New SARS-CoV-2 Mpro Inhibitor by Ascorbic Acid: Design, Molecular Docking, Lipinski’s Rule and ADMET Analysis

Article ID: e141123223563 Pages: 40

  • * (Excluding Mailing and Handling)

Abstract

Background: Mpro protease, an enzyme found in coronaviruses (PDB codes: 6LU7 and 2GTB), provides a unique way to recognize potentially active substances. All of the suggested drugs shared an ethanolamine/propylamine bridge, consisting of two to three lengths of carbon atoms, to treat COVID-19 patients. Because of this, the author chose to conduct the study using ascorbic acid, also known as R-5-(S)-1,2-dihydroxyethyl)-3,4-dihydroxyfuran-2(5H)-one, a potent immune system booster for combating coronavirus.

Objective: In this study, ascorbic acid is used to identify new potential inhibitors of the SARS-CoV-2 Mpro enzyme using molecular docking, the Lipinski rule for drug-likeness, physiochemical property by Molinspiration, ADMET by Pre ADMET server, and Osiris property explorer for toxicity analysis in comparison to proposed drug therapy.

Methods: The receptor-binding site in the active sites of Mpro protease (PDB codes: 6LU7 and 2GTB) was predicted using molecular docking studies using the GOLD, v5.2.2 program (Genetic Optimization for Ligand Docking). Ascorbic acid derivatives' physiochemical properties, druglikeness, ADME, and toxicity were further examined using Molinspiration, OSIRIS Property Explorer, and Pre ADMET service.

Results: The findings result showed that molecules 16 and 17 had outstanding gold score/energy score with 6LU7 (52.45 & 51.45/-15.16 &-17.32 kJ/mol, respectively) and 2GTB (55.09 & 54.79/- 11.86 & -16.31 kJ/mol, respectively). All molecules were found with zero violation of Lipinski rules and showed good bioavailability via the oral route. In comparison to the proposed drugs, the compounds 3, 5, 6, 7, 8, 13, and 17 had good drug scores and received excellent drug-likeness ratings. The compounds 14, 15, 16, and 17 were observed as remarkable inhibitors for CYP 450 3A4, CYP 450 2C9 and CYP 450 2C19 and for CYP 450 3A4 and CYP 450 2D6.

Conclusion: In the molecular docking study, compound 17 showed outstanding gold/energy values as well as excellent bioactivity scores against GPCR, protease inhibitors, and kinase inhibitors. Drugrelated attributes were obtained using OSIRIS property explorer and pre-ADME, which showed compound 17 to have an excellent drug score, no toxicity, and drug-likeness.

Graphical Abstract

[1]
Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020; 395(10223): 514-23.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[2]
Kartik M, Seema L, Mohammad FA. COVID-19 Pandemic: An overview of its origin, current status, and ongoing clinical trials. Coronaviruses 2022; 3(3): 1-12.
[http://dx.doi.org/10.2174/2666796702666210208143656]
[3]
Ebada MA, Wadaa-Allah A, Bahbah E, Negida A. An updated review on COVID-19. Infect Disord Drug Targets 2021; 21(8): e160921189190.
[http://dx.doi.org/10.2174/1871526520666201216165322] [PMID: 33327924]
[4]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[5]
Hui DS, Azhar EI, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 2020; 91: 264-6.
[http://dx.doi.org/10.1016/j.ijid.2020.01.009] [PMID: 31953166]
[6]
Karan S, Amit KM, Akash G. Epidemiology, evolution, transmission, and therapeutics of covid-19 outbreak: An update on the status. Coronaviruses 2021; 2(11): 1-9.
[http://dx.doi.org/10.2174/2666796702666210210140840]
[7]
Bhoj VG, Chen ZJ. Ubiquitylation in innate and adaptive immunity. Nature 2009; 458(7237): 430-7.
[http://dx.doi.org/10.1038/nature07959] [PMID: 19325622]
[8]
Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11(1): 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[9]
Bhat EA, khan J, Sajjad N, et al. SARS-CoV-2: Insight in genome structure, pathogenesis and viral receptor binding analysis – An updated review. Int Immunopharmacol 2021; 95: 107493.
[http://dx.doi.org/10.1016/j.intimp.2021.107493] [PMID: 33721758]
[10]
Mukherjee P, Shah F, Desai P, Avery M. Inhibitors of SARS-3CLpro: Virtual screening, biological evaluation, and molecular dynamics simulation studies. J Chem Inf Model 2011; 51(6): 1376-92.
[http://dx.doi.org/10.1021/ci1004916] [PMID: 21604711]
[11]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[12]
Sabbah DA, Hajjo R, Bardaweel SK, Zhong HA. An Updated Review on SARS-CoV-2 Main Proteinase (MPro): Protein Structure and Small-Molecule Inhibitors. Curr Top Med Chem 2021; 21(6): 442-60.
[http://dx.doi.org/10.2174/18734294MTEy0MDk6w] [PMID: 33292134]
[13]
Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020; 582(7811): 289-93.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[14]
Huynh T, Wang H, Luan B. Structure-based lead optimization of herbal medicine rutin for inhibiting SARS-CoV-2's main protease. Phys Chem Chem Phys 2020; 22(43): 25335-43.
[http://dx.doi.org/10.1039/D0CP03867A] [PMID: 33140777]
[15]
Sargolzaei M. Effect of nelfinavir stereoisomers on coronavirus main protease: Molecular docking, molecular dynamics simulation and MM/GBSA study. J Mol Graph Model 2021; 103: 107803.
[http://dx.doi.org/10.1016/j.jmgm.2020.107803] [PMID: 33333424]
[16]
Huynh T, Wang H, Luan B. In Silico Exploration of the Molecular Mechanism of Clinically Oriented Drugs for Possibly Inhibiting SARS-CoV-2’s Main Protease. J Phys Chem Lett 2020; 11(11): 4413-20.
[http://dx.doi.org/10.1021/acs.jpclett.0c00994] [PMID: 32406687]
[17]
Luan B, Huynh T, Cheng X, Lan G, Wang HR. Targeting Proteases for Treating COVID-19. J Proteome Res 2020; 19(11): 4316-26.
[http://dx.doi.org/10.1021/acs.jproteome.0c00430] [PMID: 33090793]
[18]
Si L. Human organs-on-chips as tools for repurposing approved drugs as potential influenza and COVID19 therapeutics in viral pandemics. bioRxiv 2020; 2022; 039917.
[http://dx.doi.org/10.1101/2020.04.13.039917]
[19]
Singh V, Jain SK, Mishra V. A recent update on SARS-CoV-2 transmission and its variants: Transmission, pathogenic mechanism, and treatment. Coronaviruses 2023; 4(1): e020123212321.
[http://dx.doi.org/10.2174/2666796704666230102121225]
[20]
Habibur R. Transmission, prevention and therapeutic strategies for COVID-19: Updates and challenges. Coronaviruses 2021; 2(12): 1-15.
[http://dx.doi.org/10.2174/2666796702666210308114216]
[21]
Chee YJ, Fan BE, Young BE, Dalan R, Lye DC. Clinical trials on the pharmacological treatment of long COVID: A systematic review. J Med Virol 2023; 95(1): e28289.
[http://dx.doi.org/10.1002/jmv.28289] [PMID: 36349400]
[22]
Alberto B. The Use of Antivirals against COVID-19 Infection will Reduce the Number of Fatalities in Australia. Coronaviruses 2023; 4(1): 1-3.
[http://dx.doi.org/10.2174/2666796704666230228105723]
[23]
Lew W, Chen X, Kim CU. Discovery and development of GS 4104 (oseltamivir): An orally active influenza neuraminidase inhibitor. Curr Med Chem 2000; 7(6): 663-72.
[http://dx.doi.org/10.2174/0929867003374886] [PMID: 10702632]
[24]
Tan ELC, Ooi EE, Lin CY, et al. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg Infect Dis 2004; 10(4): 581-6.
[http://dx.doi.org/10.3201/eid1004.030458] [PMID: 15200845]
[25]
Amaresh M, Nisha N, Vishwas T, Yamini P, Jaseela M. History, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19). Coronaviruses 2022; 3(1): 1-8.
[http://dx.doi.org/10.2174/2666796702666210805101958]
[26]
Long B, Carius BM, Chavez S, et al. Clinical update on COVID-19 for the emergency clinician: Presentation and evaluation. Am J Emerg Med 2022; 54: 46-57.
[http://dx.doi.org/10.1016/j.ajem.2022.01.028] [PMID: 35121478]
[27]
Bisht D, Sati D, Rashid M, Arya RKK. Significance of nanomedicines and recent advancement in vaccine formulations for combating SARS-CoV2. Int J Nanomanuf 2023; 18(2): 46-69.
[http://dx.doi.org/10.1504/IJNM.2023.131901]
[28]
Barzkar F, Ranjbar M, Sioofy-Khojine AB, et al. Efficacy and safety of chloroquine and hydroxychloroquine for COVID-19: A comprehensive evidence synthesis of clinical, animal, and in vitro studies. Med J Islam Repub Iran 2020; 34: 171.
[http://dx.doi.org/10.47176/mjiri.34.171] [PMID: 33816370]
[29]
Jawaid Akhtar M. COVID19 inhibitors: A prospective therapeutics. Bioorg Chem 2020; 101: 104027.
[http://dx.doi.org/10.1016/j.bioorg.2020.104027] [PMID: 32629280]
[30]
Lin S, Shen R, He J, Li X, Guo X. Molecular Modeling Evaluation of the Binding Effect of Ritonavir, Lopinavir and Darunavir to Severe Acute Respiratory Syndrome Coronavirus 2 Proteases. bio-Rxiv 2020 2022; 929695.
[http://dx.doi.org/10.1101/2020.01.31.929695]
[31]
Kuldeep S, Dilpreet S, Karan R. Remdesivir, A Potential Drug for COVID-19 Treatment: A New Hope. Coronaviruses 2021; 2(8): 1-3.
[http://dx.doi.org/10.2174/2666796701999201218141652]
[32]
Vikas P, Indu LK, Tanweer H, et al. Angiotensin converting enzyme-2: A doorway for SARS-CoV-2. Coronaviruses 2021; 2(12): 1-12.
[http://dx.doi.org/10.2174/2666796702666210222110044]
[33]
Narayana SHNM. Chandrabose karthikeyan and elangovan manivannan, targeting angiotensin-converting enzyme 2 (ACE2) for the discovery of anticoronaviral drugs. Coronaviruses 2022; 3(4): 1-13.
[http://dx.doi.org/10.2174/2666796703666220218100133]
[34]
Smee DF, Hurst BL, Egawa H, Takahashi K, Kadota T, Furuta Y. Intracellular metabolism of favipiravir (T-705) in uninfected and influenza A (H5N1) virus-infected cells. J Antimicrob Chemother 2009; 64(4): 741-6.
[http://dx.doi.org/10.1093/jac/dkp274] [PMID: 19643775]
[35]
Subhash C, Sarla S, Hassan YAE. Hydroxychloroquine sulfate (Plaquenil): A possible candidate for pandemic SARS-CoV-2 or (COVID-19)? Coronaviruses 2021; 2(10): 1-8.
[http://dx.doi.org/10.2174/2666796701666210108115614]
[36]
Hoffmann M, Mösbauer K, Hofmann-Winkler H, et al. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature 2020; 585(7826): 588-90.
[http://dx.doi.org/10.1038/s41586-020-2575-3] [PMID: 32698190]
[37]
Maisonnasse P, Guedj J, Contreras V, et al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature 2020; 585(7826): 584-7.
[http://dx.doi.org/10.1038/s41586-020-2558-4] [PMID: 32698191]
[38]
Robinson H, Robinson WH, Sokolab W, Wang JC. Desethylhydroxychloroquine for the treatment of diseases with inflammation. JP. Patent 2016518338A, 2013.
[39]
Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[40]
Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad, Ser B, Phys Biol Sci 2017; 93(7): 449-63.
[http://dx.doi.org/10.2183/pjab.93.027] [PMID: 28769016]
[41]
Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res 2020; 178: 104792.
[http://dx.doi.org/10.1016/j.antiviral.2020.104792] [PMID: 32272173]
[42]
FAVIPIRAVIR Available from: https://drugs.ncats.io/drug/EW5GL2X7E0
[43]
Madelain V, Mentré F, Baize S, et al. Modeling favipiravir antiviral efficacy against emerging viruses: From animal studies to clinical trials. CPT Pharmacometrics Syst Pharmacol 2020; 9(5): 258-71.
[http://dx.doi.org/10.1002/psp4.12510] [PMID: 32198838]
[44]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[45]
Denissen JF, Grabowski BA, Johnson MK, et al. Metabolism and disposition of the HIV-1 protease inhibitor ritonavir (ABT-538) in rats, dogs, and humans. Drug Metab Dispos 1997; 25(4): 489-501.
[PMID: 9107549]
[46]
Santhosh A, Haripriya D. Remdesivir (GS-5734) for COVID-19 treatment: Past and recent updates. Coronaviruses 2021; 2(8): 1-6.
[http://dx.doi.org/10.2174/2666796701999201216102250]
[47]
Sheahan TP, Sims AC, Zhou S, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 2020; 12(541): eabb5883.
[http://dx.doi.org/10.1126/scitranslmed.abb5883] [PMID: 32253226]
[48]
Talukdar D, Ignacio D, Gupta MM. Immunosuppressant drugs and Covid-19: Associated risks, drug-drug interactions and contraindications. Coronaviruses 2021; 2(12): e070921193747.
[http://dx.doi.org/10.2174/2666796702666210601125131]
[49]
Mejbah UR. Major drugs used in COVID-19 treatment: Molecular mechanisms, validation and current progress in trials. Coronaviruses 2022; 3(2): 10-22.
[http://dx.doi.org/10.2174/2666796701999201204122819]
[50]
Olumiant 2 mg Film-Coated Tablets. Available from:https://www.medicines.org.uk/emc/product/2434/smpc
[51]
Astor L. Acalabrutinib to be tested as treatment of exaggerated COVID-19-related immune response. 2020. Available from: https://bit.ly/2yaUq8O
[52]
Squires VR. The role of food, agriculture, forestry, and fisheries in human nutrition. EOLSS Publications 2011; 1: 282.
[53]
Zetterström R. Nobel Prize 1937 to Albert von Szent-Györgyi: Identification of vitamin C as the anti-scorbutic factor. Acta Paediatr 2009; 98(5): 915-9.
[http://dx.doi.org/10.1111/j.1651-2227.2009.01239.x] [PMID: 19239412]
[54]
Laith A, Fadhil N. The effect of Ascorbic acid in treatment of patient with Herpes Zoster virus. Systematic Reviews in Pharmacy 2020; 3(11): 829.
[http://dx.doi.org/10.31838/srp.2020.3.116]
[55]
Wu YC, Chen CS, Chan YJ. The outbreak of COVID-19: An overview. J Chin Med Assoc 2020; 83(3): 217-20.
[http://dx.doi.org/10.1097/JCMA.0000000000000270] [PMID: 32134861]
[56]
Wintergerst ES, Maggini S, Hornig DH. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann Nutr Metab 2006; 50(2): 85-94.
[http://dx.doi.org/10.1159/000090495] [PMID: 16373990]
[57]
Davood J, Abdolreza E, Marziyeh MK, Nima R. Vitamin C and the immune system. In: Nutrition and immunity. Springer 2019.
[http://dx.doi.org/10.1007/978-3-030-16073-9_5]
[58]
Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Libr 2013; 2013(5): CD000980.
[http://dx.doi.org/10.1002/14651858.CD000980.pub4] [PMID: 23440782]
[59]
Carr A, Maggini S. Vitamin C, and immune function. Nutrients 2017; 9(11): 1211.
[http://dx.doi.org/10.3390/nu9111211] [PMID: 29099763]
[60]
Fritz H, Flower G, Weeks L, et al. Intravenous vitamin C, and cancer: A systematic review. Integr Cancer Ther 2014; 13(4): 280-300.
[http://dx.doi.org/10.1177/1534735414534463] [PMID: 24867961]
[61]
Al-Khudairy L, Flowers N, Wheelhouse R, et al. Vitamin C supplementation for the primary prevention of cardiovascular disease. Cochrane Libr 2017; 2017(3): CD011114.
[http://dx.doi.org/10.1002/14651858.CD011114.pub2] [PMID: 28301692]
[62]
Vorilhon P, Arpajou B, Vaillant Roussel H, Merlin É, Pereira B, Cabaillot A. Efficacy of vitamin C for the prevention and treatment of upper respiratory tract infection. A meta-analysis in children. Eur J Clin Pharmacol 2019; 75(3): 303-11.
[http://dx.doi.org/10.1007/s00228-018-2601-7] [PMID: 30465062]
[63]
Sorice A, Guerriero E, Capone F, Colonna G, Castello G, Costantini S. Ascorbic acid: Its role in immune system and chronic inflammation diseases. Mini Rev Med Chem 2014; 14(5): 444-52.
[http://dx.doi.org/10.2174/1389557514666140428112602] [PMID: 24766384]
[64]
US National Institutes of health Fact sheet for health professionalsvitamin C office of dietary supplements 2016. Available from: https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/
[65]
Li G, Fan Y, Lai Y, et al. Coronavirus infections and immune responses. J Med Virol 2020; 92(4): 424-32.
[http://dx.doi.org/10.1002/jmv.25685] [PMID: 31981224]
[67]
Kapish K, Vishnu D, Ayushi B, Sunita P, Joohee P. An In-silico multi-targeted approach in search of potential drug candidate (s) against SARS-CoV-2 lung infection. Coronaviruses 2022; 3(6): 1-14.
[http://dx.doi.org/10.2174/2666796704666221202143702]
[68]
Moyad MA, Combs MA, Vrablic AS, Velasquez J, Turner B, Bernal S. Vitamin C metabolites, independent of smoking status, significantly enhance leukocyte, but not plasma ascorbate concentrations. Adv Ther 2008; 25(10): 995-1009.
[http://dx.doi.org/10.1007/s12325-008-0106-y] [PMID: 18836692]
[69]
Akbari A, Jelodar G, Nazifi S, Sajedianfard J. An overview of the characteristics and function of Vitamin C in various tissues: Relying on its antioxidant function. Zahedan J Res Med Sci 2016; In Press(In Press):. 4037.
[http://dx.doi.org/10.17795/zjrms-4037]
[70]
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv Drug Deliv Rev 2001; 46(1-3): 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[71]
Ertl P, Rohde B, Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J Med Chem 2000; 43(20): 3714-7.
[http://dx.doi.org/10.1021/jm000942e] [PMID: 11020286]
[72]
Molinspiration software Available from: www.molinspiration.com/cgi-bin/properties
[73]
Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J Comb Chem 1999; 1(1): 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[74]
Oprea TI. Property distribution of drug-related chemical databases. J Comput Aided Mol Des 2000; 14(3): 251-64.
[http://dx.doi.org/10.1023/A:1008130001697] [PMID: 10756480]
[75]
Kulkarni A, Han Y, Hopfinger AJ. Predicting Caco-2 cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis. J Chem Inf Comput Sci 2002; 42(2): 331-42.
[http://dx.doi.org/10.1021/ci010108d] [PMID: 11911703]
[76]
Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 2002; 45(12): 2615-23.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[77]
Rashid M. Design, synthesis and ADMET prediction of bis-benzimidazole as anticancer agent. Bioorg Chem 2020; 96: 103576.
[http://dx.doi.org/10.1016/j.bioorg.2020.103576] [PMID: 31986463]
[78]
Bhutani R, Pathak DP, Kapoor G, Husain A, Iqbal MA. Novel hybrids of benzothiazole-1,3,4-oxadiazole-4-thiazolidinone: Synthesis, in silico ADME study, molecular docking and in vivo anti-diabetic assessment. Bioorg Chem 2019; 83: 6-19.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.025] [PMID: 30339863]
[79]
Joshi A, Kumar R, Sharma A. Molecular docking studies, bioactivity score prediction, drug likeness analysis of gsk-3 β-inhibitors: A target protein involved in alzheimer’s disease. Biosci Biotechnol Res Asia 2018; 15(2): 455-67.
[http://dx.doi.org/10.13005/bbra/2650]
[80]
Molecular property explorer, OSIRIS properties. 2014. Available from: http://www.organic-chemistry.org/prog/peo/drugscore (cited 2014 Nov 26)
[81]
Sander T, Freyss J, von Korff M, Reich JR, Rufener C. OSIRIS, an entirely in-house developed drug discovery informatics system. J Chem Inf Model 2009; 49(2): 232-46.
[http://dx.doi.org/10.1021/ci800305f] [PMID: 19434825]
[82]
Balakrishnan N, Raj JS, Kandakatla N. In silico studies on new indazole derivatives as Gsk-3β inhibitors. Int J Pharma Sci 2015; 7(3): 295-9.
[83]
Rashid M, Afzal O, Altamimi ASA. Benzimidazole molecules hybrid with oxadiazole ring as antiproliferative agent: In-silico analysis, synthesis and biological evaluation. J Chil Chem Soc 2021; 66(2): 5164-82.
[http://dx.doi.org/10.4067/S0717-97072021000205164]
[84]
Parua S, Sikari R, Sinha S, Chakraborty G, Mondal R, Paul ND. Accessing polysubstituted quinazolines via nickel catalyzed acceptorless dehydrogenative coupling. J Org Chem 2018; 83(18): 11154-66.
[http://dx.doi.org/10.1021/acs.joc.8b01479] [PMID: 30091595]
[85]
Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today 2001; 6(7): 357-66.
[http://dx.doi.org/10.1016/S1359-6446(01)01712-3] [PMID: 11267922]
[86]
Lee SK, Lee IH, Kim HJ, Chang GS, Chung JE, No KT. The PreADME Approach: Web-based program for rapid prediction of physicochemical, drug absorption and drug-like properties Euro QSAR 2002 designing drugs and crop protectants: Processes, problems and solutions. Massachusetts, USA: Blackwell publishing 2003; pp. 418-20.
[87]
Lin JH, Yamazaki M. Role of P-glycoprotein in pharmacokinetics: Clinical implications. Clin Pharmacokinet 2003; 42(1): 59-98.
[http://dx.doi.org/10.2165/00003088-200342010-00003] [PMID: 12489979]
[88]
Ames BN, Gurney EG, Miller JA, Bartsch H. Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc Natl Acad Sci USA 1972; 69(11): 3128-32.
[http://dx.doi.org/10.1073/pnas.69.11.3128] [PMID: 4564203]
[89]
Wikipedia, the free encyclopedia. 2012. Available from: http://en.wikipedia.org/w/index.php?title=Ames_test&oldid=492194122
[90]
Liu X, Zhang B, Jin Z, Yang H, Rao Z. The crystal structure of COVID-19 main protease in complex with an inhibitor N3. Nature 2020; 2020
[http://dx.doi.org/10.2210/pdb6LU7/pdb]
[91]
Lee TW, Cherney MM, Liu J, et al. Crystal structures reveal an induced-fit binding of a substrate-like Aza-peptide epoxide to SARS coronavirus main peptidase. J Mol Biol 2007; 366(3): 916-32.
[http://dx.doi.org/10.1016/j.jmb.2006.11.078] [PMID: 17196984]
[92]
Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Improved protein-ligand docking using GOLD. Proteins 2003; 52(4): 609-23.
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[93]
Pradhan S, Mondal S, Sinha C. In search of tuberculosis drug design: An in-silico approach to azoimidazolyl derivatives as antagonist for Cytochrome P450. J Indian Chem Soc 2016; 93(9): 1067-84.
[94]
Kumar R, Bavi R, Jo MG, et al. New compounds identified through in silico approaches reduce the α-synuclein expression by inhibiting prolyl oligopeptidase in vitro. Sci Rep 2017; 7(1): 10827.
[http://dx.doi.org/10.1038/s41598-017-11302-0] [PMID: 28883518]