Abstract
The exploration of nanocrystal technology is currently receiving significant attention in
various fields, including therapeutic formulation, clinical formulation, in-vivo and in-vitro correlation
research, and related investigations. The domain of nanocrystals in pharmaceutical delivery has received
significant interest as a potential solution for the difficulties associated with medications that
have low solubility. The nanocrystals demonstrate promise in improving solubility and bioavailability,
presenting a potential resolution to significant challenges. Significantly, nanocrystals have exhibited
efficacy in the context of oral administration, showcasing prompt absorption due to their quick
breakdown, hence fitting with the requirements of medications that necessitate fast commencement
of action. In addition, the adaptability of drug nanocrystals encompasses several methods of administration,
including oral, parenteral, ophthalmic, cutaneous, pulmonary, and targeted delivery modalities.
The observed consistency can be ascribed to the increased solubility of nanocrystals of the medicine,
which effectively counteracts the influence of food on the absorption of the drug. Surface modification
tactics have a significant influence on insoluble medicines by enhancing hydrophilicity and
reducing plasma protein adsorption on the crystal surface. The surface properties of nanocrystals are
modified through the utilization of specific surfactants and polymers, which are subsequently incorporated
into polymer solutions via high-pressure homogenization procedures. This article encompasses
an examination of the drug distribution mechanism, the nanocrystal formulation technology,
the therapeutic applications, the potential future developments, and the challenges associated with the
solubility and bioavailability of tailored nanocrystals, as discussed in this article. Consequently, it
possesses the capacity to provide guidance for future investigations pertaining to nanocrystal technology.
Graphical Abstract
[2]
Joshi K, Chandra A, Jain K. Talegaonkar SJPn. Nanocrystalization: an emerging technology to enhance the bioavailability of poorly soluble drugs. Pharm Nanotechnol 2019; 7(4): 259-78.
[8]
Zhou Y, Du J, Wang L, Wang YJ. State of the art of nanocrystals technology for delivery of poorly soluble drugs. J Nanopart Res 2016; 18(9): 257.
[10]
Shegokar R, Müller RHJ. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm 2010; 399(1-2): 129-39.
[11]
Mohammad IS, Hu H, Yin L, He WJ. Drug nanocrystals: fabrication methods and promising therapeutic applications. Int J Pharm 2019; 562: 187-202.
[12]
Sharma OP, Patel V, Mehta TJ. Nanocrystal for ocular drug delivery: hope or hype. Drug Deliv Transl Res 2016; 6(4): 399-413.
[14]
Bansal S, Bansal M, Kumria RJ. Nanocrystals: current strategies and trends. Int J Res Pharm Biomed Sci 2012; 4: 10.
[15]
Pawar VK, Singh Y, Meher JG, Gupta S, Chourasia MKJ. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery. J Control Release 2014; 183: 51-66.
[16]
Sawant SV, Kadam D, Jadhav D, Sankpal SVJIJSID. Drug nanocrystals: novel technique for delivery of poorly soluble drugs. Int J Sci Res Innov 2011; 1: 1-15.
[17]
Zhou Y, Du J, Wang L, Wang YJ. Nanocrystals technology for improving bioavailability of poorly soluble drugs: a mini-review. J Nanosci Nanotechnol 2017; 17(1): 18-28.
[18]
Sun B, Yeo Y. Nanocrystals for the parenteral delivery of poorly water-soluble drugs. Curr Opin Solid State Mater Sci 2012; 16(6): 295-301.
[21]
Bhuyan B, Rajak P, Nath L. Nanocrystal technology and drug delivery. World J Pharm Res 2014; 3: 2940-71.
[27]
Shah R, Eldridge D, Palombo E, Harding I. Optimisation and stability assessment of solid lipid nanoparticles using particle size and zeta potential. J Physiol Sci 2014; 25(1)
[40]
Gülsün T, Gürsoy RN, Öner L. Nanocrystal technology for oral delivery of poorly water-soluble drugs. FABAD Journal of Pharmaceutical Sciences 2009; 34(1): 55.
[42]
Shankar SJ, Jaswanth Gowda BH, Akshatha RS, Metikurki B, Rehamathulla M. A review on the role of nanocrystals and nanosuspensions in drug delivery systems. Int J Appl Pharm 2020; pp. 10-6.
[46]
Mu RH. Manufacturing of nanoparticles by milling and homogenization techniques. Nanoparticle technology for drug delivery 2006; 45-76.
[49]
Dhiman S, Singh TG, Asthana A, Arora S, Jindal M. Solid lipid nanoparticles: a current approach to new drug-delivery systems in nanotechnology. Future Science Ltd. 2013.