Exploring the Targets and Molecular Mechanisms of Thalidomide in the Treatment of Ulcerative Colitis: Network Pharmacology and Experimental Validation

Page: [2721 - 2737] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Background: Ulcerative colitis (UC) is a chronic, nonspecific, inflammatory disease of the intestine with an unknown cause. Thalidomide (THA) has been shown to be an effective drug for the treatment of UC. However, the molecular targets and mechanism of action of THA for the treatment of UC are not yet clear.

Objectives: Combining network pharmacology with in vitro experiments, this study aimed to investigate the potential targets and molecular mechanisms of THA for the treatment of UC.

Methods: Firstly, relevant targets of THA against UC were obtained from public databases. Then, the top 10 hub targets and key molecular mechanisms of THA for UC were screened based on the network pharmacology approach and bioinformatics method. Finally, an in vitro cellular inflammation model was constructed using lipopolysaccharide (LPS) induced intestinal epithelial cells (NCM460) to validate the top 10 hub targets and key signaling pathways.

Results: A total of 121 relevant targets of THA against UC were obtained, of which the top 10 hub targets were SRC, LCK, MAPK1, HSP90AA1, EGFR, HRAS, JAK2, RAC1, STAT1, and MAP2K1. The PI3K-Akt pathway was significantly associated with THA treatment of UC. In vitro experiments revealed that THA treatment reversed the expression of HSP90AA1, EGFR, STAT1, and JAK2 differential genes. THA was able to up- regulate the mRNA expression of pro-inflammatory factor IL-10 and decrease the mRNA levels of anti-inflammatory factors IL-6, IL-1β, and TNF-α. Furthermore, THA also exerted anti-inflammatory effects by inhibiting the activation of the PI3K/Akt pathway.

Conclusion: THA may play a therapeutic role in UC by inhibiting the PI3K-Akt pathway. HSP90AA1, EGFR, STAT1, and JAK2 may be the most relevant potential therapeutic targets for THA in the treatment of UC.

[1]
Wei M, Li H, Li Q, et al. Based on network pharmacology to explore the molecular targets and mechanisms of gegen qinlian decoction for the treatment of ulcerative colitis. BioMed Res Int 2020; 2020: 1-18.
[http://dx.doi.org/10.1155/2020/5217405] [PMID: 33299870]
[2]
Cosnes J, Gower-Rousseau C, Seksik P, Cortot A. Epidemiology and natural history of inflammatory bowel diseases. Gastroenterology 2011; 140(6): 1785-1794.e4.
[http://dx.doi.org/10.1053/j.gastro.2011.01.055] [PMID: 21530745]
[3]
Shapiro JM, Zoega H, Shah SA, et al. Incidence of Crohn’s disease and ulcerative colitis in rhode Island: Report from the ocean state crohn’s and colitis area registry. Inflamm Bowel Dis 2016; 22(6): 1456-61.
[http://dx.doi.org/10.1097/MIB.0000000000000745] [PMID: 26926039]
[4]
Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012; 142(1): 46-54.e42.
[http://dx.doi.org/10.1053/j.gastro.2011.10.001] [PMID: 22001864]
[5]
Taylor KM, Irving PM. Optimization of conventional therapy in patients with IBD. Nat Rev Gastroenterol Hepatol 2011; 8(11): 646-56.
[http://dx.doi.org/10.1038/nrgastro.2011.172] [PMID: 21970871]
[6]
Harbord M, Eliakim R, Bettenworth D, et al. Third european evidence-based consensus on diagnosis and management of ulcerative colitis. Part 2: Current management. J Crohn’s Colitis 2017; 11(7): 769-84.
[http://dx.doi.org/10.1093/ecco-jcc/jjx009] [PMID: 28513805]
[7]
Langhorst J, Wulfert H, Lauche R, et al. Systematic review of complementary and alternative medicine treatments in inflammatory bowel diseases. J Crohn’s Colitis 2015; 9(1): 86-106.
[http://dx.doi.org/10.1093/ecco-jcc/jju007] [PMID: 25518050]
[8]
Franks ME, Macpherson GR, Figg WD. Thalidomide. Lancet 2004; 363(9423): 1802-11.
[http://dx.doi.org/10.1016/S0140-6736(04)16308-3] [PMID: 15172781]
[9]
Lazzerini M, Martelossi S, Magazzù G, et al. Effect of thalidomide on clinical remission in children and adolescents with ulcerative colitis refractory to other immunosuppressives. Inflamm Bowel Dis 2015; 21(8): 1739-49.
[http://dx.doi.org/10.1097/MIB.0000000000000437] [PMID: 26185909]
[10]
Yang C, Singh P, Singh H, Le ML, El-Matary W. Systematic review: thalidomide and thalidomide analogues for treatment of inflammatory bowel disease. Aliment Pharmacol Ther 2015; 41(11): 1079-93.
[http://dx.doi.org/10.1111/apt.13181] [PMID: 25858208]
[11]
Qiu T, Li H, Sun T, et al. Thalidomide as a treatment for inflammatory bowel disease in children and adolescents: A systematic review. J Clin Pharm Ther 2020; 45(5): 1134-42.
[http://dx.doi.org/10.1111/jcpt.13196] [PMID: 32743898]
[12]
Millrine D, Kishimoto T. A brighter side to thalidomide: Its potential use in immunological disorders. Trends Mol Med 2017; 23(4): 348-61.
[http://dx.doi.org/10.1016/j.molmed.2017.02.006] [PMID: 28285807]
[13]
Chen JR, Mai L, Sun JC, Peng X, Zhang M, Zhi M. Efficacy and safety of low-dose thalidomide combined with mesalazine in the treatment of refractory ulcerative colitis in adults. Gastroenterol Rep 2022; 10: goac032.
[http://dx.doi.org/10.1093/gastro/goac032] [PMID: 35975242]
[14]
Peng X, Zhi M, Wei M, et al. Thalidomide results in diminished ovarian reserve in reproductive age female IBD patients. Medicine 2017; 96(21): e6540.
[http://dx.doi.org/10.1097/MD.0000000000006540] [PMID: 28538364]
[15]
Lacy MQ, McCurdy AR. Pomalidomide. Blood 2013; 122(14): 2305-9.
[http://dx.doi.org/10.1182/blood-2013-05-484782] [PMID: 23974193]
[16]
Akobeng AK, Stokkers PC. Thalidomide and thalidomide analogues for maintenance of remission in Crohn’s disease. Cochrane Libr 2009; 2009(2): CD007351.
[http://dx.doi.org/10.1002/14651858.CD007351.pub2] [PMID: 19370685]
[17]
Mueller M, Lewis DJ. Implementation of a pregnancy prevention programme (PPP) with a controlled distribution system (CDS) for the generic teratogenic phthalimides thalidomide, lenalidomide and pomalidomide. Ther Innov Regul Sci 2021; 55(6): 1155-64.
[http://dx.doi.org/10.1007/s43441-021-00327-3] [PMID: 34331266]
[18]
Trevisan G, Trevisini S, Bergamo S, et al. Adamantiades-Behçet disease: From clinical heterogeneity to diagnosis during the COVID-19 pandemic. Minerva Cardiol Angiol 2022; 70(4): 502-21.
[http://dx.doi.org/10.23736/S2724-5683.21.05847-6] [PMID: 35212505]
[19]
Nogales C, Mamdouh ZM, List M, Kiel C, Casas AI, Schmidt HHHW. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol Sci 2022; 43(2): 136-50.
[http://dx.doi.org/10.1016/j.tips.2021.11.004] [PMID: 34895945]
[20]
Liu J, Liu J, Tong X, et al. Network pharmacology prediction and molecular docking-based strategy to discover the potential pharmacological mechanism of huai hua san against ulcerative colitis. Drug Des Devel Ther 2021; 15: 3255-76.
[http://dx.doi.org/10.2147/DDDT.S319786] [PMID: 34349502]
[21]
Pinzi L, Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int J Mol Sci 2019; 20(18): 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[22]
Kim S, Chen J, Cheng T, et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res 2021; 49(D1): D1388-95.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[23]
Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res 2016; 44(D1): D1202-13.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[24]
Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res 2014; 42(W1): W32-8.
[http://dx.doi.org/10.1093/nar/gku293] [PMID: 24792161]
[25]
Liu X, Ouyang S, Yu B, et al. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 2010; 38(S2): W609-14.
[http://dx.doi.org/10.1093/nar/gkq300] [PMID: 20430828]
[26]
Wang X, Pan C, Gong J, Liu X, Li H. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. J Chem Inf Model 2016; 56(6): 1175-83.
[http://dx.doi.org/10.1021/acs.jcim.5b00690] [PMID: 27187084]
[27]
Wang X, Shen Y, Wang S, et al. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 2017; 45(W1): W356-60.
[http://dx.doi.org/10.1093/nar/gkx374] [PMID: 28472422]
[28]
Safran M, Dalah I, Alexander J, et al. GeneCards Version 3: The human gene integrator. Database 2010; 2010(0): baq020.
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[29]
Fishilevich S, Zimmerman S, Kohn A, et al. Genic insights from integrated human proteomics in GeneCards. Database 2016; 2016: baw030.
[http://dx.doi.org/10.1093/database/baw030]
[30]
Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 2015; 43(D1): D789-98.
[http://dx.doi.org/10.1093/nar/gku1205] [PMID: 25428349]
[31]
Amberger JS, Hamosh A. Searching online mendelian inheritance in man (OMIM): A knowledgebase of human genes and genetic phenotypes. Curr Protoc Bioinfo 2017; 58: 1.2.1-1.2.12.
[32]
Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res 2004; 33(Database issue): D514-7.
[http://dx.doi.org/10.1093/nar/gki033] [PMID: 15608251]
[33]
Barbarino JM, Whirl-Carrillo M, Altman RB, Klein TE. PharmGKB: A worldwide resource for pharmacogenomic information. Wiley Interdiscip Rev Syst Biol Med 2018; 10(4): e1417.
[http://dx.doi.org/10.1002/wsbm.1417] [PMID: 29474005]
[34]
Thorn CF, Klein TE, Altman RB. Pharmacogenomics and bioinformatics: PharmGKB. Pharmacogenomics 2010; 11(4): 501-5.
[http://dx.doi.org/10.2217/pgs.10.15] [PMID: 20350130]
[35]
Klein TE, Altman RB. PharmGKB: The pharmacogenetics and pharmacogenomics knowledge base. Pharmacogenomics J 2004; 4(1): 1.
[http://dx.doi.org/10.1038/sj.tpj.6500230] [PMID: 14735107]
[36]
Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res 2018; 46(D1): D1074-82.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[37]
Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: Shedding new light on drug metabolism. Nucleic Acids Res 2014; 42(D1): D1091-7.
[http://dx.doi.org/10.1093/nar/gkt1068] [PMID: 24203711]
[38]
Knox C, Law V, Jewison T, et al. DrugBank 3.0: A comprehensive resource for ‘Omics’ research on drugs. Nucleic Acids Res 2011; 39(Database): D1035-41.
[http://dx.doi.org/10.1093/nar/gkq1126] [PMID: 21059682]
[39]
Wang M, Zhong B, Li M, Wang Y, Yang H, Du K. Identification of potential core genes and pathways predicting pathogenesis in head and neck squamous cell carcinoma. Biosci Rep 2021; 41(5): BSR20204148.
[http://dx.doi.org/10.1042/BSR20204148] [PMID: 33982750]
[40]
Dong Q, Chen K, Xie J, et al. Identification of key genes and pathways in discoid lupus skin via bioinformatics analysis. Medicine 2021; 100(16): e25433.
[http://dx.doi.org/10.1097/MD.0000000000025433] [PMID: 33879674]
[41]
Scott DE, Bayly AR, Abell C, Skidmore J. Small molecules, big targets: Drug discovery faces the protein–protein interaction challenge. Nat Rev Drug Discov 2016; 15(8): 533-50.
[http://dx.doi.org/10.1038/nrd.2016.29] [PMID: 27050677]
[42]
Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019; 47(D1): D607-13.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[43]
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 2014; 8(S4): S11.
[http://dx.doi.org/10.1186/1752-0509-8-S4-S11] [PMID: 25521941]
[44]
Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc 2016; 11(5): 905-19.
[http://dx.doi.org/10.1038/nprot.2016.051] [PMID: 27077332]
[45]
Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res 2000; 28(1): 235-42.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[46]
Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 2010; 24(5): 417-22.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[47]
Zhu Y, Zhong W, Peng J, Wu H, Du S. Study on the mechanism of baimai ointment in the treatment of osteoarthritis based on network pharmacology and molecular docking with experimental verification. Front Genet 2021; 12: 750681.
[http://dx.doi.org/10.3389/fgene.2021.750681] [PMID: 34868222]
[48]
Zhang L, Han L, Wang X, et al. Exploring the mechanisms underlying the therapeutic effect of Salvia miltiorrhiza in diabetic nephropathy using network pharmacology and molecular docking. Biosci Rep 2021; 41(6): BSR20203520.
[http://dx.doi.org/10.1042/BSR20203520] [PMID: 33634308]
[49]
Chen K, Shang S, Yu S, Cui L, Li S, He N. Identification and exploration of pharmacological pyroptosis-related biomarkers of ulcerative colitis. Front Immunol 2022; 13: 998470.
[http://dx.doi.org/10.3389/fimmu.2022.998470] [PMID: 36311726]
[50]
Pan Z, Lin H, Fu Y, et al. Identification of gene signatures associated with ulcerative colitis and the association with immune infiltrates in colon cancer. Front Immunol 2023; 14: 1086898.
[http://dx.doi.org/10.3389/fimmu.2023.1086898] [PMID: 36742294]
[51]
Yin B, Bi YM, Fan GJ, Xia YQ. Molecular mechanism of the effect of huanglian jiedu decoction on type 2 diabetes mellitus based on network pharmacology and molecular docking. J Diabetes Res 2020; 2020: 1-24.
[http://dx.doi.org/10.1155/2020/5273914] [PMID: 33134394]
[52]
Li X, Tang H, Tang Q, Chen W. Decoding the mechanism of huanglian jiedu decoction in treating pneumonia based on network pharmacology and molecular docking. Front Cell Dev Biol 2021; 9: 638366.
[http://dx.doi.org/10.3389/fcell.2021.638366] [PMID: 33681222]
[53]
Cartwright CA, Coad CA, Egbert BM. Elevated c-Src tyrosine kinase activity in premalignant epithelia of ulcerative colitis. J Clin Invest 1994; 93(2): 509-15.
[http://dx.doi.org/10.1172/JCI117000] [PMID: 7509341]
[54]
Kumar Singh P, Kashyap A, Silakari O. Exploration of the therapeutic aspects of Lck: A kinase target in inflammatory mediated pathological conditions. Biomed Pharmacother 2018; 108: 1565-71.
[http://dx.doi.org/10.1016/j.biopha.2018.10.002] [PMID: 30372858]
[55]
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y, Hu LL. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 2020; 19(3): 1997-2007.
[PMID: 32104259]
[56]
Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol 2005; 6(5): 322-7.
[http://dx.doi.org/10.1016/S1470-2045(05)70168-6] [PMID: 15863380]
[57]
Szczuka I, Wierzbicki J, Serek P, Szczęśniak-Sięga BM, Krzystek-Korpacka M. Heat shock proteins HSPA1 and HSP90AA1 are upregulated in colorectal polyps and can be targeted in cancer cells by anti-inflammatory oxicams with arylpiperazine pharmacophore and benzoyl moiety substitutions at thiazine ring. Biomolecules 2021; 11(11): 1588.
[http://dx.doi.org/10.3390/biom11111588] [PMID: 34827586]
[58]
Lu N, Wang L, Cao H, et al. Activation of the epidermal growth factor receptor in macrophages regulates cytokine production and experimental colitis. J Immunol 2014; 192(3): 1013-23.
[http://dx.doi.org/10.4049/jimmunol.1300133] [PMID: 24391216]
[59]
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018; 12(1): 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[60]
Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal 2017; 15(1): 23.
[http://dx.doi.org/10.1186/s12964-017-0177-y] [PMID: 28637459]
[61]
Hillmer EJ, Zhang H, Li HS, Watowich SS. STAT3 signaling in immunity. Cytokine Growth Factor Rev 2016; 31: 1-15.
[http://dx.doi.org/10.1016/j.cytogfr.2016.05.001] [PMID: 27185365]
[62]
Wang L, Feng Y, Wang J, et al. Arbutin ameliorates murine colitis by inhibiting JAK2 signaling pathway. Front Pharmacol 2021; 12: 683818.
[http://dx.doi.org/10.3389/fphar.2021.683818] [PMID: 34594215]
[63]
Gao X, Xu W, Lu T, Zhou J, Ge X, Hua D. MicroRNA-142-3p promotes cellular invasion of colorectal cancer cells by activation of RAC1. Technol Cancer Res Treat 2018; 17
[http://dx.doi.org/10.1177/1533033818790508] [PMID: 30064309]
[64]
Kotelevets L, Chastre E. Rac1 Signaling: From intestinal homeostasis to colorectal cancer metastasis. Cancers 2020; 12(3): 665.
[http://dx.doi.org/10.3390/cancers12030665] [PMID: 32178475]
[65]
Mudter J, Weigmann B, Bartsch B, et al. Activation pattern of Signal Transducers and Activators of Transcription (STAT) factors in inflammatory bowel diseases. Am J Gastroenterol 2005; 100(1): 64-72.
[http://dx.doi.org/10.1111/j.1572-0241.2005.40615.x] [PMID: 15654782]
[66]
Terzić J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology 2010; 138(6): 2101-2114.e5.
[http://dx.doi.org/10.1053/j.gastro.2010.01.058] [PMID: 20420949]
[67]
Wu XF, Xu R, Ouyang ZJ, et al. Beauvericin ameliorates experimental colitis by inhibiting activated T cells via downregulation of the PI3K/Akt signaling pathway. PLoS One 2013; 8(12): e83013.
[http://dx.doi.org/10.1371/journal.pone.0083013] [PMID: 24340073]
[68]
Jiang W, Han YP, Hu M, Bao XQ, Yan Y, Chen G. A study on regulatory mechanism of miR-223 in ulcerative colitis through PI3K/Akt-mTOR signaling pathway. Eur Rev Med Pharmacol Sci 2019; 23(11): 4865-72.
[PMID: 31210320]
[69]
Huang XL, Xu J, Zhang XH, et al. PI3K/Akt signaling pathway is involved in the pathogenesis of ulcerative colitis. Inflamm Res 2011; 60(8): 727-34.
[http://dx.doi.org/10.1007/s00011-011-0325-6] [PMID: 21442372]
[70]
Li C, Wang L, Zhao J, et al. Lonicera rupicola Hook.f.et Thoms flavonoids ameliorated dysregulated inflammatory responses, intestinal barrier, and gut microbiome in ulcerative colitis via PI3K/AKT pathway. Phytomedicine 2022; 104: 154284.
[http://dx.doi.org/10.1016/j.phymed.2022.154284] [PMID: 35777121]
[71]
Dong L, Du H, Zhang M, et al. Anti-inflammatory effect of Rhein on ulcerative colitis via inhibiting PI3K/Akt/mTOR signaling pathway and regulating gut microbiota. Phytother Res 2022; 36(5): 2081-94.
[http://dx.doi.org/10.1002/ptr.7429] [PMID: 35229916]
[72]
Bai XS, Bai G, Tang LD, Li Y, Huan Y, Wang H. MiR-195 alleviates ulcerative colitis in rats via MAPK signaling pathway. Eur Rev Med Pharmacol Sci 2020; 24(5): 2640-6.
[PMID: 32196614]
[73]
Gao Z, Yu C, Liang H, et al. Andrographolide derivative CX-10 ameliorates dextran sulphate sodium-induced ulcerative colitis in mice: Involvement of NF-κB and MAPK signalling pathways. Int Immunopharmacol 2018; 57: 82-90.
[http://dx.doi.org/10.1016/j.intimp.2018.02.012] [PMID: 29475099]
[74]
Gao W, Wang C, Yu L, et al. Chlorogenic acid attenuates dextran sodium sulfate-induced ulcerative colitis in mice through MAPK/ERK/JNK pathway. BioMed Res Int 2019; 2019: 1-13.
[http://dx.doi.org/10.1155/2019/6769789] [PMID: 31139644]
[75]
Jang D, Lee AH, Shin HY, et al. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int J Mol Sci 2021; 22(5): 2719.
[http://dx.doi.org/10.3390/ijms22052719] [PMID: 33800290]
[76]
Monaco C, Nanchahal J, Taylor P, Feldmann M. Anti-TNF therapy: Past, present and future. Int Immunol 2015; 27(1): 55-62.
[http://dx.doi.org/10.1093/intimm/dxu102] [PMID: 25411043]
[77]
Guo Y, Lu N, Bai A. Clinical use and mechanisms of infliximab treatment on inflammatory bowel disease: A recent update. BioMed Res Int 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/581631] [PMID: 23484133]