Localized Delivery of Bioactives using Structured Liposomal Gels

Page: [3206 - 3220] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Liposomes have gained a lot of interest for drug delivery applications, and some of these preparations have been commercialized. These are formulated with biocompatible components and can be used for delivering a wide range of payloads differing in aqueous solubility and molecular weight. Liposome-based delivery approaches are limited mainly by two factors: (a) poor dispersion stability, and (b) pre-mature leakage of payloads. In this review, we have discussed the stabilization of liposomal vesicles by their entrapment in hydrogels. Studies reveal that such hydrogels can maintain the structural integrity of liposomes. Release of liposomes from the hydrogel network can be modulated through careful screening of matrix former and degree of its cross-linking. Accordingly, we have reviewed the approaches of stabilizing liposomal vesicles through entrapment in hydrogels. Application of liposome-embedded hydrogels has been reviewed in context of localized drug delivery. Our discussion is focussed on the delivery of bioactives to the skin. Such an approach appears alluring from the standpoint of minimizing the undesirable distribution of payload(s) the systemic circulation and off-target sites.

[1]
Nkanga CI, Krause RW, Noundou XS, Walker RB. Preparation and characterization of isoniazid-loaded crude soybean lecithin liposomes. Int J Pharm 2017; 526(1-2): 466-73.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.074] [PMID: 28461265]
[2]
Goldmann O, Cern A, Müsken M, et al. Liposomal mupirocin holds promise for systemic treatment of invasive Staphylococcus aureus infections. J Control Release 2019; 316: 292-301.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.007] [PMID: 31715276]
[3]
Bavli Y, Winkler I, Chen BM, et al. Doxebo (doxorubicin-free Doxil-like liposomes) is safe to use as a pre-treatment to prevent infusion reactions to PEGylated nanodrugs. J Control Release 2019; 306: 138-48.
[http://dx.doi.org/10.1016/j.jconrel.2019.06.007] [PMID: 31176656]
[4]
Guillot AJ, Merino-Gutiérrez P, Bocchino A, et al. Exploration of microneedle-assisted skin delivery of cyanocobalamin formulated in ultraflexible lipid vesicles. Eur J Pharm Biopharm 2022; 177: 184-98.
[http://dx.doi.org/10.1016/j.ejpb.2022.06.015] [PMID: 35787430]
[5]
Charankumar K, Bagasariya D, Jain N, et al. Quality by design (QbD) abetted development of pioglitazone incorporated liposomes-loaded hyaluronic acid-based in situ hydrogel for the management of melanoma. J Drug Deliv Sci Technol 2023; 84: 104453.
[http://dx.doi.org/10.1016/j.jddst.2023.104453]
[6]
Lamparelli EP, Ciardulli MC, Scala P, et al. Lipid nano-vesicles for thyroid hormone encapsulation: A comparison between different fabrication technologies, drug loading, and an in vitro delivery to human tendon stem/progenitor cells in 2D and 3D culture. Int J Pharm 2022; 624: 122007.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122007] [PMID: 35820518]
[7]
Yu Y, Anthony SM, Bae SC, Granick S. How liposomes diffuse in concentrated liposome suspensions. J Phys Chem B 2011; 115(12): 2748-53.
[http://dx.doi.org/10.1021/jp109146s] [PMID: 21384815]
[8]
Liu Y, Liu J. Growing a nucleotide/lanthanide coordination polymer shell on liposomes. Langmuir 2019; 35(34): 11217-24.
[http://dx.doi.org/10.1021/acs.langmuir.9b00677] [PMID: 31379173]
[9]
Khan MS, Mohapatra S, Gupta V, et al. Potential of lipid-based nanocarriers against two major barriers to drug delivery and blood brain barrier. Membranes 2023; 13(3): 343.
[http://dx.doi.org/10.3390/membranes13030343] [PMID: 36984730]
[10]
MacKinnon N, Guérin G, Liu B, Gradinaru CC, Rubinstein JL, Macdonald PM. Triggered instability of liposomes bound to hydrophobically modified core-shell PNIPAM hydrogel beads. Langmuir 2010; 26(2): 1081-9.
[http://dx.doi.org/10.1021/la902423v] [PMID: 19754070]
[11]
Furlani F, Rossi A, Grimaudo MA, et al. Controlled liposome delivery from chitosan-based thermosensitive hydrogel for regenerative medicine. Int J Mol Sci 2022; 23(2): 894.
[http://dx.doi.org/10.3390/ijms23020894] [PMID: 35055097]
[12]
Reginald-Opara JN, Tang M, Svirskis D, Chamley L, Wu Z. The role of glutathione conjugation on the transcellular transport process of PEGylated liposomes across the blood brain barrier. Int J Pharm 2022; 626: 122152.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122152] [PMID: 36055442]
[13]
Chen H, Pan H, Li P, et al. The potential use of novel chitosan- coated deformable liposomes in an ocular drug delivery system. Colloids Surf B Biointerfaces 2016; 143: 455-62.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.061] [PMID: 27037783]
[14]
Kumar D, Suna A, Ray D, Aswal VK, Bahadur P, Tiwari S. Structural changes in liposomal vesicles in association with sodium taurodeoxycholate. AAPS PharmSciTech 2023; 24(4): 95.
[http://dx.doi.org/10.1208/s12249-023-02550-7] [PMID: 37012522]
[15]
Elsayed MMA, Abdallah OY, Naggar VF, Khalafallah NM. Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery. Int J Pharm 2006; 322(1-2): 60-6.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.027] [PMID: 16806755]
[16]
Maestrelli F, González-Rodríguez ML, Rabasco AM, Ghelardini C, Mura P. New “drug-in cyclodextrin-in deformable liposomes” formulations to improve the therapeutic efficacy of local anaesthetics. Int J Pharm 2010; 395(1-2): 222-31.
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.046] [PMID: 20594944]
[17]
Laomeephol C, Ferreira H, Kanokpanont S, Neves NM, Kobayashi H, Damrongsakkul S. Dual-functional liposomes for curcumin delivery and accelerating silk fibroin hydrogel formation. Int J Pharm 2020; 589: 119844.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119844] [PMID: 32905796]
[18]
Tan C, Xia S, Xue J, Xie J, Feng B, Zhang X. Liposomes as vehicles for lutein: Preparation, stability, liposomal membrane dynamics, and structure. J Agric Food Chem 2013; 61(34): 8175-84.
[http://dx.doi.org/10.1021/jf402085f] [PMID: 23906192]
[19]
Petralito S, Paolicelli P, Nardoni M, et al. Gelation of the internal core of liposomes as a strategy for stabilization and modified drug delivery II. Theoretical analysis and modelling of in-vitro release experiments. Int J Pharm 2020; 585: 119471.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119471] [PMID: 32479896]
[20]
Pitorre M, Gondé H, Haury C, et al. Recent advances in nanocarrier-loaded gels: Which drug delivery technologies against which diseases? J Control Release 2017; 266: 140-55.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.031] [PMID: 28951319]
[21]
Li Y, Xu F, Li X, et al. Development of curcumin-loaded composite phospholipid ethosomes for enhanced skin permeability and vesicle stability. Int J Pharm 2021; 592: 119936.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119936] [PMID: 33038455]
[22]
Liu L, Xiang Y, Wang Z, et al. Adhesive liposomes loaded onto an injectable, self-healing and antibacterial hydrogel for promoting bone reconstruction. NPG Asia Mater 2019; 11(1): 81.
[http://dx.doi.org/10.1038/s41427-019-0185-z]
[23]
Li D, An X, Mu Y. A liposomal hydrogel with enzyme triggered release for infected wound. Chem Phys Lipids 2019; 223: 104783.
[http://dx.doi.org/10.1016/j.chemphyslip.2019.104783] [PMID: 31233714]
[24]
Zhang J, Yan J, Pageni P, et al. Anion-responsive metallopolymer hydrogels for healthcare applications. Sci Rep 2015; 5(1): 11914.
[http://dx.doi.org/10.1038/srep11914] [PMID: 26202475]
[25]
Ciobanu BC, Cadinoiu AN, Popa M, Desbrières J, Peptu CA. Modulated release from liposomes entrapped in chitosan/gelatin hydrogels. Mater Sci Eng C 2014; 43: 383-91.
[http://dx.doi.org/10.1016/j.msec.2014.07.036] [PMID: 25175227]
[26]
Hurler J, Berg OA, Skar M, Conradi AH, Johnsen PJ, Škalko-Basnet N. Improved burns therapy: Liposomes-in-hydrogel delivery system for mupirocin. J Pharm Sci 2012; 101(10): 3906-15.
[http://dx.doi.org/10.1002/jps.23260] [PMID: 22777770]
[27]
Zhang ZJ, Osmałek T, Michniak-Kohn B. Deformable liposomal hydrogel for dermal and transdermal delivery of meloxicam. Int J Nanomedicine 2020; 15: 9319-35.
[http://dx.doi.org/10.2147/IJN.S274954] [PMID: 33262590]
[28]
Li R, Lin Z, Zhang Q, et al. Injectable and in situ-formable thiolated chitosan-coated liposomal hydrogels as curcumin carriers for prevention of in vivo breast cancer recurrence. ACS Appl Mater Interfaces 2020; 12(15): 17936-48.
[http://dx.doi.org/10.1021/acsami.9b21528] [PMID: 32208630]
[29]
An YH, Lee J, Son DU, et al. Facilitated transdermal drug delivery using nanocarriers-embedded electroconductive hydrogel coupled with reverse electrodialysis-driven iontophoresis. ACS Nano 2020; 14(4): 4523-35.
[http://dx.doi.org/10.1021/acsnano.0c00007] [PMID: 32191436]
[30]
Hua S. Comparison of in vitro dialysis release methods of loperamide-encapsulated liposomal gel for topical drug delivery. Int J Nanomedicine 2014; 9: 735-44.
[http://dx.doi.org/10.2147/IJN.S55805] [PMID: 24511230]
[31]
Fernández-García R, Statts L, de Jesus JA, et al. Ultradeformable lipid vesicles localize amphotericin B in the dermis for the treatment of infectious skin diseases. ACS Infect Dis 2020; 6(10): 2647-60.
[http://dx.doi.org/10.1021/acsinfecdis.0c00293] [PMID: 32810398]
[32]
Tian L, Wang X, Qi J, et al. Improvement of the surface wettability of silicone hydrogel films by self-assembled hydroxypropyltrimethyl ammonium chloride chitosan mixed colloids. Colloids Surf A Physicochem Eng Asp 2018; 558: 422-8.
[http://dx.doi.org/10.1016/j.colsurfa.2018.08.073]
[33]
Petralito S, Paolicelli P, Nardoni M, et al. Gelation of the internal core of liposomes as a strategy for stabilization and modified drug delivery I. Physico-chemistry study. Int J Pharm 2020; 585: 119467.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119467] [PMID: 32497730]
[34]
Tiwari S, Goyal AK, Mishra N, et al. Development and characterization of novel carrier gel core liposomes based transmission blocking malaria vaccine. J Control Release 2009; 140(2): 157-65.
[http://dx.doi.org/10.1016/j.jconrel.2009.08.004] [PMID: 19686788]
[35]
Torres-Martínez A, Angulo-Pachón CA, Galindo F, Miravet JF. Liposome-enveloped molecular nanogels. Langmuir 2019; 35(41): 13375-81.
[http://dx.doi.org/10.1021/acs.langmuir.9b02282] [PMID: 31549515]
[36]
Kawar D, Abdelkader H. Hyaluronic acid gel-core liposomes (hyaluosomes) enhance skin permeation of ketoprofen. Pharm Dev Technol 2019; 24(8): 947-53.
[http://dx.doi.org/10.1080/10837450.2019.1572761] [PMID: 30676142]
[37]
Friggeri A, Feringa BL, van Esch J. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator. J Control Release 2004; 97(2): 241-8.
[http://dx.doi.org/10.1016/j.jconrel.2004.03.012] [PMID: 15196751]
[38]
Heeres A, van der Pol C, Stuart M, Friggeri A, Feringa BL, van Esch J. Orthogonal self-assembly of low molecular weight hydrogelators and surfactants. J Am Chem Soc 2003; 125(47): 14252-3.
[http://dx.doi.org/10.1021/ja036954h] [PMID: 14624554]
[39]
Mandegani F, Zali-Boeini H, Khayat Z, Braun JD, Herbert DE. Low-molecular-weight gelators as dual-responsive chemosensors for the naked-eye detection of mercury (II) and copper (II) ions and molecular logic gates. ChemistrySelect 2020; 5(2): 886-93.
[http://dx.doi.org/10.1002/slct.201903436]
[40]
Cheng CY, Wang TY, Tung SH. Biological hydrogels formed by swollen multilamellar liposomes. Langmuir 2015; 31(49): 13312-20.
[http://dx.doi.org/10.1021/acs.langmuir.5b03267] [PMID: 26574777]
[41]
Štaka I, Cadete A, Surikutchi BT, et al. A novel low molecular weight nanocomposite hydrogel formulation for intra-tumoural delivery of anti-cancer drugs. Int J Pharm 2019; 565: 151-61.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.070] [PMID: 31029659]
[42]
Boekhoven J, Brizard AM, Stuart MCA, et al. Bio-inspired supramolecular materials by orthogonal self-assembly of hydrogelators and phospholipids. Chem Sci 2016; 7(9): 6021-31.
[http://dx.doi.org/10.1039/C6SC01021K] [PMID: 30034743]
[43]
Raymond DM, Abraham BL, Fujita T, et al. Low-molecular-weight supramolecular hydrogels for sustained and localized in vivo drug delivery. ACS Appl Bio Mater 2019; 2(5): 2116-24.
[http://dx.doi.org/10.1021/acsabm.9b00125] [PMID: 34136760]
[44]
Khan MA, Ghosh S, Bera S, et al. Crystallographic elucidation of stimuli-controlled molecular rotation for a reversible sol–gel transformation. J Org Chem 2020; 85(6): 4019-25.
[http://dx.doi.org/10.1021/acs.joc.9b02944] [PMID: 32077292]
[45]
Boekhoven J, Koot M, Wezendonk TA, Eelkema R, van Esch JH. A self-assembled delivery platform with post-production tunable release rate. J Am Chem Soc 2012; 134(31): 12908-11.
[http://dx.doi.org/10.1021/ja3051876] [PMID: 22823592]
[46]
Wang Y, Xu Z, Lovrak M, et al. Biomimetic strain-stiffening self- assembled hydrogels. Angew Chem Int Ed 2020; 59(12): 4830-4.
[http://dx.doi.org/10.1002/anie.201911364] [PMID: 31912568]
[47]
Zhao C, Wang Y, Shi B, Li M, Yan W, Yang H. Tailoring co-assembly loading of doxorubicin in solvent-triggering gel. J Colloid Interface Sci 2022; 626: 619-28.
[http://dx.doi.org/10.1016/j.jcis.2022.06.175] [PMID: 35810701]
[48]
Veloso SRS, Tiryaki E, Spuch C, et al. Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels. Nanoscale 2022; 14(14): 5488-500.
[http://dx.doi.org/10.1039/D1NR08158F] [PMID: 35332904]
[49]
Veloso SRS, Gomes V, Mendes SLF, et al. Plasmonic lipogels: Driving co-assembly of composites with peptide-based gels for controlled drug release. Soft Matter 2022; 18(44): 8384-97.
[http://dx.doi.org/10.1039/D2SM00926A] [PMID: 36193825]
[50]
Mura P, Mennini N, Nativi C, Richichi B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur J Pharm Biopharm 2018; 122: 54-61.
[http://dx.doi.org/10.1016/j.ejpb.2017.10.008] [PMID: 29032194]
[51]
Lajavardi L, Camelo S, Agnely F, et al. New formulation of vasoactive intestinal peptide using liposomes in hyaluronic acid gel for uveitis. J Control Release 2009; 139(1): 22-30.
[http://dx.doi.org/10.1016/j.jconrel.2009.05.033] [PMID: 19481575]
[52]
Lee JH, Oh H, Baxa U, Raghavan SR, Blumenthal R. Biopolymer-connected liposome networks as injectable biomaterials capable of sustained local drug delivery. Biomacromolecules 2012; 13(10): 3388-94.
[http://dx.doi.org/10.1021/bm301143d] [PMID: 22970880]
[53]
Thompson BR, Zarket BC, Lauten EH, Amin S, Muthukrishnan S, Raghavan SR. Liposomes entrapped in biopolymer hydrogels can spontaneously release into the external solution. Langmuir 2020; 36(26): 7268-76.
[http://dx.doi.org/10.1021/acs.langmuir.0c00596] [PMID: 32543183]
[54]
El Kechai N, Bochot A, Huang N, Nguyen Y, Ferrary E, Agnely F. Effect of liposomes on rheological and syringeability properties of hyaluronic acid hydrogels intended for local injection of drugs. Int J Pharm 2015; 487(1-2): 187-96.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.019] [PMID: 25882015]
[55]
Liu W, Kong Y, Ye A, et al. Preparation, formation mechanism and in vitro dynamic digestion behavior of quercetin-loaded liposomes in hydrogels. Food Hydrocoll 2020; 104: 105743.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105743]
[56]
Mao Y, Li X, Chen G, Wang S. Thermosensitive hydrogel system with paclitaxel liposomes used in localized drug delivery system for in situ treatment of tumor: Better antitumor efficacy and lower toxicity. J Pharm Sci 2016; 105(1): 194-204.
[http://dx.doi.org/10.1002/jps.24693] [PMID: 26580704]
[57]
O’Neill HS, Herron CC, Hastings CL, et al. A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents. Acta Biomater 2017; 48: 110-9.
[http://dx.doi.org/10.1016/j.actbio.2016.10.001] [PMID: 27773752]
[58]
Popescu MT, Mourtas S, Pampalakis G, Antimisiaris SG, Tsitsilianis C. pH-responsive hydrogel/liposome soft nanocomposites for tuning drug release. Biomacromolecules 2011; 12(8): 3023-30.
[http://dx.doi.org/10.1021/bm2006483] [PMID: 21728314]
[59]
Liu P, Guo B, Wang S, Ding J, Zhou W. A thermo-responsive and self-healing liposome-in-hydrogel system as an antitubercular drug carrier for localized bone tuberculosis therapy. Int J Pharm 2019; 558: 101-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.083] [PMID: 30634030]
[60]
Grijalvo S, Mayr J, Eritja R, Díaz DD. Biodegradable liposome-encapsulated hydrogels for biomedical applications: A marriage of convenience. Biomater Sci 2016; 4(4): 555-74.
[http://dx.doi.org/10.1039/C5BM00481K] [PMID: 26818789]
[61]
Ullrich M, Hanuš J, Dohnal J, Štěpánek F. Encapsulation stability and temperature-dependent release kinetics from hydrogel-immobilised liposomes. J Colloid Interface Sci 2013; 394: 380-5.
[http://dx.doi.org/10.1016/j.jcis.2012.11.016] [PMID: 23276685]
[62]
Ma YH, Yang J, Li B, Jiang YW, Lu X, Chen Z. Biodegradable and injectable polymer–liposome hydrogel: A promising cell carrier. Polym Chem 2016; 7(11): 2037-44.
[http://dx.doi.org/10.1039/C5PY01773D]
[63]
Ruel-Gariépy E, Leclair G, Hildgen P, Gupta A, Leroux JC. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. J Control Release 2002; 82(2-3): 373-83.
[http://dx.doi.org/10.1016/S0168-3659(02)00146-3] [PMID: 12175750]
[64]
Uhríková D, Kučerka N, Teixeira J, Gordeliy V, Balgavý P. Structural changes in dipalmitoylphosphatidylcholine bilayer promoted by Ca2+ ions: A small-angle neutron scattering study. Chem Phys Lipids 2008; 155(2): 80-9.
[http://dx.doi.org/10.1016/j.chemphyslip.2008.07.010] [PMID: 18721799]
[65]
Akutsu H, Seelig J. Interaction of metal ions with phosphatidylcholine bilayer membranes. Biochemistry 1981; 20(26): 7366-73.
[http://dx.doi.org/10.1021/bi00529a007] [PMID: 6895698]
[66]
Melcrová A, Pokorna S, Pullanchery S, et al. The complex nature of calcium cation interactions with phospholipid bilayers. Sci Rep 2016; 6(1): 38035.
[http://dx.doi.org/10.1038/srep38035] [PMID: 27905555]
[67]
Pabst G, Hodzic A, Štrancar J, Danner S, Rappolt M, Laggner P. Rigidification of neutral lipid bilayers in the presence of salts. Biophys J 2007; 93(8): 2688-96.
[http://dx.doi.org/10.1529/biophysj.107.112615] [PMID: 17586572]
[68]
De SK, Kanwa N, Chakraborty A. influence of trivalent metal ions on lipid vesicles: gelation and fusion phenomena. Langmuir 2019; 35(19): 6429-40.
[http://dx.doi.org/10.1021/acs.langmuir.9b00682] [PMID: 30983360]
[69]
Binder H, Zschörnig O. The effect of metal cations on the phase behavior and hydration characteristics of phospholipid membranes. Chem Phys Lipids 2002; 115(1-2): 39-61.
[http://dx.doi.org/10.1016/S0009-3084(02)00005-1] [PMID: 12047897]
[70]
Hasan MN, Salman MS, Hasan MM, et al. Assessing sustainable Lutetium(III) ions adsorption and recovery using novel composite hybrid nanomaterials. J Mol Struct 2023; 1276: 134795.
[http://dx.doi.org/10.1016/j.molstruc.2022.134795]
[71]
Garidel P, Blume A, Hübner W. A Fourier transform infrared spectroscopic study of the interaction of alkaline earth cations with the negatively charged phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol. Biochim Biophys Acta Biomembr 2000; 1466(1-2): 245-59.
[http://dx.doi.org/10.1016/S0005-2736(00)00166-8] [PMID: 10825446]
[72]
Awual MR, Hasan MM, Khaleque MA, Sheikh MC. Treatment of copper(II) containing wastewater by a newly developed ligand based facial conjugate materials. Chem Eng J 2016; 288: 368-76.
[http://dx.doi.org/10.1016/j.cej.2015.11.108]
[73]
Xiao X, Montaño GA, Edwards TL, et al. Surface charge dependent nanoparticle disruption and deposition of lipid bilayer assemblies. Langmuir 2012; 28(50): 17396-403.
[http://dx.doi.org/10.1021/la303300b] [PMID: 23163515]
[74]
Wang B, Zhang L, Bae SC, Granick S. Nanoparticle-induced surface reconstruction of phospholipid membranes. Proc Natl Acad Sci USA 2008; 105(47): 18171-5.
[http://dx.doi.org/10.1073/pnas.0807296105] [PMID: 19011086]
[75]
Moriyama J, Yoshimoto M. Efficient entrapment of carbonic anhydrase in alginate hydrogels using liposomes for continuous-flow catalytic reactions. ACS Omega 2021; 6(9): 6368-78.
[http://dx.doi.org/10.1021/acsomega.0c06299] [PMID: 33718727]
[76]
GuhaSarkar S, More P, Banerjee R. Urothelium-adherent, ion-triggered liposome-in-gel system as a platform for intravesical drug delivery. J Control Release 2017; 245: 147-56.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.031] [PMID: 27913307]
[77]
Deng R, Derry MJ, Mable CJ, Ning Y, Armes SP. Using dynamic covalent chemistry to drive morphological transitions: Controlled release of encapsulated nanoparticles from block copolymer vesicles. J Am Chem Soc 2017; 139(22): 7616-23.
[http://dx.doi.org/10.1021/jacs.7b02642] [PMID: 28497960]
[78]
Maiti C, Banerjee R, Maiti S, Dhara D. pH-induced vesicle-to-micelle transition in amphiphilic diblock copolymer: investigation by energy transfer between in situ formed polymer embedded gold nanoparticles and fluorescent dye. Langmuir 2015; 31(1): 32-41.
[http://dx.doi.org/10.1021/la504165e] [PMID: 25494810]
[79]
Brown W, Schillen K, Almgren M, Hvidt S, Bahadur P. Micelle and gel formation in a poly(ethylene oxide)/poly(propylene oxide)/poly(ethylene oxide) triblock copolymer in water solution: Dynamic and static light scattering and oscillatory shear measurements. J Phys Chem 1991; 95(4): 1850-8.
[http://dx.doi.org/10.1021/j100157a064]
[80]
Hasan MM, Salman MS, Hasan MN, et al. Facial conjugate adsorbent for sustainable Pb(II) ion monitoring and removal from contaminated water. Colloids Surf A Physicochem Eng Asp 2023; 673: 131794.
[http://dx.doi.org/10.1016/j.colsurfa.2023.131794]
[81]
Tiwari S, Singh K, Gerrard Marangoni D, Bahadur P. Amphiphilic star block copolymer micelles in saline as effective vehicle for quercetin solubilization. J Mol Liq 2022; 345: 118259.
[http://dx.doi.org/10.1016/j.molliq.2021.118259]
[82]
Tiwari S, Kansara V, Bahadur P. Targeting anticancer drugs with pluronic aggregates: Recent updates. Int J Pharm 2020; 586: 119544.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119544] [PMID: 32561309]
[83]
Patidar P, Bahadur A, Prasad K, Tiwari S, Aswal VK, Bahadur P. Synthesis, self-assembly and micellization characteristics of choline alkanoate ionic liquids in association with a star block copolymer. Colloids Surf A Physicochem Eng Asp 2018; 555: 691-8.
[http://dx.doi.org/10.1016/j.colsurfa.2018.08.002]
[84]
Wagh SS, Sarolia J, Patil YK, Aswal VK, Bahadur P, Tiwari S. Cooperative interaction of a highly hydrophilic pluronic with bile salts of different hydrophobicity. Colloids Surf A Physicochem Eng Asp 2023; 672: 131709.
[http://dx.doi.org/10.1016/j.colsurfa.2023.131709]
[85]
Calori IR, Pinheiro L, Braga G, et al. Interaction of triblock copolymers (Pluronic®) with DMPC vesicles: A photophysical and computational study. Spectrochim Acta A Mol Biomol Spectrosc 2022; 275: 121178.
[http://dx.doi.org/10.1016/j.saa.2022.121178] [PMID: 35366523]
[86]
Calori IR, Caetano W, Tedesco AC, Hioka N. Determination of critical micelle temperature of Pluronic® in Pluronic/gel phase liposome mixtures using steady-state anisotropy. J Mol Liq 2020; 304: 112784.
[http://dx.doi.org/10.1016/j.molliq.2020.112784]
[87]
Chandaroy P, Sen A, Hui SW. Temperature-controlled content release from liposomes encapsulating Pluronic F127. J Control Release 2001; 76(1-2): 27-37.
[http://dx.doi.org/10.1016/S0168-3659(01)00429-1] [PMID: 11532310]
[88]
Grassi G, Crevatin A, Farra R, et al. Rheological properties of aqueous Pluronic–alginate systems containing liposomes. J Colloid Interface Sci 2006; 301(1): 282-90.
[http://dx.doi.org/10.1016/j.jcis.2006.04.068] [PMID: 16777132]
[89]
Liu Y, Li Z, Liang D. Behaviors of liposomes in a thermo-responsive poly(N-isopropylacrylamide) hydrogel. Soft Matter 2012; 8(16): 4517-23.
[http://dx.doi.org/10.1039/c2sm25092f]
[90]
Wu H, Nan J, Yang L, Park HJ, Li J. Insulin-loaded liposomes packaged in alginate hydrogels promote the oral bioavailability of insulin. J Control Release 2023; 353: 51-62.
[http://dx.doi.org/10.1016/j.jconrel.2022.11.032] [PMID: 36410613]
[91]
Alinaghi A, Rouini MR, Johari Daha F, Moghimi HR. The influence of lipid composition and surface charge on biodistribution of intact liposomes releasing from hydrogel-embedded vesicles. Int J Pharm 2014; 459(1-2): 30-9.
[http://dx.doi.org/10.1016/j.ijpharm.2013.11.011] [PMID: 24239579]
[92]
Sun Z, Song C, Wang C, Hu Y, Wu J. Hydrogel-based controlled drug delivery for cancer treatment: A review. Mol Pharm 2020; 17(2)
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01020] [PMID: 31877054]
[93]
Gu D, Tan S, O’Connor AJ, Qiao GG. On-demand cascade release of hydrophobic chemotherapeutics from a multicomponent hydrogel system. ACS Biomater Sci Eng 2018; 4(5): 696-707.
[http://dx.doi.org/10.1021/acsbiomaterials.8b00166] [PMID: 33445326]
[94]
Ni Y, Zhao W, Cheng W, et al. Lipopeptide liposomes-loaded hydrogel for multistage transdermal chemotherapy of melanoma. J Control Release 2022; 351: 245-54.
[http://dx.doi.org/10.1016/j.jconrel.2022.09.014] [PMID: 36108811]
[95]
Zhao X, Ming H, Wang Y, et al. Mussel-inspired, injectable polyurethane tissue adhesives demonstrate in situ gel formation under mild conditions. ACS Appl Bio Mater 2021; 4(6): 5352-61.
[http://dx.doi.org/10.1021/acsabm.1c00451] [PMID: 35007015]
[96]
Jangde R, Srivastava S, Singh MR, Singh D. In vitro and in vivo characterization of quercetin loaded multiphase hydrogel for wound healing application. Int J Biol Macromol 2018; 115: 1211-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.010] [PMID: 29730004]
[97]
Kandregula B, Narisepalli S, Chitkara D, Mittal A. Exploration of lipid-based nanocarriers as drug delivery systems in diabetic foot ulcer. Mol Pharm 2022; 19(7): 1977-98.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00970] [PMID: 35481377]
[98]
Hamdan S, Pastar I, Drakulich S, et al. Nanotechnology-driven therapeutic interventions in wound healing: Potential uses and applications. ACS Cent Sci 2017; 3(3): 163-75.
[http://dx.doi.org/10.1021/acscentsci.6b00371] [PMID: 28386594]
[99]
Pires F, Santos JF, Bitoque D, et al. Polycaprolactone/gelatin nanofiber membranes containing egcg-loaded liposomes and their potential use for skin regeneration. ACS Appl Bio Mater 2019; 2(11): 4790-800.
[http://dx.doi.org/10.1021/acsabm.9b00524] [PMID: 35021479]
[100]
Aramwit P. 1-Introduction to biomaterials for wound healing. In: Ågren MS, Ed. Wound Healing Biomaterials. Woodhead Publishing 2016; pp. 3-38.
[101]
Li M, Liang Y, He J, Zhang H, Guo B. Two-pronged strategy of biomechanically active and biochemically multifunctional hydrogel wound dressing to accelerate wound closure and wound healing. Chem Mater 2020; 32(23): 9937-53.
[http://dx.doi.org/10.1021/acs.chemmater.0c02823]
[102]
Xu Z, Han S, Gu Z, Wu J. Advances and impact of antioxidant hydrogel in chronic wound healing. Adv Healthc Mater 2020; 9(5): 1901502.
[http://dx.doi.org/10.1002/adhm.201901502] [PMID: 31977162]
[103]
Marroquin-Garcia R, Royakkers J, Gagliardi M, et al. Polyphosphate-based hydrogels as drug-loaded wound dressing: An in vitro study. ACS Appl Polym Mater 2022; 4(4): 2871-9.
[http://dx.doi.org/10.1021/acsapm.1c01533]
[104]
Hu F, Gao Q, Liu J, et al. Smart microneedle patches for wound healing and management. J Mater Chem B Mater Biol Med 2023; 11(13): 2830-51.
[http://dx.doi.org/10.1039/D2TB02596E] [PMID: 36916631]
[105]
Yang X, Zhang C, Deng D, Gu Y, Wang H, Zhong Q. Multiple stimuli-responsive MXene-based hydrogel as intelligent drug delivery carriers for deep chronic wound healing. Small 2022; 18(5): 2104368.
[http://dx.doi.org/10.1002/smll.202104368] [PMID: 34821453]
[106]
Deng M, Wu Y, Ren Y, et al. Clickable and smart drug delivery vehicles accelerate the healing of infected diabetic wounds. J Control Release 2022; 350: 613-29.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.053] [PMID: 36058354]
[107]
Mai B, Jia M, Liu S, et al. Wang, Smart hydrogel-based dvdms/bfgf nanohybrids for antibacterial phototherapy with multiple damaging sites and accelerated wound healing. ACS Appl Mater Interfaces 2020; 12(9): 10156-69.
[http://dx.doi.org/10.1021/acsami.0c00298] [PMID: 32027477]
[108]
Zhu J, Li F, Wang X, Yu J, Wu D. Hyaluronic acid and polyethylene glycol hybrid hydrogel encapsulating nanogel with hemostasis and sustainable antibacterial property for wound healing. ACS Appl Mater Interfaces 2018; 10(16): 13304-16.
[http://dx.doi.org/10.1021/acsami.7b18927] [PMID: 29607644]
[109]
Homann HH, Rosbach O, Moll W, et al. A liposome hydrogel with polyvinyl-pyrrolidone iodine in the local treatment of partial-thickness burn wounds. Ann Plast Surg 2007; 59(4): 423-7.
[http://dx.doi.org/10.1097/SAP.0b013e3180326fcf] [PMID: 17901735]
[110]
Vogt PM, Hauser J, Rossbach O, et al. Polyvinyl pyrrolidone-iodine liposome hydrogel improves epithelialization by combining moisture and antisepis. A new concept in wound therapy. Wound Repair Regen 2001; 9(2): 116-22.
[http://dx.doi.org/10.1046/j.1524-475x.2001.00116.x] [PMID: 11350649]
[111]
Ternullo S, Schulte Werning LV, Holsæter AM, Škalko-Basnet N. Curcumin-in-deformable liposomes-in-chitosan-hydrogel as a novel wound dressing. Pharmaceutics 2019; 12(1): 8.
[http://dx.doi.org/10.3390/pharmaceutics12010008] [PMID: 31861794]
[112]
Liu M, Chen W, Zhang X, et al. Improved surface adhesion and wound healing effect of madecassoside liposomes modified by temperature-responsive PEG-PCL-PEG copolymers. Eur J Pharm Sci 2020; 151: 105373.
[http://dx.doi.org/10.1016/j.ejps.2020.105373] [PMID: 32450220]
[113]
Cardoso-Daodu IM, Ilomuanya MO, Azubuike CP. Development of curcumin-loaded liposomes in lysine-collagen hydrogel for surgical wound healing. Beni Suef Univ J Basic Appl Sci 2022; 11(1): 100.
[http://dx.doi.org/10.1186/s43088-022-00284-2]
[114]
Yu JR, Janssen M, Liang BJ, Huang HC, Fisher JP. A liposome/gelatin methacrylate nanocomposite hydrogel system for delivery of stromal cell-derived factor-1α and stimulation of cell migration. Acta Biomater 2020; 108: 67-76.
[http://dx.doi.org/10.1016/j.actbio.2020.03.015] [PMID: 32194261]
[115]
Yu JR, Varrey P, Liang BJ, Huang HC, Fisher JP. Liposomal SDF-1 alpha delivery in nanocomposite hydrogels promotes macrophage phenotype changes and skin tissue regeneration. ACS Biomater Sci Eng 2021; 7(11): 5230-41.
[http://dx.doi.org/10.1021/acsbiomaterials.1c01140] [PMID: 34699182]
[116]
Bahramizadeh M, Bahramizadeh M, Kiafar B, et al. Development, characterization and evaluation of topical methotrexate-entrapped deformable liposome on imiquimod-induced psoriasis in a mouse model. Int J Pharm 2019; 569: 118623.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118623] [PMID: 31419462]
[117]
Saka R, Jain H, Kommineni N, Chella N, Khan W. Enhanced penetration and improved therapeutic efficacy of bexarotene via topical liposomal gel in imiquimod induced psoriatic plaque model in BALB/c mice. J Drug Deliv Sci Technol 2020; 58: 101691.
[http://dx.doi.org/10.1016/j.jddst.2020.101691]
[118]
Pradhan M, Alexander A, Singh MR, et al. Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed Pharmacother 2018; 107: 447-63.
[http://dx.doi.org/10.1016/j.biopha.2018.07.156] [PMID: 30103117]
[119]
Tripathi P, Kumar A, Jain PK, Patel JR. Carbomer gel bearing methotrexate loaded lipid nanocontainers shows improved topical delivery intended for effective management of psoriasis. Int J Biol Macromol 2018; 120(Pt A): 1322-34.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.136] [PMID: 30171962]
[120]
Jyothi SL, Krishna KL, Ameena Shirin VK, Sankar R, Pramod K, Gangadharappa HV. Drug delivery systems for the treatment of psoriasis: Current status and prospects. J Drug Deliv Sci Technol 2021; 62: 102364.
[http://dx.doi.org/10.1016/j.jddst.2021.102364]
[121]
Filippone A, Consoli GML, Granata G, et al. Topical delivery of curcumin by choline-calix[4]arene-based nanohydrogel improves its therapeutic effect on a psoriasis mouse model. Int J Mol Sci 2020; 21(14): 5053.
[http://dx.doi.org/10.3390/ijms21145053] [PMID: 32708987]
[122]
Armstrong AW, Read C. Pathophysiology, Clinical presentation, and treatment of psoriasis: A review. JAMA 2020; 323(19): 1945-60.
[http://dx.doi.org/10.1001/jama.2020.4006] [PMID: 32427307]
[123]
Korman NJ. Management of psoriasis as a systemic disease: What is the evidence? Br J Dermatol 2020; 182(4): 840-8.
[http://dx.doi.org/10.1111/bjd.18245] [PMID: 31225638]
[124]
Zhou X, Chen Y, Cui L, Shi Y, Guo C. Advances in the pathogenesis of psoriasis: From keratinocyte perspective. Cell Death Dis 2022; 13(1): 81.
[http://dx.doi.org/10.1038/s41419-022-04523-3] [PMID: 35075118]
[125]
Aziz Hazari S, Kaur H, Karwasra R, Abourehab MAS, Ali Khan A, Kesharwani P. An overview of topical lipid-based and polymer-based nanocarriers for treatment of psoriasis. Int J Pharm 2023; 638: 122938.
[http://dx.doi.org/10.1016/j.ijpharm.2023.122938] [PMID: 37031809]
[126]
Pradhan M, Singh D, Singh MR. Novel colloidal carriers for psoriasis: Current issues, mechanistic insight and novel delivery approaches. J Control Release 2013; 170(3): 380-95.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.020] [PMID: 23770117]
[127]
An E, Jeong CB, Cha C, et al. Fabrication of microgel-in-liposome particles with improved water retention. Langmuir 2012; 28(9): 4095-101.
[http://dx.doi.org/10.1021/la2046349] [PMID: 22296414]
[128]
Xi L, Lin Z, Qiu F, et al. Enhanced uptake and anti-maturation effect of celastrol-loaded mannosylated liposomes on dendritic cells for psoriasis treatment. Acta Pharm Sin B 2022; 12(1): 339-52.
[http://dx.doi.org/10.1016/j.apsb.2021.07.019] [PMID: 35127390]
[129]
Jain A, Doppalapudi S, Domb AJ, Khan W. Tacrolimus and curcumin co-loaded liposphere gel: Synergistic combination towards management of psoriasis. J Control Release 2016; 243: 132-45.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.004] [PMID: 27725194]
[130]
Bieber T, Simpson EL, Silverberg JI, et al. Abrocitinib versus placebo or dupilumab for atopic dermatitis. N Engl J Med 2021; 384(12): 1101-12.
[http://dx.doi.org/10.1056/NEJMoa2019380] [PMID: 33761207]
[131]
Silverberg JI, Guttman-Yassky E, Thaçi D, et al. Two phase 3 trials of lebrikizumab for moderate-to-severe atopic dermatitis. N Engl J Med 2023; 388(12): 1080-91.
[http://dx.doi.org/10.1056/NEJMoa2206714] [PMID: 36920778]
[132]
Nakatsuji T, Hata TR, Tong Y, et al. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat Med 2021; 27(4): 700-9.
[http://dx.doi.org/10.1038/s41591-021-01256-2] [PMID: 33619370]
[133]
Chiesa Fuxench ZC, Block JK, Boguniewicz M, et al. Atopic dermatitis in America study: A cross-sectional study examining the prevalence and disease burden of atopic dermatitis in the us adult population. J Invest Dermatol 2019; 139(3): 583-90.
[http://dx.doi.org/10.1016/j.jid.2018.08.028] [PMID: 30389491]
[134]
Kabashima K, Matsumura T, Komazaki H, Kawashima M. Trial of nemolizumab and topical agents for atopic dermatitis with pruritus. N Engl J Med 2020; 383(2): 141-50.
[http://dx.doi.org/10.1056/NEJMoa1917006] [PMID: 32640132]
[135]
Silverberg JI, Gelfand JM, Margolis DJ, et al. Association of atopic dermatitis with allergic, autoimmune, and cardiovascular comorbidities in US adults. Ann Allergy Asthma Immunol 2018; 121(5): 604-612.e3.
[http://dx.doi.org/10.1016/j.anai.2018.07.042] [PMID: 30092266]
[136]
Silverberg JI. Comorbidities and the impact of atopic dermatitis. Ann Allergy Asthma Immunol 2019; 123(2): 144-51.
[http://dx.doi.org/10.1016/j.anai.2019.04.020] [PMID: 31034875]
[137]
Hill DA, Spergel JM. The atopic march. Ann Allergy Asthma Immunol 2018; 120(2): 131-7.
[http://dx.doi.org/10.1016/j.anai.2017.10.037] [PMID: 29413336]
[138]
Kim J, Kim BE, Leung DYM. Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc 2019; 40(2): 84-92.
[http://dx.doi.org/10.2500/aap.2019.40.4202] [PMID: 30819278]
[139]
Egawa G, Kabashima K. Multifactorial skin barrier deficiency and atopic dermatitis: Essential topics to prevent the atopic march. J Allergy Clin Immunol 2016; 138(2): 350-358.e1.
[http://dx.doi.org/10.1016/j.jaci.2016.06.002] [PMID: 27497277]
[140]
Bin L, Leung DYM. Genetic and epigenetic studies of atopic dermatitis. Allergy Asthma Clin Immunol 2016; 12(1): 52.
[http://dx.doi.org/10.1186/s13223-016-0158-5] [PMID: 27777593]
[141]
Yuki T, Tobiishi M, Kusaka-Kikushima A, Ota Y, Tokura Y. Impaired Tight junctions in atopic dermatitis skin and in a skin-equivalent model treated with interleukin-17. PLoS One 2016; 11(9): e0161759.
[http://dx.doi.org/10.1371/journal.pone.0161759] [PMID: 27588419]
[142]
Chittock J, Cooke A, Lavender T, et al. Development of stratum corneum chymotrypsin-like protease activity and natural moisturizing factors from birth to 4 weeks of age compared with adults. Br J Dermatol 2016; 175(4): 713-20.
[http://dx.doi.org/10.1111/bjd.14568] [PMID: 26994359]
[143]
Lee YL, Yen JJY, Hsu LC, et al. Association of STAT6 genetic variants with childhood atopic dermatitis in Taiwanese population. J Dermatol Sci 2015; 79(3): 222-8.
[http://dx.doi.org/10.1016/j.jdermsci.2015.05.006] [PMID: 26048407]
[144]
Salpietro C, Rigoli L, Del Giudice MM, et al. TLR2 and TLR4 gene polymorphisms and atopic dermatitis in Italian children: A multicenter study. Int J Immunopathol Pharmacol 2011; 24(4_suppl): 33-40.
[http://dx.doi.org/10.1177/03946320110240S408] [PMID: 22032785]
[145]
Eichenfield LF, Call RS, Forsha DW, et al. Long-term safety of crisaborole ointment 2% in children and adults with mild to moderate atopic dermatitis. J Am Acad Dermatol 2017; 77(4): 641-649.e5.
[http://dx.doi.org/10.1016/j.jaad.2017.06.010] [PMID: 28823881]
[146]
Gooderham M, Kircik L, Zirwas M, et al. The safety and efficacy of roflumilast cream 0.15% and 0.05% in patients with atopic dermatitis: Randomized, double-blind, phase 2 proof of concept study. J Drugs Dermatol 2023; 22(2): 139-47.
[http://dx.doi.org/10.36849/JDD.7295] [PMID: 36745371]
[147]
Niemeyer-van der Kolk T, van der Wall H, Hogendoorn GK, et al. Pharmacodynamic effects of topical omiganan in patients with mild to moderate atopic dermatitis in a randomized, placebo-controlled, phase II trial. Clin Transl Sci 2020; 13(5): 994-1003.
[http://dx.doi.org/10.1111/cts.12792] [PMID: 32315497]
[148]
Lee YI, Lee SG, Kim J, Choi S, Jung I, Lee JH. Proteoglycan combined with hyaluronic acid and hydrolyzed collagen restores the skin barrier in mild atopic dermatitis and dry, eczema-prone skin: A pilot study. Int J Mol Sci 2021; 22(19): 10189.
[http://dx.doi.org/10.3390/ijms221910189] [PMID: 34638528]
[149]
Ibaraki H, Kanazawa T, Kurano T, Oogi C, Takashima Y, Seta Y. Anti-RelA siRNA-encapsulated flexible liposome with tight junction-opening peptide as a non-invasive topical therapeutic for atopic dermatitis. Biol Pharm Bull 2019; 42(7): 1216-25.
[http://dx.doi.org/10.1248/bpb.b19-00259] [PMID: 31257297]
[150]
Wang Y, Yue Y, Jia R, et al. Design and evaluation of paeonol-loaded liposomes in thermoreversible gels for atopic dermatitis. Gels 2023; 9(3): 198.
[http://dx.doi.org/10.3390/gels9030198] [PMID: 36975647]
[151]
Hu YS, Han X, Yu PJ, Jiao MM, Liu XH, Shi JB. Novel paeonol derivatives: Design, synthesis and anti-inflammatory activity in vitro and in vivo. Bioorg Chem 2020; 98: 103735.
[http://dx.doi.org/10.1016/j.bioorg.2020.103735] [PMID: 32171986]
[152]
Tang H, Yang D, Zhu L, et al. Paeonol interferes with quorum-sensing in Pseudomonas aeruginosa and modulates inflammatory responses in vitro and in vivo. Front Immunol 2022; 13: 896874.
[http://dx.doi.org/10.3389/fimmu.2022.896874] [PMID: 35686124]
[153]
Guo S, Zhang Q. Paeonol protects melanocytes against hydrogen peroxide-induced oxidative stress through activation of Nrf2 signaling pathway. Drug Dev Res 2021; 82(6): 861-9.
[http://dx.doi.org/10.1002/ddr.21793] [PMID: 33491230]
[154]
Shutova MS, Boehncke WH. Mechanotransduction in skin inflammation. Cells 2022; 11(13): 2026.
[http://dx.doi.org/10.3390/cells11132026] [PMID: 35805110]
[155]
Jia Y, Hu J, An K, et al. Hydrogel dressing integrating FAK inhibition and ROS scavenging for mechano-chemical treatment of atopic dermatitis. Nat Commun 2023; 14(1): 2478.
[http://dx.doi.org/10.1038/s41467-023-38209-x] [PMID: 37120459]
[156]
Kharwade R, Ali N, Gangane P, et al. DOE-assisted formulation, optimization, and characterization of tioconazole-loaded transferosomal hydrogel for the effective treatment of atopic dermatitis: In vitro and in vivo evaluation. Gels 2023; 9(4): 303.
[http://dx.doi.org/10.3390/gels9040303] [PMID: 37102915]
[157]
Demartis S, Rassu G, Murgia S, Casula L, Giunchedi P, Gavini E. Improving dermal delivery of rose bengal by deformable lipid nanovesicles for topical treatment of melanoma. Mol Pharm 2021; 18(11): 4046-57.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00468] [PMID: 34554752]
[158]
Mirzavi F, Barati M, Soleimani A, Vakili-Ghartavol R, Jaafari MR, Soukhtanloo M. A review on liposome-based therapeutic approaches against malignant melanoma. Int J Pharm 2021; 599: 120413.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120413] [PMID: 33667562]
[159]
Dorrani M, Garbuzenko OB, Minko T, Michniak-Kohn B. Development of edge-activated liposomes for siRNA delivery to human basal epidermis for melanoma therapy. J Control Release 2016; 228: 150-8.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.010] [PMID: 26965957]
[160]
Sahu P, Kashaw SK, Jain S, Sau S, Iyer AK. Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: In vitro and ex vivo studies. J Control Release 2017; 253: 122-36.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.023] [PMID: 28322977]
[161]
López-Noriega A, Hastings CL, Ozbakir B, et al. Hyperthermia-induced drug delivery from thermosensitive liposomes encapsulated in an injectable hydrogel for local chemotherapy. Adv Healthc Mater 2014; 3(6): 854-9.
[http://dx.doi.org/10.1002/adhm.201300649] [PMID: 24436226]
[162]
Ren S, Dai Y, Li C, et al. Pharmacokinetics and pharmacodynamics evaluation of a thermosensitive chitosan based hydrogel containing liposomal doxorubicin. Eur J Pharm Sci 2016; 92: 137-45.
[http://dx.doi.org/10.1016/j.ejps.2016.07.002] [PMID: 27388491]
[163]
Wang W, Zhang P, Shan W, Gao J, Liang W. A novel chitosan-based thermosensitive hydrogel containing doxorubicin liposomes for topical cancer therapy. J Biomater Sci Polym Ed 2013; 24(14): 1649-59.
[http://dx.doi.org/10.1080/09205063.2013.789357] [PMID: 23607789]
[164]
Cao D, Zhang X, Akabar M, et al. Liposomal doxorubicin loaded PLGA-PEG-PLGA based thermogel for sustained local drug delivery for the treatment of breast cancer. Artif Cells Nanomed Biotechnol 2019; 47(1): 181-91.
[http://dx.doi.org/10.1080/21691401.2018.1548470] [PMID: 30686051]
[165]
Basu K, Baral A, Basak S, et al. Peptide based hydrogels for cancer drug release: Modulation of stiffness, drug release and proteolytic stability of hydrogels by incorporating D-amino acid residue(s). Chem Commun 2016; 52(28): 5045-8.
[http://dx.doi.org/10.1039/C6CC01744D] [PMID: 26987440]
[166]
Li R, Lyu Y, Luo S, et al. Fabrication of a multi-level drug release platform with liposomes, chitooligosaccharides, phospholipids and injectable chitosan hydrogel to enhance anti-tumor effectiveness. Carbohydr Polym 2021; 269: 118322.
[http://dx.doi.org/10.1016/j.carbpol.2021.118322] [PMID: 34294334]
[167]
Tsai HC, Chou HY, Chuang SH, et al. Preparation of immunotherapy liposomal-loaded thermal-responsive hydrogel carrier in the local treatment of breast cancer. Polymers 2019; 11(10): 1592.
[http://dx.doi.org/10.3390/polym11101592] [PMID: 31569466]
[168]
Chen G, Ullah A, Xu G, et al. Topically applied liposome-in-hydrogels for systematically targeted tumor photothermal therapy. Drug Deliv 2021; 28(1): 1923-31.
[http://dx.doi.org/10.1080/10717544.2021.1974607] [PMID: 34550040]
[169]
Kong Y, Dai Y, Qi D, et al. Injectable and Thermosensitive liposomal hydrogels for nir-ii light-triggered photothermal-chemo therapy of pancreatic cancer. ACS Appl Bio Mater 2021; 4(10): 7595-604.
[http://dx.doi.org/10.1021/acsabm.1c00864] [PMID: 35006703]
[170]
Bai R, Deng X, Wu Q, Cao X, Ye T, Wang S. Liposome-loaded thermo-sensitive hydrogel for stabilization of SN-38 via intratumoral injection: Optimization, characterization, and antitumor activity. Pharm Dev Technol 2018; 23(1): 106-15.
[http://dx.doi.org/10.1080/10837450.2017.1391287] [PMID: 29019266]
[171]
Jiang T, Wang T, Li T, et al. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma. ACS Nano 2018; 12(10): 9693-701.
[http://dx.doi.org/10.1021/acsnano.8b03800] [PMID: 30183253]