inflamm Res 2020; 13: 133-7.
[82]
Mohanraj R, Rakshit J. Anti HIV-1 and antimicrobial activity of the leaf extracts of Calotropis procera. Int J Green Pharm 2010; 4(4)
[83]
Sehgal R, Kumar VL. Calotropis procera Latex-Induced Inflammatory Hyperalgesia—Effect of Anti-inflammatory Drugs. Mediators Inflamm 2005; 2005(4): 216-20.
[84]
Chang JS, Wang KC, Yeh CF, Shieh DE, Chiang LC. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol 2013; 145(1): 146-51.
[http://dx.doi.org/10.1016/j.jep.2012.10.043] [PMID: 23123794]
[85]
Kaushik S, Jangra G, Kundu V, Yadav JP, Kaushik S. Anti-viral activity of Zingiber officinale (Ginger) ingredients against the Chikungunya virus. Virus Dis 2020; 31(3): 270-6.
[http://dx.doi.org/10.1007/s13337-020-00584-0] [PMID: 32420412]
[86]
Mao QQ, Xu XY, Cao SY, et al. Bioactive compounds and bioactivities of ginger (zingiber officinale roscoe). Foods 2019; 8(6): 185.
[http://dx.doi.org/10.3390/foods8060185] [PMID: 31151279]
[87]
Koshak DAE, Koshak PEA. Nigella sativa L as a potential phytotherapy for coronavirus disease 2019: A mini review of in silico studies. Curr Ther Res Clin Exp 2020; 93: 100602.
[http://dx.doi.org/10.1016/j.curtheres.2020.100602] [PMID: 32863400]
[88]
Fallah Huseini H, Mohtashami R, Sadeqi Z, Saidi Y, Fallah Huseini A. A review on pharmacological effects of Nigella sativa L. seeds. Faslnamah-i Giyahan-i Daruyi 2011; 10(38): 1-18.
[89]
Yimer EM, Tuem KB, Karim A, Ur-Rehman N, Anwar F. Nigella sativa L. (Black Cumin): A Promising Natural Remedy for Wide Range of Illnesses. Evidence-based Complement Altern Med 2019; 2019: 1528635.
[90]
Shukla HS, Dubey P, Chaturvedi RV. Antiviral properties of essential oils of Foeniculum vulgare and Pimpinella anisum L. Agronomie 1989; 9(3): 277-9.
[http://dx.doi.org/10.1051/agro:19890307]
[91]
Rocha DK, Matos O, Novo MT, Figueiredo AC, Delgado M, Moiteiro C. Larvicidal activity against Aedes aegypti of Foeniculum vulgare essential oils from Portugal and Cape Verde. Nat Prod Commun 2015; 10(4): 1501000.
[http://dx.doi.org/10.1177/1934578X1501000438] [PMID: 25973508]
[92]
Yang IJ, Lee DU, Shin HM. Anti-inflammatory and antioxidant effects of coumarins isolated from Foeniculum vulgare in lipopolysaccharide-stimulated macrophages and 12- O -tetradecanoylphorbol-13-acetate-stimulated mice. Immunopharmacol Immunotoxicol 2015; 37(3): 308-17.
[http://dx.doi.org/10.3109/08923973.2015.1038751] [PMID: 25990850]
[93]
Nafees H, Nizamudeen S, Nafees S. Some special diets used as neutraceuticals in Unani system of medicine with modern aspects.Phytomedicine: A Treasure of Pharmacologically Active Products from Plants. Amsterdam: Elsevier 2021.
[http://dx.doi.org/10.1016/B978-0-12-824109-7.00024-8]
[94]
Matsumoto Y, Matsuura T, Aoyagi H, et al. Antiviral activity of glycyrrhizin against hepatitis C virus in vitro. PLoS One 2013; 8(7): e68992.
[http://dx.doi.org/10.1371/journal.pone.0068992] [PMID: 23874843]
[95]
Yang R, Yuan BC, Ma YS, Zhou S, Liu Y. The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharm Biol 2017; 55(1): 5-18.
[http://dx.doi.org/10.1080/13880209.2016.1225775] [PMID: 27650551]
[96]
Chavan R, Gohil D, Shah V, Kothari S, Chowdhary A. Anti-viral activity of indian medicinal plant Justicia Adhatoda against herpes simplex virus: An in-vitro study. Int J Pharma Bio Sci 2013; 4(4)
[97]
Gheware A, Dholakia D, Kannan S, et al. Adhatoda Vasica attenuates inflammatory and hypoxic responses in preclinical mouse models: potential for repurposing in COVID-19-like conditions. Respir Res 2021; 22(1): 99.
[http://dx.doi.org/10.1186/s12931-021-01698-9] [PMID: 33823870]
[98]
Singh B, Sharma RA. Anti-inflammatory and antimicrobial properties of pyrroloquinazoline alkaloids from Adhatoda vasica Nees. Phytomedicine 2013; 20(5): 441-5.
[http://dx.doi.org/10.1016/j.phymed.2012.12.015] [PMID: 23357363]
[99]
Batiha GES, Tene ST, Teibo JO, et al. The phytochemical profiling, pharmacological activities, and safety of malva sylvestris: A review. Naunyn Schmiedebergs Arch Pharmacol 2023; 396(3): 421-40.
[http://dx.doi.org/10.1007/s00210-022-02329-w] [PMID: 36418467]
[100]
Benso B, Rosalen PL, Pasetto S, Marquezin MCS, Freitas-Blanco V, Murata RM. Malva sylvestris derivatives as inhibitors of HIV-1 BaL infection. Nat Prod Res 2021; 35(6): 1064-9.
[http://dx.doi.org/10.1080/14786419.2019.1619720] [PMID: 31429300]
[101]
Wang G, Wang H, Song Y, Jia C, Wang Z, Xu H. [Studies on anti-HSV effect of Ficus carica leaves]. Zhong Yao Cai 2004; 27(10): 754-6.
[PMID: 15850358]
[102]
Camero M, Marinaro M, Losurdo M, et al. Caprine herpesvirus 1 (CpHV-1) vaginal infection of goats: Clinical efficacy of fig latex. Nat Prod Res 2016; 30(5): 605-7.
[http://dx.doi.org/10.1080/14786419.2015.1028061] [PMID: 25835328]
[103]
Ali B, Mujeeb M, Aeri V, Mir SR, Faiyazuddin M, Shakeel F. Anti-inflammatory and antioxidant activity of Ficus carica Linn. leaves. Nat Prod Res 2012; 26(5): 460-5.
[http://dx.doi.org/10.1080/14786419.2010.488236] [PMID: 21644169]
[104]
Ranjbar M, Varzi HN, Sabbagh A, Bolooki A, Sazmand A. Study on analgesic and anti-inflammatory properties of Cordia myxa fruit hydro-alcoholic extract. Pak J Biol Sci 2013; 16(24): 2066-9.
[http://dx.doi.org/10.3923/pjbs.2013.2066.2069] [PMID: 24517032]
[105]
Al-Awadi FM, Srikumar TS, Anim JT, Khan I. Antiinflammatory effects of Cordia myxa fruit on experimentally induced colitis in rats. Nutrition 2001; 17(5): 391-6.
[http://dx.doi.org/10.1016/S0899-9007(01)00517-2] [PMID: 11377132]
[106]
Aggarwal M, Leser GP, Lamb RA. Repurposing Papaverine as an Antiviral Agent against Influenza Viruses and Paramyxoviruses. J Virol 2020; 94(6): e01888-19.
[http://dx.doi.org/10.1128/JVI.01888-19] [PMID: 31896588]
[107]
Shin HH, Moon SJ, Lim BK, Kim JH. Extract of Linum usitatissimum L. inhibits Coxsackievirus B3 replication through AKT signal modulation. Korean J Pharmacogn 2018; 49(4): 291-7.
[108]
Mouhajir F, Hudson JB, Rejdali M, Towers GHN. Multiple antiviral activities of endemic medicinal plants used by Berber peoples of Morocco. Pharm Biol 2001; 39(5): 364-74.
[http://dx.doi.org/10.1076/phbi.39.5.364.5892]
[109]
Jawhari FZ, Radouane N, Bencheikh N, Grafov A, Bousta D. in vivo and in vitro Antidiabetic and Anti-Inflammatory Properties of Flax (Linum usitatissimum L.) Seed Polyphenols. Nutrients 2021; 13(8): 12759.
[110]
Shaghaghi N, Fereydooni S, Molaei N. Molecular Docking and Clinical Study of Inhibition of Phytochemical Compounds of Nigella Sativa, Matricaria Chamomilla and Origanum Vulgare L on COVID_19 Mpro. J Pharmaceut Microbio 2021; 7(1): 2.
[111]
Kumar N, Shala AY, Khurana SMP. Antiviral and immuno-boosting potential of Ashwagandha (Withania somnifera L.). Med Plants - Int J Phytomed Related Ind 2021; 13(2)
[112]
Mofed D, Ahmed W, Zekri A, Said O, Rahouma M. The Antiviral Efficacy of Withania somnifera (Ashwagandha) against Hepatitis C Virus Activity: in vitro and in silico Study. Adv Microbio 2020; 10(9)
[113]
Patil VS, Hupparage VB, Malgi AP, Deshpande SH, Patil SA, Mallapur SP. Dual inhibition of COVID-19 spike glycoprotein and main protease 3CLpro by Withanone from Withania somnifera. Chin Herb Med 2021; 13(3): 359-69.
[http://dx.doi.org/10.1016/j.chmed.2021.06.002] [PMID: 34188665]
[114]
Sivamani S, Joseph B, Kar B. Anti-inflammatory activity of Withania somnifera leaf extract in stainless steel implant induced inflammation in adult zebrafish. J Genet Eng Biotechnol 2014; 12(1): 1-6.
[http://dx.doi.org/10.1016/j.jgeb.2014.01.002]
[115]
Anubhuti S. Anti-viral activity of Cassia fistula against IBR virus. J Immunol Immunopathol 2010; 12(2): 114-9.
[116]
Naresh D, Bharne D, Saikia P, Vindal V. Anthraquinone rich Cassia fistula pod extract induces IFIT1, antiviral protein. Indian J Trad Knowl 2018; 17(3): 474-9.
[117]
Ashrafi S, Rahman M, Ahmed P, Alam S, Hossain MA. Prospective Asian plants with corroborated antiviral potentials: Position standing in recent years. Beni Suef Univ J Basic Appl Sci 2022; 11(1): 47.
[http://dx.doi.org/10.1186/s43088-022-00218-y] [PMID: 35402627]
[118]
Ilavarasana R, Mallika M, Venkataraman S. Anti-inflammatory and antioxidant activities of <I>Cassia fistula</I> Linn bark extracts. Afr J Tradit Complement Altern Med 2004; 2(1)
[http://dx.doi.org/10.4314/ajtcam.v2i1.31105]
[119]
Kim H, Chung MS. Antiviral activities of mulberry (morus alba) juice and seed against influenza viruses. Evidence-based Complement Altern Med 2018; 2018
[http://dx.doi.org/10.1155/2018/2606583]
[120]
Chen H, Pu J, Liu D, et al. Anti-inflammatory and antinociceptive properties of flavonoids from the fruits of black mulberry (Morus nigra L). PLoS One 2016; 11(4): e0153080.
[http://dx.doi.org/10.1371/journal.pone.0153080] [PMID: 27046026]
[121]
Padilha MM, Vilela FC, Rocha CQ, Dias MJ, Soncini R, Santos MH. Antiinflammatory properties of Morus nigra leaves. Phytother Res 2010; 24(10): 1496-500.
[122]
Rezazadeh F, Moshaverinia M, Motamedifar M, Alyaseri M. Assessment of Anti HSV-1 Activity of Aloe Vera Gel Extract: An in vitro Study. J Dent (Shiraz) 2016; 17(1): 49-54.
[123]
Sun Z, Yu C, Wang W, Yu G, Zhang T, Zhang L. Aloe Polysaccharides Inhibit Influenza A Virus Infection-A Promising Natural Anti-flu Drug. Front Microbiol 2018; 9: 2338.
[124]
Gansukh E, Gopal J, Paul D, Muthu M, Kim D. Ultrasound mediated accelerated Anti-influenza activity of Aloe vera. Sci Rep 2017; 2018: 1-10.
[http://dx.doi.org/10.1038/s41598-018-35935-x] [PMID: 30542141]
[125]
Chauhan P, Kumar A. Development of a microbial coating for cellulosic surface using aloe vera and silane. Carbohydr Polym Tech Appl 2020; 1: 100015.
[http://dx.doi.org/10.1016/j.carpta.2020.100015]
[126]
Saoo K, Miki H, Ohmori M. Antiviral Activity of Aloe Extracts against C ytomegalovirus. Phytother Res 1996; 10(4): 348-50.
[127]
Marta S, Gonz E, Iglesias I, Pilar MG. Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. Molecules 2020; 25(6): 1324.
[128]
Paul S, Dutta S, Chaudhuri TK, Bhattacharjee S. Anti-inflammatory and protective properties of aloe vera leaf crude gel in carrageenan induced acute inflammatory rat models. Int J Pharm Pharmacuet Sci 2014; 6(9)
[129]
Zandi K, Zadeh MA, Sartavi K, Rastian Z. Antiviral activity of Aloe vera against herpes simplex virus type 2: An in vitro study. African J Biotech 2007; 6(15): 1770.3.
[130]
Allahverdiyev AM, Bagirova M, Yaman S, Koc RC, Abamor ES, Ates SC, et al. Development of New Antiherpetic Drugs Based on Plant Compounds.Fighting Multidrug Resistance with Herbal Extracts, Essential Oils and Their Components. Cambridge, Massachusetts: Academic Press 2013.
[http://dx.doi.org/10.1016/B978-0-12-398539-2.00017-3]
[131]
Ma X, Ma X, Ma Z, et al. Effect of Hyssopus officinalis L. on inhibiting airway inflammation and immune regulation in a chronic asthmatic mouse model. Exp Ther Med 2014; 8(5): 1371-4.
[http://dx.doi.org/10.3892/etm.2014.1978] [PMID: 25289025]
[132]
Novoa B, Romero A, Álvarez ÁL, et al. Antiviral Activity of Myticin C Peptide from Mussel: An Ancient Defense against Herpesviruses. J Virol 2016; 90(17): 7692-702.
[http://dx.doi.org/10.1128/JVI.00591-16] [PMID: 27307570]
[133]
Skinder B, Ganai B, Wani A. Scientific Study of Gentiana kurroo Royle. Medicines (Basel) 2017; 4(4): 74.
[http://dx.doi.org/10.3390/medicines4040074] [PMID: 29023411]
[134]
Mubashir K, Ghazanfar K, Ganai BA, Akbar S, Malik AH, Masood A. Scientific Validation of Gentiana kurroo Royle for Anti-Inflammatory and Immunomodulatory Potential. ISRN Inflamm 2014; 2014: 1-5.
[http://dx.doi.org/10.1155/2014/701765] [PMID: 24707440]
[135]
Mubashir K, Ganai BA, Ghazanfar K, et al. Anti-inflammatory and immuno-modulatory studies on LC-MS characterised methanol extract of Gentiana kurroo Royle. BMC Complement Altern Med 2017; 17(1): 78.
[http://dx.doi.org/10.1186/s12906-017-1593-7] [PMID: 28129760]
[136]
Nikolic B, Mitic-Culafic D, Cvetkovic S. Can yellow gentian (Gentiana lutea) be useful in protection against foodborne mutagens and food contaminants? IOP Conf Ser Earth Environ Sci 2021; 854(1): 012067.
[http://dx.doi.org/10.1088/1755-1315/854/1/012067]
[137]
Prakash O, Singh R, Kumar S, Srivastava S, Ved A. Gentiana lutea Linn. (Yellow Gentian): A comprehensive review. Journal of Ayurvedic and Herbal Medicine 2017; 3(3): 175-81.
[http://dx.doi.org/10.31254/jahm.2017.3314]
[138]
Naz R, Ayub H, Nawaz S, et al. Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complement Altern Med 2017; 17(1): 302.
[http://dx.doi.org/10.1186/s12906-017-1815-z] [PMID: 28595608]
[139]
Rambhade S, Chakraborty A, Patil U, Rambhade A. Diabetes Mellitus- Its complications, factors influencing complications and prevention- An Overview. J Chem Pharm Res 2010; 2(6): 7-25.
[140]
Khan Z. Incidence of HCV in general population of District Swat, Pakistan. J Antivir Antiretrovir 2017; 09(03): 5964.
[141]
Thirugnanasampandan R, Mahendran G, Bai VN, Retz A, Linn A, Lamk A. Antioxidant properties of some medicinal Aristolochiaceae species. African J Biotech 2008; 7(4): 357-61.
[142]
Shirwaikar A, Somashekar AP. Antiinflammatory activity and free radical scavenging studies of Aristolochia bracteolata lam. Indian J Pharm Sci 2003.
[143]
Aurori AC, Bobiş O, Dezmirean DS, Mărghitaş LA, Erler S. Bay laurel ( Laurus nobilis ) as potential antiviral treatment in naturally BQCV infected honeybees. Virus Res 2016; 222: 29-33.
[http://dx.doi.org/10.1016/j.virusres.2016.05.024] [PMID: 27235809]
[144]
Laurus T. Natural Product Communications,(Figure 2). 2017.
[145]
Madia VN, De Angelis M, De Vita D, Messore A, De Leo A, Ialongo D. Investigation of Commiphora myrrha (Nees) Engl. Oil and Its Main Components for Antiviral Activity. Pharmaceuticals (Basel) 2021; 14(3): 243.
[146]
Gadir SA, Ahmed IM. Commiphora myrrha and commiphora Africana essential oils. J Chem Pharmaceut Res 2014; 6(7): 151-156>.
[147]
Bouslama L, Kouidhi B, Alqurashi YM, Chaieb K, Papetti A. Virucidal Effect of Guggulsterone Isolated from Commiphora gileadensis. Planta Med 2019; 85(16): 1225-32.
[http://dx.doi.org/10.1055/a-1014-3303] [PMID: 31590195]
[148]
Ojo OO, Oluyege JO, Famurewa O. Antiviral properties of two Nigerian plants. African J Plant Sci 2009; 3(7): 157-9.
[149]
Lodhi S, Jain AP, Rai G, Yadav AK. Preliminary investigation for wound healing and anti-inflammatory effects of Bambusa vulgaris leaves in rats. J Ayurveda Integr Med 2016; 7(1): 14-22.
[http://dx.doi.org/10.1016/j.jaim.2015.07.001] [PMID: 27297505]
[150]
Ka-Wai Hui E. Reasons for the increase in emerging and re-emerging viral infectious diseases. Microbes Infect 2006; 8(3): 905-16.
[http://dx.doi.org/10.1016/j.micinf.2005.06.032] [PMID: 16448839]
[151]
De Luca d’Alessandro E, Giraldi G. A world wide public health problem: The principal re-emerging infectious diseases. Clin Ter 2012.
[PMID: 21717041]
[152]
Srivastava S, Lal VK, Pant KK. Polyherbal formulations based on Indian medicinal plants as antidiabetic phytotherapeutics. 2012.
[153]
Aslam MS, Ahmad MS, Mamat AS, Ahmad MZ, Salam F. An Update Review on Polyherbal Formulation : A Global Perspective. Syst Rev Pharm 2016; 7(1): 35-41.
[http://dx.doi.org/10.5530/srp.2016.7.5]
[154]
Said, HM. Hamdard Pharmacopoeia of Eastern Medicine. (2nd ed..). Delhi: Sri Satguru Publications 1997; 52: p. (177)8.
[http://dx.doi.org/10.3390/v13050828] [PMID: 34064347]
[155]
Musarra-Pizzo M, Pennisi R, Ben-Amor I, Mandalari G, Sciortino MT. Antiviral activity exerted by natural products against human viruses. Viruses 2021; 13(5): 828.
[http://dx.doi.org/10.3390/v13050828] [PMID: 34064347]
[156]
Anonymous. National Formulary of Unani Medicine, Part I. New Dehli: Vedams eBooks 2006.
[157]
Anonymous. National Formulary of Unani Medicine, Part V. New Dehli: Vedams eBooks 2008; 76.
[158]
Kabeeruddin M. Bayaz-i-Kabeer. New Dehli: Idarah Kitab al-Shifa 2010; 2.
[159]
Anonymous. The Unani pharmacopoeia of India Part I (ІI). New Dehli: Vedams eBooks 2007; 5.
[160]
Anonymous. The Unani pharmacopoeia of India Part I (ІI). New Dehli: Vedams eBooks 2007; 5.
[161]
Anonymous. Qarabadeen Majeedi. Dehli: All India Tibbi Conference 1986.
[162]
Anonymous. National Formulary of Unani Medicine, Part VI. New Dehli: Vedams eBooks 2011; 24.
[163]
Anonymous. National Formulary of Unani Medicine, Part III. New Dehli: Vedams eBooks 2001; 26.
[164]
Sofowora A, Ogunbodede E, Onayade A. The role and place of medicinal plants in the strategies for disease prevention. Afr J Tradit Complement Altern Med 2013; 10(5): 210-9.
[165]
Chen SL, Yu H, Luo HM, Wu Q, Li CF, Steinmetz A. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chin Med 2016; 11: 37.
[166]
Lico C, Desiderio A, Banchieri S, Benvenuto E. Plants as biofactories: Production of pharmaceutical recombinant proteins. 2005. Available From: https://www.connectedpapers.com/main/34899e1ccace8b1d17c16e3c72049bfb817093e6/Genetic-modification%3A-The-production-of-recombinant-pharmaceutical-proteins-in-plants/graph
[167]
Santoni M, Gecchele E, Zampieri R, Avesani L. Plant-Based Systems for Vaccine Production.Methods in Molecular Biology. Cham: Springer 2022.
[http://dx.doi.org/10.1007/978-1-0716-1892-9_6]
[168]
Mukhtar M, Arshad M, Ahmad M, Pomerantz RJ, Wigdahl B, Parveen Z. Antiviral potentials of medicinal plants. Virus Res 2008; 131(2): 111-20.
[http://dx.doi.org/10.1016/j.virusres.2007.09.008] [PMID: 17981353]
[169]
Thomas E, Stewart LE, Darley BA, Pham AM, Esteban I, Panda SS. Plant-based natural products and extracts: Potential source to develop new antiviral drug candidates. Molecules 2021; 26(20): 6197.
[http://dx.doi.org/10.3390/molecules26206197] [PMID: 34684782]
[170]
Liang-Tzung L. Antiviral Natural Products and Herbal Medicines. J Tradit Complement Med 2014; 4(1): 24-35.
[171]
Ponticelli M, Bellone ML, Parisi V, et al. Specialized metabolites from plants as a source of new multi-target antiviral drugs: A systematic review. Phytochem Rev 2023; 22(3): 615-93.
[http://dx.doi.org/10.1007/s11101-023-09855-2] [PMID: 37359711]
[172]
Muddapur UM, Badiger S, Shaikh IA, et al. Molecular modelling and simulation techniques to investigate the effects of fungal metabolites on the SARS-CoV-2 RdRp protein inhibition. J King Saud Univ Sci 2022; 34(6): 102147.
[http://dx.doi.org/10.1016/j.jksus.2022.102147] [PMID: 35702575]
[173]
Fotsing Yannick Stéphane F, Kezetas Jean Jules B, El-Saber Batiha G, Ali I, Ndjakou Bruno L. Extraction of Bioactive Compounds from Medicinal Plants and Herbs.Natural Medicinal Plants. London: IntechOpen Limited 2022.
[http://dx.doi.org/10.5772/intechopen.98602]
[174]
Azmir J, Zaidul ISM, Rahman MM, et al. Techniques for extraction of bioactive compounds from plant materials: A review. J Food Eng 2013; 117(4): 426-36.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014]
[175]
Eftekhari A, Khusro A, Ahmadian E, Dizaj SM, Hasanzadeh A, Cucchiarini M. Phytochemical and nutra-pharmaceutical attributes of Mentha spp.: A comprehensive review. Arab J Chem 2021; 14(5): 103106.
[http://dx.doi.org/10.1016/j.arabjc.2021.103106]
[176]
Itrat M, Khan S. Evidence-Base Unani Medicine: Need of Appropriate Research Methods. J Tradi Med Clin Natur 2016; 5(5): 197.