Nanoparticles Containing Oxaliplatin and the Treatment of Colorectal Cancer

Page: [3018 - 3039] Pages: 22

  • * (Excluding Mailing and Handling)

Abstract

Background: Colorectal cancer (CRC) is a highly widespread malignancy and ranks as the second most common cause of cancer-related mortality.

Objective: Cancer patients, including those with CRC, who undergo chemotherapy, are often treated with platinum- based anticancer drugs such as oxaliplatin (OXA). Nevertheless, the administration of OXA is associated with a range of gastrointestinal problems, neuropathy, and respiratory tract infections. Hence, it is necessary to devise a potential strategy that can effectively tackle these aforementioned challenges. The use of nanocarriers has shown great potential in cancer treatment due to their ability to minimize side effects, target drugs directly to cancer cells, and improve drug efficacy. Furthermore, numerous studies have been published regarding the therapeutic efficacy of nanoparticles in the management of colorectal cancer.

Methods: In this review, we present the most relevant nanostructures used for OXA encapsulation in recent years, such as solid lipid nanoparticles, liposomes, polysaccharides, proteins, silica nanoparticles, metal nanoparticles, and synthetic polymer-carriers. Additionally, the paper provides a summary of the disadvantages and limits associated with nanoparticles.

Results: The use of different carriers for the delivery of oxaliplatin increased the efficiency and reduced the side effects of the drug. It has been observed that the majority of research investigations have focused on liposomes and polysaccharides.

Conclusion: This potentially auspicious method has the potential to enhance results and enhance the quality of life for cancer patients undergoing chemotherapy. However, additional investigation is required to ascertain the most suitable medium for the transportation of oxaliplatin and to assess its efficacy through clinical trials.

[1]
Boutry J, Tissot S, Ujvari B, et al. The evolution and ecology of benign tumors. Biochimica et Biophysica Acta (BBA). Rev Can 2022; 1877(1): 188643.
[2]
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73(1): 17-48.
[http://dx.doi.org/10.3322/caac.21763] [PMID: 36633525]
[3]
Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut 2017; 66(4): 683-91.
[http://dx.doi.org/10.1136/gutjnl-2015-310912] [PMID: 26818619]
[4]
Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics, 2023. CA Cancer J Clin 2023; 73(3): 233-54.
[http://dx.doi.org/10.3322/caac.21772] [PMID: 36856579]
[5]
Bogaert J, Prenen H. Molecular genetics of colorectal cancer. Ann Gastroenterol 2014; 27(1): 9-14.
[PMID: 24714764]
[6]
Malki A, ElRuz RA, Gupta I, Allouch A, Vranic S, Al Moustafa AE. Molecular mechanisms of colon cancer progression and metastasis: Recent insights and advancements. Int J Mol Sci 2020; 22(1): 130.
[http://dx.doi.org/10.3390/ijms22010130] [PMID: 33374459]
[7]
Manoochehri H, Asadi S, Tanzadehpanah H, Sheykhhasan M, Ghorbani M. CDC25A is strongly associated with colorectal cancer stem cells and poor clinical outcome of patients. Gene Rep 2021; 25: 101415.
[http://dx.doi.org/10.1016/j.genrep.2021.101415]
[8]
Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology 2010; 138(6): 2059-72.
[http://dx.doi.org/10.1053/j.gastro.2009.12.065] [PMID: 20420946]
[9]
Sheykhhasan M, Ahmadyousefi Y, Seyedebrahimi R, et al. DLX6-AS1: A putative lncRNA candidate in multiple human cancers. Expert Rev Mol Med 2021; 23: e17.
[http://dx.doi.org/10.1017/erm.2021.17] [PMID: 34823630]
[10]
Markowitz SD, Bertagnolli MM. Molecular basis of colorectal cancer. N Engl J Med 2009; 361(25): 2449-60.
[http://dx.doi.org/10.1056/NEJMra0804588] [PMID: 20018966]
[11]
Tsang AHF, Cheng K-H, Wong AS-P, et al. Current and future molecular diagnostics in colorectal cancer and colorectal adenoma. World J Gastroenterol 2014; 20(14): 3847-57.
[http://dx.doi.org/10.3748/wjg.v20.i14.3847] [PMID: 24744577]
[12]
Geiersbach KB, Samowitz WS. Microsatellite instability and colorectal cancer. Arch Pathol Lab Med 2011; 135(10): 1269-77.
[http://dx.doi.org/10.5858/arpa.2011-0035-RA] [PMID: 21970482]
[13]
Meyer LA, Broaddus RR, Lu KH. Endometrial cancer and Lynch syndrome: Clinical and pathologic considerations. Cancer Contr 2009; 16(1): 14-22.
[http://dx.doi.org/10.1177/107327480901600103] [PMID: 19078925]
[14]
Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology 2010; 138(6): 2073-87.e3..
[http://dx.doi.org/10.1053/j.gastro.2009.12.064]
[15]
Abkenar BR, Mohammadi A, Amoli HA, et al. Non-coding RNAs are correlated to TGF-β receptor type 2 in patients with colorectal cancer. J Gene Med 2023; 25(3): e3472.
[http://dx.doi.org/10.1002/jgm.3472] [PMID: 36579810]
[16]
Cohen Y, Merhavi-Shoham E, Avraham RB, Frenkel S, Pe’er J, Goldenberg-Cohen N. Hypermethylation of CpG island loci of multiple tumor suppressor genes in retinoblastoma. Exp Eye Res 2008; 86(2): 201-6.
[http://dx.doi.org/10.1016/j.exer.2007.10.010] [PMID: 18068703]
[17]
Hesson LB, Wilson R, Morton D, et al. CpG island promoter hypermethylation of a novel Ras-effector gene RASSF2A is an early event in colon carcinogenesis and correlates inversely with K-ras mutations. Oncogene 2005; 24(24): 3987-94.
[http://dx.doi.org/10.1038/sj.onc.1208566] [PMID: 15806169]
[18]
Bastian PJ, Ellinger J, Heukamp LC, Kahl P, Müller SC, von Rücker A. Prognostic value of CpG island hypermethylation at PTGS2, RAR-beta, EDNRB, and other gene loci in patients undergoing radical prostatectomy. Eur Urol 2007; 51(3): 665-74.
[http://dx.doi.org/10.1016/j.eururo.2006.08.008] [PMID: 16956712]
[19]
Puccini A, Berger MD, Naseem M, et al. Colorectal cancer: Epigenetic alterations and their clinical implications. Biochim Biophys Acta Rev Cancer 2017; 1868(2): 439-48.
[http://dx.doi.org/10.1016/j.bbcan.2017.09.003] [PMID: 28939182]
[20]
Wang K, Shen R, Meng T, Hu F, Yuan H. Nano-drug delivery systems based on different targeting mechanisms in the targeted therapy of colorectal cancer. Molecules 2022; 27(9): 2981.
[http://dx.doi.org/10.3390/molecules27092981] [PMID: 35566331]
[21]
Hashiguchi Y, Muro K, Saito Y, et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer. Int J Clin Oncol 2020; 25(1): 1-42.
[http://dx.doi.org/10.1007/s10147-019-01485-z] [PMID: 31203527]
[22]
Ribic CM, Sargent DJ, Moore MJ, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003; 349(3): 247-57.
[http://dx.doi.org/10.1056/NEJMoa022289] [PMID: 12867608]
[23]
Sandouk F, Al Jerf F, Al-Halabi M. Precancerous lesions in colorectal cancer. Gastroenterol Res Pract 2013; 2013: 457901.
[http://dx.doi.org/10.1155/2013/457901]
[24]
Lila ASA, Kiwada H, Ishida T. Selective delivery of oxaliplatin to tumor tissue by nanocarrier system enhances overall therapeutic efficacy of the encapsulated oxaliplatin. Biol Pharm Bull 2014; 37(2): 206-11.
[http://dx.doi.org/10.1248/bpb.b13-00540] [PMID: 24492717]
[25]
Oun R, Wheate NJ. Platinum anticancer drugs. In: Kretsinger RH, Uversky VN, Permyakov EA, Eds. Encyclopedia of Metalloproteins. New York, NY: Springer New York 2013; pp. 1710-4.
[http://dx.doi.org/10.1007/978-1-4614-1533-6_525]
[26]
Kaur J, Gulati M, Gowthamarajan K, et al. Combination therapy of vanillic acid and oxaliplatin co-loaded in polysaccharide based functionalized polymeric micelles could offer effective treatment for colon cancer: A hypothesis. Med Hypotheses 2021; 156: 110679.
[http://dx.doi.org/10.1016/j.mehy.2021.110679] [PMID: 34555619]
[27]
Mohammed MQ, Retsas S. Oxaliplatin is active in vitro against human melanoma cell lines: Comparison with cisplatin and carboplatin. Anticancer Drugs 2000; 11(10): 859-63.
[http://dx.doi.org/10.1097/00001813-200011000-00010] [PMID: 11142694]
[28]
Lévi F, Metzger G, Massari C, Milano G. Oxaliplatin: pharmacokinetics and chronopharmacological aspects. Clin Pharmacokinet 2000; 38(1): 1-21.
[http://dx.doi.org/10.2165/00003088-200038010-00001] [PMID: 10668856]
[29]
Szefler B, Czeleń P. Will the interactions of some platinum (II)-based drugs with b-vitamins reduce their therapeutic effect in cancer patients? comparison of chemotherapeutic agents such as cisplatin, carboplatin and oxaliplatin-A review. Int J Mol Sci 2023; 24(2): 1548.
[http://dx.doi.org/10.3390/ijms24021548] [PMID: 36675064]
[30]
Tippayamontri T, Kotb R, Paquette B, Sanche L. Cellular uptake and cytoplasm / DNA distribution of cisplatin and oxaliplatin and their liposomal formulation in human colorectal cancer cell HCT116. Invest New Drugs 2011; 29(6): 1321-7.
[http://dx.doi.org/10.1007/s10637-010-9494-3] [PMID: 20658169]
[31]
Kang L, Tian Y, Xu S, Chen H. Oxaliplatin-induced peripheral neuropathy: Clinical features, mechanisms, prevention and treatment. J Neurol 2021; 268(9): 3269-82.
[http://dx.doi.org/10.1007/s00415-020-09942-w] [PMID: 32474658]
[32]
Cheng Q, Liu Y. Multifunctional platinum-based nanoparticles for biomedical applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9(2): e1410.
[http://dx.doi.org/10.1002/wnan.1410] [PMID: 27094725]
[33]
Kemp JA, Kwon YJ. Cancer nanotechnology: Current status and perspectives. Nano Converg 2021; 8(1): 34.
[http://dx.doi.org/10.1186/s40580-021-00282-7] [PMID: 34727233]
[34]
Kasi PB, Mallela VR, Ambrozkiewicz F, Trailin A, Liška V, Hemminki K. Theranostics nanomedicine applications for colorectal cancer and metastasis: Recent advances. Int J Mol Sci 2023; 24(9): 7922.
[http://dx.doi.org/10.3390/ijms24097922] [PMID: 37175627]
[35]
Kobayashi H, Watanabe R, Choyke PL. Improving conventional enhanced permeability and retention (EPR) effects; What is the appropriate target? Theranostics 2014; 4(1): 81-9.
[http://dx.doi.org/10.7150/thno.7193] [PMID: 24396516]
[36]
Friedman H. The Reticuloendothelial System: A Comprehensive Treatise. Springer 2012.
[37]
Yang C, Merlin D. Lipid-based drug delivery nanoplatforms for colorectal cancer therapy. Nanomaterials 2020; 10(7): 1424.
[http://dx.doi.org/10.3390/nano10071424] [PMID: 32708193]
[38]
Wang Y, Zhang X, Zhang W, et al. Combination of oxaliplatin and Vit. E-TPGS in lipid nanosystem for enhanced therapeutic efficacy in colon cancers. Pharm Res 2018; 35(2): 27.
[http://dx.doi.org/10.1007/s11095-017-2297-x] [PMID: 29368145]
[39]
Khairnar SV, Pagare P, Thakre A, et al. Review on the scale-up methods for the preparation of solid lipid nanoparticles. Pharmaceutics 2022; 14(9): 1886.
[http://dx.doi.org/10.3390/pharmaceutics14091886] [PMID: 36145632]
[40]
Gad S, Yousry A, Hassan T, Elaidy SM. Nanocarriers as pulmonary drug delivery systems. Rec Pharm Biomedical Sci 2022; 6(3): 113-9.
[http://dx.doi.org/10.21608/rpbs.2022.143936.1150]
[41]
Doktorovová S, Kovačević AB, Garcia ML, Souto EB. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm 2016; 108: 235-52.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.001] [PMID: 27519829]
[42]
Weyhers H, Ehlers S, Hahn H, Souto EB, Müller RH. Solid lipid nanoparticles (SLN)-effects of lipid composition on in vitro degradation and in vivo toxicity. Pharmazie 2006; 61(6): 539-44.
[PMID: 16826974]
[43]
Rajpoot K, Jain SK. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: Preparation, optimization, and in vitro evaluation. Artif Cells Nanomed Biotechnol 2018; 46(6): 1236-47.
[http://dx.doi.org/10.1080/21691401.2017.1366338] [PMID: 28849671]
[44]
Sundaramoorthy P, Ramasamy T, Mishra SK, et al. Engineering of caveolae-specific self-micellizing anticancer lipid nanoparticles to enhance the chemotherapeutic efficacy of oxaliplatin in colorectal cancer cells. Acta Biomater 2016; 42: 220-31.
[http://dx.doi.org/10.1016/j.actbio.2016.07.006] [PMID: 27395829]
[45]
Rajpoot K, Jain SK. 99m Tc-labelled and pH-awakened microbeads entrapping surface-modified lipid nanoparticles for the augmented effect of oxaliplatin in the therapy of colorectal cancer. J Microencapsul 2020; 37(8): 609-23.
[http://dx.doi.org/10.1080/02652048.2020.1829141] [PMID: 32985297]
[46]
Muhammad P, Hanif S, Li J, et al. Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today 2022; 45: 101530.
[http://dx.doi.org/10.1016/j.nantod.2022.101530]
[47]
Duan X, Chan C, Han W, Guo N, Weichselbaum RR, Lin W. Immunostimulatory nanomedicines synergize with checkpoint blockade immunotherapy to eradicate colorectal tumors. Nat Commun 2019; 10(1): 1899.
[http://dx.doi.org/10.1038/s41467-019-09221-x] [PMID: 31015397]
[48]
Alaei M, Moetamani-Ahmadi M, Mahaki H, et al. Nanoliposomal oxaliplatin ameliorates chemotherapy-induced neuropathy. Neurosci Lett 2023; 812: 137367.
[http://dx.doi.org/10.1016/j.neulet.2023.137367] [PMID: 37419304]
[49]
Tanzadehpanah H, Mahaki H, Manoochehri H, Soleimani M, Najafi R. AS1411 aptamer improves therapeutic efficacy of PEGylated nanoliposomes loaded with gefitinib in the mice bearing CT26 colon carcinoma. J Nanopart Res 2022; 24(12): 252.
[http://dx.doi.org/10.1007/s11051-022-05630-0]
[50]
Yang C, Liu HZ, Fu ZX. Effects of PEG-liposomal oxaliplatin on apoptosis, and expression of Cyclin A and Cyclin D1 in colorectal cancer cells. Oncol Rep 2012; 28(3): 1006-12.
[http://dx.doi.org/10.3892/or.2012.1868] [PMID: 22710431]
[51]
Yang C, Liu H-Z, Lu W-D, Fu Z-X. PEG-liposomal oxaliplatin potentialization of antitumor efficiency in a nude mouse tumor-xenograft model of colorectal carcinoma. Oncol Rep 2011; 25(6): 1621-8.
[PMID: 21455585]
[52]
Yang C, Fu ZX. Liposomal delivery and polyethylene glycol-liposomal oxaliplatin for the treatment of colorectal cancer (Review). Biomed Rep 2014; 2(3): 335-9.
[http://dx.doi.org/10.3892/br.2014.249] [PMID: 24748970]
[53]
Gabizon AA, Patil Y, La-Beck NM. New insights and evolving role of pegylated liposomal doxorubicin in cancer therapy. Drug Resist Updat 2016; 29: 90-106.
[http://dx.doi.org/10.1016/j.drup.2016.10.003] [PMID: 27912846]
[54]
Khan AA, Allemailem KS, Almatroodi SA, Almatroudi A, Rahmani AH. Recent strategies towards the surface modification of liposomes: An innovative approach for different clinical applications. 3 Biotech 2020; 10: 1-15.
[55]
Abri Aghdam M, Bagheri R, Mosafer J, et al. Recent advances on thermosensitive and pH-sensitive liposomes employed in controlled release. J Control Release 2019; 315: 1-22.
[http://dx.doi.org/10.1016/j.jconrel.2019.09.018] [PMID: 31647978]
[56]
Zalba S, Contreras AM, Haeri A, et al. Cetuximab-oxaliplatin-liposomes for epidermal growth factor receptor targeted chemotherapy of colorectal cancer. J Control Release 2015; 210: 26-38.
[http://dx.doi.org/10.1016/j.jconrel.2015.05.271] [PMID: 25998052]
[57]
Zalba S, Navarro I, Trocóniz IF, Tros de Ilarduya C, Garrido MJ. Application of different methods to formulate PEG-liposomes of oxaliplatin: Evaluation in vitro and in vivo. Eur J Pharm Biopharm 2012; 81(2): 273-80.
[http://dx.doi.org/10.1016/j.ejpb.2012.02.007] [PMID: 22369879]
[58]
Suzuki R, Takizawa T, Kuwata Y, et al. Effective anti-tumor activity of oxaliplatin encapsulated in transferrin-PEG-liposome. Int J Pharm 2008; 346(1-2): 143-50.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.010] [PMID: 17640835]
[59]
Zhang B, Wang T, Yang S, et al. Development and evaluation of oxaliplatin and irinotecan co-loaded liposomes for enhanced colorectal cancer therapy. J Control Release 2016; 238: 10-21.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.022] [PMID: 27432750]
[60]
Moghadam NH, Salehzadeh S, Rakhtshah J, et al. Improving antiproliferative effect of the nevirapine on Hela cells by loading onto chitosan coated magnetic nanoparticles as a fully biocompatible nano drug carrier. Int J Biol Macromol 2018; 118(Pt A): 1220-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.144] [PMID: 30001607]
[61]
Debele TA, Mekuria SL, Tsai HC. Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. Mater Sci Eng C 2016; 68: 964-81.
[http://dx.doi.org/10.1016/j.msec.2016.05.121] [PMID: 27524098]
[62]
Barkat K, Ahmad M, Minhas MU, Khalid I. Oxaliplatin-loaded crosslinked polymeric network of chondroitin sulfate-co-poly(methacrylic acid) for colorectal cancer: Its toxicological evaluation. J Appl Polym Sci 2017; 134(38): 45312.
[http://dx.doi.org/10.1002/app.45312]
[63]
Magalhães J, Crawford A, Hatton PV, Blanco FJ, Roman JS. Poly(2-ethyl-(2-pyrrolidone) methacrylate) and hyaluronic acid–based hydrogels for the engineering of a cartilage-like tissue using bovine articular chondrocytes. J Bioact Compat Polym 2014; 29(6): 545-59.
[http://dx.doi.org/10.1177/0883911514555609]
[64]
Barkat K, Ahmad M, Minhas MU, Khalid I, Malik NS. Chondroitin sulfate-based smart hydrogels for targeted delivery of oxaliplatin in colorectal cancer: Preparation, characterization and toxicity evaluation. Polym Bull 2020; 77(12): 6271-97.
[http://dx.doi.org/10.1007/s00289-019-03062-w]
[65]
Maspes A, Pizzetti F, Rossetti A, Makvandi P, Sitia G, Rossi F. Advances in bio-based polymers for colorectal cancer treatment: Hydrogels and nanoplatforms. Gels 2021; 7(1): 6.
[http://dx.doi.org/10.3390/gels7010006] [PMID: 33440908]
[66]
Ren Y, Li X, Han B, et al. Improved anti-colorectal carcinomatosis effect of tannic acid co-loaded with oxaliplatin in nanoparticles encapsulated in thermosensitive hydrogel. Eur J Pharm Sci 2019; 128: 279-89.
[http://dx.doi.org/10.1016/j.ejps.2018.12.007] [PMID: 30553061]
[67]
Virmani T, Kumar G, Sharma A, et al. Amelioration of cancer employing chitosan, its derivatives, and chitosan-based nanoparticles: Recent updates. Polymers 2023; 15(13): 2928.
[http://dx.doi.org/10.3390/polym15132928] [PMID: 37447573]
[68]
Jain A, Jain SK, Ganesh N, Barve J, Beg AM. Design and development of ligand-appended polysaccharidic nanoparticles for the delivery of oxaliplatin in colorectal cancer. Nanomedicine 2010; 6(1): 179-90.
[http://dx.doi.org/10.1016/j.nano.2009.03.002] [PMID: 19447205]
[69]
Shad PM, Karizi SZ, Javan RS, et al. Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line). Toxicol In Vitro 2020; 65: 104756.
[http://dx.doi.org/10.1016/j.tiv.2019.104756] [PMID: 31884114]
[70]
Farmanbar N, Mohseni S, Darroudi M. Green synthesis of chitosan-coated magnetic nanoparticles for drug delivery of oxaliplatin and irinotecan against colorectal cancer cells. Polym Bull 2022; 79(12): 10595-613.
[http://dx.doi.org/10.1007/s00289-021-04066-1]
[71]
Alavi N, Maghami P, Fani Pakdel A, Rezaei M, Avan A. The advance anticancer role of polymeric core-shell ZnO nanoparticles containing oxaliplatin in colorectal cancer. J Biochem Mol Toxicol 2023; 37(5): e23325.
[http://dx.doi.org/10.1002/jbt.23325] [PMID: 36843533]
[72]
Wang Y, Ma J, Qiu T, Tang M, Zhang X, Dong W. In vitro and in vivo combinatorial anticancer effects of oxaliplatin- and resveratrol-loaded N,O-carboxymethyl chitosan nanoparticles against colorectal cancer. Eur J Pharm Sci 2021; 163: 105864.
[http://dx.doi.org/10.1016/j.ejps.2021.105864] [PMID: 33965502]
[73]
Patil AS, Gadad AP, Hiremath RD, Joshi SD. Biocompatible tumor micro-environment responsive CS-g-PNIPAAm co-polymeric nanoparticles for targeted Oxaliplatin delivery. J Polym Res 2018; 25(3): 77.
[http://dx.doi.org/10.1007/s10965-018-1453-2]
[74]
Ullah K, Sohail M, Buabeid MA, et al. Pectin-based (LA-co- MAA) semi-IPNS as a potential biomaterial for colonic delivery of oxaliplatin. Int J Pharm 2019; 569: 118557.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118557] [PMID: 31377405]
[75]
Dutta RK, Sahu S. Development of oxaliplatin encapsulated in magnetic nanocarriers of pectin as a potential targeted drug delivery for cancer therapy. Results Pharma Sci 2012; 2: 38-45.
[http://dx.doi.org/10.1016/j.rinphs.2012.05.001] [PMID: 25755993]
[76]
Mirdamadian SZ, Varshosaz J, Minaiyan M, Taheri A. 3D printed tablets containing oxaliplatin loaded alginate nanoparticles for colon cancer targeted delivery. An in vitro/in vivo study. Int J Biol Macromol 2022; 205: 90-109.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.02.080] [PMID: 35182561]
[77]
Zhang D, Zhang J, Jiang K, et al. Preparation, characterisation and antitumour activity of β-, γ- and HP-β-cyclodextrin inclusion complexes of oxaliplatin. Spectrochim Acta A Mol Biomol Spectrosc 2016; 152: 501-8.
[http://dx.doi.org/10.1016/j.saa.2015.07.088] [PMID: 26254603]
[78]
Abukhadra MR, Mohamed AS, El-Sherbeeny AM, Nadeem A, Ahmad SF. Synthesis of exfoliate bentonite/cellulose nanocomposite as a delivery system for Oxaliplatin drug with enhanced loading and release properties; Cytotoxicity and pharmacokinetic studies. Chem Phys Lett 2020; 755: 137818.
[http://dx.doi.org/10.1016/j.cplett.2020.137818]
[79]
Tian L, Abukhadra MR, Mohamed AS, Nadeem A, Ahmad SF, Ibrahim KE. Insight into the loading and release properties of an exfoliated kaolinite/cellulose fiber (EXK/CF) composite as a carrier for oxaliplatin drug: Cytotoxicity and release kinetics. ACS Omega 2020; 5(30): 19165-73.
[http://dx.doi.org/10.1021/acsomega.0c02529] [PMID: 32775918]
[80]
Hosseinpour Moghadam N, Salehzadeh S, Rakhtshah J, Hosseinpour Moghadam A, Tanzadehpanah H, Saidijam M. Preparation of a highly stable drug carrier by efficient immobilization of human serum albumin (HSA) on drug-loaded magnetic iron oxide nanoparticles. Int J Biol Macromol 2019; 125: 931-40.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.143] [PMID: 30572041]
[81]
Kato R, Sato T, Iwamoto A, et al. Interaction of platinum agents, cisplatin, carboplatin and oxaliplatin against albumin in vivo rats and in vitro study using inductively coupled plasma-mass spectrometory. Biopharm Drug Dispos 2019; 40(7): 242-9.
[http://dx.doi.org/10.1002/bdd.2197] [PMID: 31219617]
[82]
Molaei P, Mahaki H, Manoochehri H, Tanzadehpanah H. Binding sites of anticancer drugs on human serum albumin (HSA): A review. Protein Pept Lett 2022; 29(8): 651-75.
[http://dx.doi.org/10.2174/0929866529666220426124834] [PMID: 35473541]
[83]
Tanzadehpanah H, Mahaki H, Moradi M, et al. The use of molecular docking and spectroscopic methods for investigation of the interaction between regorafenib with Human Serum Albumin (HSA) and calf thymus DNA (Ct-DNA) In the presence of different site markers. Protein Pept Lett 2021; 28(3): 290-303.
[http://dx.doi.org/10.2174/0929866527666200921164536] [PMID: 32957871]
[84]
Tanzadehpanah H, Mahaki H, Samadi P, et al. Anticancer activity, calf thymus DNA and human serum albumin binding properties of Farnesiferol C from Ferula pseudalliacea. J Biomol Struct Dyn 2019; 37(11): 2789-800.
[http://dx.doi.org/10.1080/07391102.2018.1497543] [PMID: 30052136]
[85]
Ziaaddini V, Saeidifar M, Eslami-Moghadam M, Saberi M, Mozafari M. Improvement of efficacy and decrement cytotoxicity of oxaliplatin anticancer drug using bovine serum albumin nanoparticles: synthesis, characterisation and release behaviour. IET Nanobiotechnol 2020; 14(1): 105-11.
[http://dx.doi.org/10.1049/iet-nbt.2019.0086] [PMID: 31935686]
[86]
Pichler V, Mayr J, Heffeter P, et al. Maleimide-functionalised platinum(iv) complexes as a synthetic platform for targeted drug delivery. Chem Commun 2013; 49(22): 2249-51.
[http://dx.doi.org/10.1039/c3cc39258a] [PMID: 23396381]
[87]
Schueffl H, Theiner S, Hermann G, et al. Albumin-targeting of an oxaliplatin-releasing platinum(IV) prodrug results in pronounced anticancer activity due to endocytotic drug uptake in vivo. Chem Sci 2021; 12(38): 12587-99.
[http://dx.doi.org/10.1039/D1SC03311E] [PMID: 34703544]
[88]
Mayr J, Heffeter P, Groza D, et al. An albumin-based tumor-targeted oxaliplatin prodrug with distinctly improved anticancer activity in vivo. Chem Sci 2017; 8(3): 2241-50.
[http://dx.doi.org/10.1039/C6SC03862J] [PMID: 28507680]
[89]
Tanzadehpanah H, Bahmani A, Hosseinpour Moghadam N, et al. Synthesis, anticancer activity, and β-lactoglobulin binding interactions of multitargeted kinase inhibitor sorafenib tosylate (SORt) using spectroscopic and molecular modelling approaches. Luminescence 2021; 36(1): 117-28.
[http://dx.doi.org/10.1002/bio.3929] [PMID: 32725773]
[90]
Wathoni N, Nguyen AN, Rusdin A, et al. Enteric-coated strategies in colorectal cancer nanoparticle drug delivery system. Drug Des Devel Ther 2020; 14: 4387-405.
[http://dx.doi.org/10.2147/DDDT.S273612] [PMID: 33116423]
[91]
Monti DM, Loreto D, Iacobucci I, et al. Protein-based delivery systems for anticancer metallodrugs: Structure and biological activity of the oxaliplatin/β-lactoglobulin adduct. Pharmaceuticals 2022; 15(4): 425.
[http://dx.doi.org/10.3390/ph15040425] [PMID: 35455422]
[92]
Ghalandari B, Divsalar A, Eslami-Moghadam M, et al. Probing of the interaction between β-lactoglobulin and the anticancer drug oxaliplatin. Appl Biochem Biotechnol 2015; 175(2): 974-87.
[http://dx.doi.org/10.1007/s12010-014-1341-0] [PMID: 25351630]
[93]
Almajidi YQ, Althomali RH, Maashi MS, et al. Nanocomposite of reduced nanographene oxide with β-lactoglobulin protein (rNGO/β-Lg) as a carrier of the anticancer drug oxaliplatin (Eloxatin). Diamond Related Materials 2023; 136: 110015.
[http://dx.doi.org/10.1016/j.diamond.2023.110015]
[94]
Ghalandari B, Divsalar A, Saboury AA, Parivar K. The new insight into oral drug delivery system based on metal drugs in colon cancer therapy through β-lactoglobulin/oxali-palladium nanocapsules. J Photochem Photobiol B 2014; 140: 255-65.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.08.003] [PMID: 25190224]
[95]
He H, Xiao H, Kuang H, et al. Synthesis of mesoporous silica nanoparticle–oxaliplatin conjugates for improved anticancer drug delivery. Colloids Surf B Biointerfaces 2014; 117: 75-81.
[http://dx.doi.org/10.1016/j.colsurfb.2014.02.014] [PMID: 24632033]
[96]
Marcelo GA, Montpeyo D, Novio F, Ruiz-Molina D, Lorenzo J, Oliveira E. Luminescent silicon-based nanocarrier for drug delivery in colorectal cancer cells. Dyes Pigments 2020; 181: 108393.
[http://dx.doi.org/10.1016/j.dyepig.2020.108393]
[97]
Yang H, Liu Y, Qiu Y, Ding M, Zhang Y. MiRNA-204-5p and oxaliplatin-loaded silica nanoparticles for enhanced tumor suppression effect in CD44-overexpressed colon adenocarcinoma. Int J Pharm 2019; 566: 585-93.
[http://dx.doi.org/10.1016/j.ijpharm.2019.06.020] [PMID: 31181310]
[98]
Pan L, He Q, Liu J, et al. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 2012; 134(13): 5722-5.
[http://dx.doi.org/10.1021/ja211035w] [PMID: 22420312]
[99]
Tang Y, Hu H, Zhang MG, et al. An aptamer-targeting photoresponsive drug delivery system using “off–on” graphene oxide wrapped mesoporous silica nanoparticles. Nanoscale 2015; 7(14): 6304-10.
[http://dx.doi.org/10.1039/C4NR07493A] [PMID: 25782595]
[100]
Zhang Q, Liu F, Nguyen KT, et al. Multifunctional mesoporous silica nanoparticles for cancer-targeted and controlled drug delivery. Adv Funct Mater 2012; 22(24): 5144-56.
[http://dx.doi.org/10.1002/adfm.201201316]
[101]
Hoang Thi TT, Cao VD, Nguyen TNQ, Hoang DT, Ngo VC, Nguyen DH. Functionalized mesoporous silica nanoparticles and biomedical applications. Mater Sci Eng C 2019; 99: 631-56.
[http://dx.doi.org/10.1016/j.msec.2019.01.129] [PMID: 30889738]
[102]
Eslami Moghadam M, Sadeghi M, Mansouri-Torshizi H, Saidifar M. High cancer selectivity and improving drug release from mesoporous silica nanoparticles in the presence of human serum albumin in cisplatin, carboplatin, oxaliplatin, and oxalipalladium treatment. Eur J Pharm Sci 2023; 187: 106477.
[http://dx.doi.org/10.1016/j.ejps.2023.106477] [PMID: 37225004]
[103]
Martino E, D’Onofrio N, Anastasio C, et al. MicroRNA-nanoparticles against cancer: Opportunities and challenges for personalized medicine. Mol Ther Nucleic Acids 2023; 32: 371-84.
[http://dx.doi.org/10.1016/j.omtn.2023.03.021] [PMID: 37128277]
[104]
Zhang PJ, Liu MD, Fan FY, Liu KX. A study on mesoporous silica loaded with novel photosensitizers HCE6 and oxaliplatin for the treatment of cholangiocarcinoma. Front Oncol 2021; 11: 665182.
[http://dx.doi.org/10.3389/fonc.2021.665182] [PMID: 34268112]
[105]
Tabasi H, Hamed Mosavian MT, Sabouri Z, Khazaei M, Darroudi M. pH-responsive and CD44-targeting by Fe3O4/MSNs-NH2 nanocarriers for Oxaliplatin loading and colon cancer treatment. Inorg Chem Commun 2021; 125: 108430.
[http://dx.doi.org/10.1016/j.inoche.2020.108430]
[106]
You Y, Hu H, He L, Chen T. Differential effects of polymer-surface decoration on drug delivery, cellular retention, and action mechanisms of functionalized mesoporous silica nanoparticles. Chem Asian J 2015; 10(12): 2744-54.
[http://dx.doi.org/10.1002/asia.201500769] [PMID: 26248202]
[107]
Yan J, Hanif S, Zhang D, et al. Arsenic prodrug-mediated tumor microenvironment modulation platform for synergetic glioblastoma therapy. ACS Appl Mater Interfaces 2022; 14(32): 36487-502.
[http://dx.doi.org/10.1021/acsami.2c12076] [PMID: 35921662]
[108]
Yonezawa T. Preparation of metal nanoparticles and their application for materials. Nanoparticle Technology Handbook. Elsevier 2018; pp. 829-37.
[109]
Yafout M, Ousaid A, Khayati Y, El Otmani IS. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Sci Am 2021; 11: e00685.
[110]
Mohd-Zahid MH, Mohamud R, Abdullah CAC, et al. Colorectal cancer stem cells: A review of targeted drug delivery by gold nanoparticles. RSC Advances 2020; 10(2): 973-85.
[http://dx.doi.org/10.1039/C9RA08192E]
[111]
Tummala S, Kumar MNS, Pindiprolu SK. Improved anti-tumor activity of oxaliplatin by encapsulating in anti-DR5 targeted gold nanoparticles. Drug Deliv 2016; 23(9): 3505-19.
[http://dx.doi.org/10.1080/10717544.2016.1199606] [PMID: 27295176]
[112]
Brown SD, Nativo P, Smith JA, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 2010; 132(13): 4678-84.
[http://dx.doi.org/10.1021/ja908117a] [PMID: 20225865]
[113]
Gholami M, Hekmat A, Khazaei M, Darroudi M. OXA- CuS@UiO-66-NH2 as a drug delivery system for Oxaliplatin to colorectal cancer cells. J Mater Sci Mater Med 2022; 33(3): 26.
[http://dx.doi.org/10.1007/s10856-021-06574-y] [PMID: 35226206]
[114]
Rasouli N, Shahbazi-Gahrouei D, Hematti S, et al. Assessment of oxaliplatin-loaded iodine nanoparticles for chemoradiotherapy of human colorectal cancer (HT-29) cells. Polymers (Basel) 2022; 14(19): 4131.
[http://dx.doi.org/10.3390/polym14194131] [PMID: 36236079]
[115]
Hashemzadeh A, Amerizadeh F, Asgharzadeh F, et al. Magnetic amine-functionalized uio-66 for oxaliplatin delivery to colon cancer cells: In vitro studies. J Cluster Sci 2022; 33(5): 2345-61.
[http://dx.doi.org/10.1007/s10876-021-02158-6]
[116]
Gogineni VR, Maddirela DR, Park W, et al. Localized and triggered release of oxaliplatin for the treatment of colorectal liver metastasis. J Cancer 2020; 11(23): 6982-91.
[http://dx.doi.org/10.7150/jca.48528] [PMID: 33123288]
[117]
Jabalera Y, Garcia-Pinel B, Ortiz R, et al. Oxaliplatin–biomimetic magnetic nanoparticle assemblies for colon cancer-targeted chemotherapy: An in vitro study. Pharmaceutics 2019; 11(8): 395.
[http://dx.doi.org/10.3390/pharmaceutics11080395] [PMID: 31390773]
[118]
Garcia-Pinel B, Jabalera Y, Ortiz R, et al. Biomimetic magnetoliposomes as oxaliplatin nanocarriers: In vitro study for potential application in colon cancer. Pharmaceutics 2020; 12(6): 589.
[http://dx.doi.org/10.3390/pharmaceutics12060589] [PMID: 32599905]
[119]
McCarthy B, Singh R, Levi-Polyachenko N. Oxaliplatin-resistant colorectal cancer models for nanoparticle hyperthermia. Int J Hyperthermia 2021; 38(1): 152-64.
[http://dx.doi.org/10.1080/02656736.2021.1876253] [PMID: 33576281]
[120]
Hosseini SM, Mohammadnejad J, Salamat S, Beiram Zadeh Z, Tanhaei M, Ramakrishna S. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: A review. Mater Today Chem 2023; 29: 101400.
[http://dx.doi.org/10.1016/j.mtchem.2023.101400]
[121]
Pardeshi SR, Nikam A, Chandak P, Mandale V, Naik JB, Giram PS. Recent advances in PLGA based nanocarriers for drug delivery system: A state of the art review. Int J Polym Mater 2023; 72(1): 49-78.
[http://dx.doi.org/10.1080/00914037.2021.1985495]
[122]
Nikzamir M, Hanifehpour Y, Akbarzadeh A, Panahi Y. Applications of dendrimers in nanomedicine and drug delivery: A review. J Inorg Organomet Polym Mater 2021; 31(6): 2246-61.
[http://dx.doi.org/10.1007/s10904-021-01925-2]
[123]
Nabavizadeh F, Fanaei H, Imani A, et al. Evaluation of nanocarrier targeted drug delivery of Capecitabine-PAMAM dendrimer complex in a mice colorectal cancer model. Acta Med Iran 2016; 54(8): 485-93.
[PMID: 27701718]
[124]
Nguyen DTD, Bach LG, Nguyen TH, et al. Preparation and characterization of oxaliplatin drug delivery vehicle based on PEGylated half-generation PAMAM dendrimer. J Polym Res 2019; 26(5): 116.
[http://dx.doi.org/10.1007/s10965-019-1779-4]
[125]
Nazlı H, Gedik G. In-vitro evaluation of dendrimeric formulation of oxaliplatin. Pharm Dev Technol 2021; 26(7): 750-64.
[http://dx.doi.org/10.1080/10837450.2021.1944205] [PMID: 34154500]
[126]
Pereira ED, Cerruti R, Fernandes E, et al. Influence of PLGA and PLGA-PEG on the dissolution profile of oxaliplatin. Polímeros 2016; 26(2): 137-43.
[http://dx.doi.org/10.1590/0104-1428.2323]
[127]
Zhang J, Wang X, Liu T, Liu S, Jing X. Antitumor activity of electrospun polylactide nanofibers loaded with 5-fluorouracil and oxaliplatin against colorectal cancer. Drug Deliv 2016; 23(3): 784-90.
[http://dx.doi.org/10.3109/10717544.2014.916768] [PMID: 24870201]
[128]
Barkat K, Ahmad M, Usman Minhas M, Khalid I, Nasir B. Development and characterization of PH -responsive polyethylene glycol-co-poly(methacrylic acid) polymeric network system for colon target delivery of oxaliplatin: Its acute oral toxicity study. Adv Polym Technol 2018; 37(6): 1806-22.
[http://dx.doi.org/10.1002/adv.21840]
[129]
Kadina YA, Razuvaeva EV, Streltsov DR, et al. Poly(Ethylene Glycol)-b-Poly(D, L-Lactide) nanoparticles as potential carriers for anticancer drug oxaliplatin. Molecules 2021; 26(3): 602.
[http://dx.doi.org/10.3390/molecules26030602] [PMID: 33498932]
[130]
Zumaya ALV, Rimpelová S, Štějdířová M, Ulbrich P, Vilčáková J, Hassouna F. Antibody conjugated PLGA nanocarriers and superparmagnetic nanoparticles for targeted delivery of oxaliplatin to cells from colorectal carcinoma. Int J Mol Sci 2022; 23(3): 1200.
[http://dx.doi.org/10.3390/ijms23031200] [PMID: 35163122]
[131]
Abuzar SM, Ahn JH, Park KS, Park EJ, Baik SH, Hwang SJ. Pharmacokinetic profile and anti-adhesive effect of oxaliplatin-PLGA microparticle-loaded hydrogels in rats for colorectal cancer treatment. Pharmaceutics 2019; 11(8): 392.
[http://dx.doi.org/10.3390/pharmaceutics11080392] [PMID: 31387217]
[132]
Li JQ, Wang SL, Xu F, Liu ZY, Li R. Therapeutic effectiveness of slow-release PLGA-oxaliplatin microsphere on human colorectal tumor-bearing mice. Anticancer Drugs 2010; 21(6): 600-8.
[http://dx.doi.org/10.1097/CAD.0b013e3283393004] [PMID: 20527722]
[133]
Handali S, Ramezani Z, Moghimipour E, Rezaei M, Dorkoosh FA. A novel method for the simultaneous determination of 5-fluorouracil and oxaliplatin in new biodegradable PHBV/PLGA nanoparticles. J Indian Chem Soc 2019; 16: 609-15.
[134]
C de S L Oliveira AL, Araújo Júnior RF, Gomes de Carvalho T, et al. Effect of oxaliplatin-loaded poly (d, l-Lactide-co-Glycolic Acid)(PLGA) nanoparticles combined with retinoic acid and cholesterol on apoptosis, drug resistance, and metastasis factors of colorectal cancer. Pharmaceutics 2020; 12(2): 193.
[http://dx.doi.org/10.3390/pharmaceutics12020193] [PMID: 32102251]
[135]
Park J, Choi Y, Chang H, Um W, Ryu JH, Kwon IC. Alliance with EPR effect: Combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics 2019; 9(26): 8073-90.
[http://dx.doi.org/10.7150/thno.37198] [PMID: 31754382]
[136]
Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm 2009; 71(3): 409-19.
[http://dx.doi.org/10.1016/j.ejpb.2008.11.010] [PMID: 19070661]
[137]
Anitha A, Maya S, Sivaram AJ, Mony U, Jayakumar R. Combinatorial nanomedicines for colon cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(1): 151-9.
[http://dx.doi.org/10.1002/wnan.1353] [PMID: 26061225]
[138]
Golombek SK, May JN, Theek B, et al. Tumor targeting via EPR: Strategies to enhance patient responses. Adv Drug Deliv Rev 2018; 130: 17-38.
[http://dx.doi.org/10.1016/j.addr.2018.07.007] [PMID: 30009886]
[139]
Nichols JW, Bae YH. EPR: Evidence and fallacy. J Control Release 2014; 190: 451-64.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.057] [PMID: 24794900]
[140]
Hu Y, He Y, Ji J, Zheng S, Cheng Y. Tumor targeted curcumin delivery by folate-modified MPEG-PCL self-assembly micelles for colorectal cancer therapy. Int J Nanomedicine 2020; 15: 1239-52.
[http://dx.doi.org/10.2147/IJN.S232777] [PMID: 32110020]
[141]
Wang H, Yu J, Lu X, He X. Nanoparticle systems reduce systemic toxicity in cancer treatment. Nanomedicine 2016; 11(2): 103-6.
[http://dx.doi.org/10.2217/nnm.15.166] [PMID: 26653177]
[142]
Liu JM, Zhang DD, Fang GZ, Wang S. Erythrocyte membrane bioinspired near-infrared persistent luminescence nanocarriers for in vivo long-circulating bioimaging and drug delivery. Biomaterials 2018; 165: 39-47.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.042] [PMID: 29501968]
[143]
Wang ZH, Liu JM, Zhao N, et al. Cancer cell macrophage membrane camouflaged persistent luminescent nanoparticles for imaging-guided photothermal therapy of colorectal cancer. ACS Appl Nano Mater 2020; 3(7): 7105-18.
[http://dx.doi.org/10.1021/acsanm.0c01433]
[144]
Zhang Q, Dehaini D, Zhang Y, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol 2018; 13(12): 1182-90.
[http://dx.doi.org/10.1038/s41565-018-0254-4] [PMID: 30177807]
[145]
Kumar B, Kulanthaivel S, Mondal A, et al. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping. Colloids Surf B Biointerfaces 2017; 150: 352-61.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.049] [PMID: 27847225]
[146]
Samprasit W, Opanasopit P, Chamsai B. Mucoadhesive chitosan and thiolated chitosan nanoparticles containing alpha mangostin for possible Colon-targeted delivery. Pharm Dev Technol 2021; 26(3): 362-72.
[http://dx.doi.org/10.1080/10837450.2021.1873370] [PMID: 33423571]
[147]
Taymouri S, Ahmadi Z, Mirian M, Tavakoli N. Simvastatin nanosuspensions prepared using a combination of pH-sensitive and timed-release approaches for potential treatment of colorectal cancer. Pharm Dev Technol 2021; 26(3): 335-48.
[http://dx.doi.org/10.1080/10837450.2021.1872086] [PMID: 33430677]
[148]
Abid M, Naveed M, Azeem I, Faisal A, Faizan Nazar M, Yameen B. Colon specific enzyme responsive oligoester crosslinked dextran nanoparticles for controlled release of 5-fluorouracil. Int J Pharm 2020; 586: 119605.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119605] [PMID: 32650112]
[149]
Pandey S, Shaikh F, Gupta A, Tripathi P, Yadav JS. A recent update: Solid lipid nanoparticles for effective drug delivery. Adv Pharm Bull 2022; 12(1): 17-33.
[PMID: 35517874]
[150]
Dymek M, Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Adv Colloid Interface Sci 2022; 309: 102757.
[http://dx.doi.org/10.1016/j.cis.2022.102757] [PMID: 36152374]
[151]
Chen J, Hu L. Nanoscale delivery system for nutraceuticals: Preparation, application, characterization, safety, and future trends. Food Eng Rev 2020; 12(1): 14-31.
[http://dx.doi.org/10.1007/s12393-019-09208-w]
[152]
Kianfar E. Protein nanoparticles in drug delivery: Animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnology 2021; 19(1): 159.
[http://dx.doi.org/10.1186/s12951-021-00896-3] [PMID: 34051806]
[153]
Pieła A, Żymańczyk-Duda E, Brzezińska-Rodak M, et al. Biogenic synthesis of silica nanoparticles from corn cobs husks. Dependence of the productivity on the method of raw material processing. Bioorg Chem 2020; 99: 103773.
[http://dx.doi.org/10.1016/j.bioorg.2020.103773] [PMID: 32217373]
[154]
Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol 2019; 53: 101174.
[http://dx.doi.org/10.1016/j.jddst.2019.101174]
[155]
Ghasemiyeh P, Mohammadi-Samani S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages. Drug Des Devel Ther 2020; 14: 3271-89.
[http://dx.doi.org/10.2147/DDDT.S264648] [PMID: 32848366]
[156]
Damasco JA, Ravi S, Perez JD, Hagaman DE, Melancon MP. Understanding nanoparticle toxicity to direct a safe-by-design approach in cancer nanomedicine. Nanomaterials 2020; 10(11): 2186.
[http://dx.doi.org/10.3390/nano10112186] [PMID: 33147800]
[157]
Ajdary M, Keyhanfar F, Moosavi MA, Shabani R, Mehdizadeh M, Varma RS. Potential toxicity of nanoparticles on the reproductive system animal models: A review. J Reprod Immunol 2021; 148: 103384.
[http://dx.doi.org/10.1016/j.jri.2021.103384] [PMID: 34583090]
[158]
Singh N, Jenkins GJS, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 2010; 1(1): 5358.
[http://dx.doi.org/10.3402/nano.v1i0.5358] [PMID: 22110864]
[159]
Manoochehri H, Jalali A, Tanzadehpanah H, Taherkhani A, Najafi R. Aptamer-conjugated nanoliposomes containing COL1A1 siRNA sensitize CRC cells to conventional chemotherapeutic drugs. Colloids Surf B Biointerfaces 2022; 218: 112714.
[http://dx.doi.org/10.1016/j.colsurfb.2022.112714] [PMID: 35905589]
[160]
Yang C, Liu HZ, Fu ZX, Lu WD. Oxaliplatin long-circulating liposomes improved therapeutic index of colorectal carcinoma. BMC Biotechnol 2011; 11(1): 21.
[http://dx.doi.org/10.1186/1472-6750-11-21] [PMID: 21401960]