Water Extract of Onion Catalyst: A Sustainable Approach for the Synthesis of 4-Substituted 1,5-Benzodiazepine Derivatives via an In Situ Generated Enaminones

Page: [232 - 247] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: A simple, convenient and environmentally benign green protocol has been developed for the one-pot synthesis of 4-substituted-1,5-benzodiazepines through three-component reaction of 1,2-diamine, 1,3-cyclic diketone with an aldehyde catalyzed by water extract of onion. The reaction conditions were optimized and the scope of the reaction was extended to various 1,2- diamines, 1,3-cyclic diketones and aldehydes. The main advantages of this method are good to excellent yields, easy workup, simple experimental procedure, and an ability to tolerate a variety of functional groups which gives cost-effective as well as green rewards. The structure of compound 5f was confirmed by single crystal X-ray analysis.

Objective: A methodology developed for the synthesizing of 4-substituted 1,5-Benzodiazepine derivatives via enaminones intermediates using 1,2-diamine, 1,3-cyclic diketone and aldehyde in environmentally friendly ethanol as medium.

Methods: As a more environmentally friendly catalyst for producing products containing benzodiazepines using aqueous extract of onion. The devised method was proven reliable, non-toxic and greener solvent with quick work-up to produce the intended product.

Results: Here, using a one-pot, three-component reaction with a dimedone, 1,2-diamine and range of aldehyde while using water extract of onion as a catalyst. The acquired experimental results showed that the employed synthesis methodology is a straightforward procedure that offers various benefits, including sustainability, easy separtion from the reaction medium.

Conclusion: We have developed a sustainble approach for synthesizing benzodiazepine from radily available precursors under mild reaction conditions.

Graphical Abstract

[1]
Mozafari, R.; Ghadermazi, M. A nickel nanoparticle engineered CoFe 2 O 4 @GO–Kryptofix 22 composite: A green and retrievable catalytic system for the synthesis of 1,4-benzodiazepines in water. RSC Advances, 2020, 10(26), 15052-15064.
[http://dx.doi.org/10.1039/D0RA01671C] [PMID: 35495454]
[2]
Kumaravel, K.; Vasuki, G. Multi-component reactions in water. Curr. Org. Chem., 2009, 13(18), 1820-1841.
[http://dx.doi.org/10.2174/138527209789630514]
[3]
Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
[4]
Murai, K.; Nakatani, R.; Kita, Y.; Fujioka, H. One-pot three-component reaction providing 1,5-benzodiazepine derivatives. Tetrahedron, 2008, 64(49), 11034-11040.
[http://dx.doi.org/10.1016/j.tet.2008.09.076]
[5]
Ghandi, M.; Momeni, T.; Nazeri, M.T.; Zarezadeh, N.; Kubicki, M. A one-pot three-component reaction providing tricyclic 1,4-benzoxazepine derivatives. Tetrahedron Lett., 2013, 54(23), 2983-2985.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.131]
[6]
Nongrum, R.; Kharmawlong, G.K.; Rani, J.W.S.; Rahman, N.; Dutta, A.; Nongkhlaw, R. Organocatalytic green approach towards the fabrication of fused benzo N, N‐containing heterocycles facilitated by ultrasonic irradiation. J. Heterocycl. Chem., 2019, 56(10), 2873-2883.
[http://dx.doi.org/10.1002/jhet.3680]
[7]
McRobb, F.M.; Crosby, I.T.; Yuriev, E.; Lane, J.R.; Capuano, B. Homobivalent ligands of the atypical antipsychotic clozapine: Design, synthesis, and pharmacological evaluation. J. Med. Chem., 2012, 55(4), 1622-1634.
[http://dx.doi.org/10.1021/jm201420s] [PMID: 22243698]
[8]
Hester, J.B., Jr; Rudzik, A.D.; Von Voigtlander, P. 2,4-Dihydro-6-phenyl-1H-s-triazolo[4,3-a][1,4]benzodiazepin-1-ones with antianxiety and antidepressant activity. J. Med. Chem., 1980, 23(4), 402-405.
[http://dx.doi.org/10.1021/jm00178a010] [PMID: 6103959]
[9]
De Corte, B.L. From 4,5,6,7-tetrahydro-5-methylimidazo[4,5,1-jk](1,4)benzodiazepin-2(1H)-one (TIBO) to etravirine (TMC125): Fifteen years of research on non-nucleoside inhibitors of HIV-1 reverse transcriptase. J. Med. Chem., 2005, 48(6), 1689-1696.
[http://dx.doi.org/10.1021/jm040127p] [PMID: 15771411]
[10]
Schimer, J. Cígler, P.; Veselý, J.; Grantz Šašková, K.; Lepšík, M.; Brynda, J.; Řezáčová, P.; Kožíšek, M.; Císařová, I.; Oberwinkler, H.; Kraeusslich, H.G.; Konvalinka, J. Structure-aided design of novel inhibitors of HIV protease based on a benzodiazepine scaffold. J. Med. Chem., 2012, 55(22), 10130-10135.
[http://dx.doi.org/10.1021/jm301249q] [PMID: 23050738]
[11]
McGowan, D.; Nyanguile, O.; Cummings, M.D.; Vendeville, S.; Vandyck, K.; Van den Broeck, W.; Boutton, C.W.; De Bondt, H.; Quirynen, L.; Amssoms, K.; Bonfanti, J.F.; Last, S.; Rombauts, K.; Tahri, A.; Hu, L.; Delouvroy, F.; Vermeiren, K.; Vandercruyssen, G.; Van der Helm, L.; Cleiren, E.; Mostmans, W.; Lory, P.; Pille, G.; Van Emelen, K.; Fanning, G.; Pauwels, F.; Lin, T.I.; Simmen, K.; Raboisson, P. 1,5-Benzodiazepine inhibitors of HCV NS5B polymerase. Bioorg. Med. Chem. Lett., 2009, 19(9), 2492-2496.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.035] [PMID: 19342234]
[12]
Micale, N.; Kozikowski, A.P.; Ettari, R.; Grasso, S.; Zappalà, M.; Jeong, J.J.; Kumar, A.; Hanspal, M.; Chishti, A.H. Novel peptidomimetic cysteine protease inhibitors as potential antimalarial agents. J. Med. Chem., 2006, 49(11), 3064-3067.
[http://dx.doi.org/10.1021/jm060405f] [PMID: 16722625]
[13]
Zeneroli, M.L.; Venturini, I.; Stefanelli, S.; Farina, F.; Cosenza, R.; Miglioli, L.; Minelli, E.; Amedei, R.; Ferrieri, A.; Avallone, R.; Baraldi, M. Antibacterial activity of rifaximin reduces the levels of benzodiazepine-like compounds in patients with liver cirrhosis. Pharmacol. Res., 1997, 35(6), 557-560.
[http://dx.doi.org/10.1006/phrs.1997.0198] [PMID: 9356209]
[14]
Roma, G.; Grossi, G.C.; Di Braccio, M.; Ghia, M.; Mattioli, F. 1,5-Benzodiazepines IX. A new route to substituted 4H-[1,2,4]triazolo[4,3-a][1,5]benzodiazepin-5-amines with analgesic and/or anti-inflammatory activities. Eur. J. Med. Chem., 1991, 26(5), 489-496.
[http://dx.doi.org/10.1016/0223-5234(91)90144-C]
[15]
Uchida, H.; Suzuki, T.; Mamo, D.C.; Mulsant, B.H.; Kikuchi, T.; Takeuchi, H.; Tomita, M.; Watanabe, K.; Yagi, G.; Kashima, H. Benzodiazepine and antidepressant use in elderly patients with anxiety disorders: A survey of 796 outpatients in Japan. J. Anxiety Disord., 2009, 23(4), 477-481.
[http://dx.doi.org/10.1016/j.janxdis.2008.10.003] [PMID: 19010641]
[16]
Wang, X.; Morris-Natschke, S.L.; Lee, K.H. New developments in the chemistry and biology of the bioactive constituents of tanshen. Med. Res. Rev., 2007, 27(1), 133-148.
[http://dx.doi.org/10.1002/med.20077] [PMID: 16888751]
[17]
Patt, R.B.; Proper, G.; Reddy, S. The neuroleptics as adjuvant analgesics. J. Pain Symptom Manage., 1994, 9(7), 446-453.
[http://dx.doi.org/10.1016/0885-3924(94)90201-1] [PMID: 7822884]
[18]
Antonow, D.; Thurston, D.E. Synthesis of DNA-interactive Pyrrolo[2,1- c][1,4]benzodiazepines (PBDs). Chem. Rev., 2011, 111(4), 2815-2864.
[http://dx.doi.org/10.1021/cr100120f] [PMID: 21166464]
[19]
Castro, J.L.; Ball, R.G.; Broughton, H.B.; Russell, M.G.N.; Rathbone, D.; Watt, A.P.; Baker, R.; Chapman, K.L.; Fletcher, A.E.; Patel, S.; Smith, A.J.; Marshall, G.R.; Ryecroft, W.; Matassa, V.G. Controlled modification of acidity in cholecystokinin B receptor antagonists: N -(1,4-Benzodiazepin-3-yl)- N ‘-[3-(tetrazol-5-ylamino)phenyl]ureas. J. Med. Chem., 1996, 39(4), 842-849.
[http://dx.doi.org/10.1021/jm9506736] [PMID: 8632408]
[20]
Sangshetti, J.N.; Chouthe, R.S.; Jadhav, M.R.; Sakle, N.S.; Chabukswar, A.; Gonjari, I.; Darandale, S.; Shinde, D.B. Green synthesis and anxiolytic activity of some new dibenz-[1,4] diazepine-1-one analogues. Arab. J. Chem., 2017, 10, S1356-S1363.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.004]
[21]
Tolpygin, I.E.; Mikhailenko, N.V.; Bumber, A.A.; Shepelenko, E.N.; Revinsky, U.V.; Dubonosov, A.D.; Bren’, V.A.; Minkin, V.I. 11-R-dibenzo[b,e][1,4]diazepin-1-ones, the chemosensors for transition metal cations. Russ. J. Gen. Chem., 2012, 82(7), 1243-1249.
[http://dx.doi.org/10.1134/S1070363212070109]
[22]
Strakov, A.Y.; Petrova, M.V.; Tonkikh, N.N.; Gurkovskii, A.I.; Popelis, Y.; Kreishman, G.P.; Belyakov, S.V. Dibenzodiazepines in reactions of 2-acetyl-dimedone with 3,4-diaminobenzophenone. Chem. Heterocycl. Compd., 1997, 33(3), 321-332.
[http://dx.doi.org/10.1007/BF02253113]
[23]
Karimi, A.R.; Khodadadi, A. Multi-component synthesis of 6-alkoxy-2-amino-3, 5-dicyanopyridines. Lett. Org. Chem., 2012, 9(6), 422-426.
[http://dx.doi.org/10.2174/157017812801322525]
[24]
Wang, S.L.; Cheng, C.; Wu, F.Y.; Jiang, B.; Shi, F.; Tu, S.J.; Rajale, T.; Li, G. Microwave-assisted multi-component reaction in water leading to highly regioselective formation of benzo[f]azulen-1-ones. Tetrahedron, 2011, 67(25), 4485-4493.
[http://dx.doi.org/10.1016/j.tet.2011.05.002] [PMID: 21731115]
[25]
Maiti, G.; Kayal, U.; Karmakar, R.; Bhattacharya, R.N. Terminal alkynes as keto-methyl equivalent toward one pot synthesis of 1,5-benzodiazepine derivatives under catalysis of Hg(OTf)2. Tetrahedron Lett., 2012, 53(12), 1460-1463.
[http://dx.doi.org/10.1016/j.tetlet.2012.01.036]
[26]
Curini, M.; Epifano, F.; Marcotullio, M.C.; Rosati, O. Ytterbium triflate promoted synthesis of 1,5-benzodiazepine derivatives. Tetrahedron Lett., 2001, 42(18), 3193-3195.
[http://dx.doi.org/10.1016/S0040-4039(01)00413-0]
[27]
De, S.K.; Gibbs, R.A. Scandium(III) triflate as an efficient and reusable catalyst for synthesis of 1,5-benzodiazepine derivatives. Tetrahedron Lett., 2005, 46(11), 1811-1813.
[http://dx.doi.org/10.1016/j.tetlet.2005.01.113]
[28]
Maleki, A.; Kamalzare, M. An efficient synthesis of benzodiazepine derivatives via a one-pot, three-component reaction accelerated by a chitosan-supported superparamagnetic iron oxide nanocomposite. Tetrahedron Lett., 2014, 55(50), 6931-6934.
[http://dx.doi.org/10.1016/j.tetlet.2014.10.120]
[29]
Adapa, S.; Varala, R.; Enugala, R.; Nuvula, S. Ceric ammonium nitrate (CAN) promoted efficient synthesis of 1, 5-benzodiazepine derivatives. Synlett, 2006, 2006(7), 1009-1014.
[http://dx.doi.org/10.1055/s-2006-939066]
[30]
Naeimi, H.; Foroughi, H. ZnS nanoparticles as an efficient recyclable heterogeneous catalyst for one-pot synthesis of 4-substituted-1,5-benzodiazepines. New J. Chem., 2015, 39(2), 1228-1236.
[http://dx.doi.org/10.1039/C4NJ01893A]
[31]
Savari, A.; Heidarizadeh, F.; Pourreza, N. Synthesis and characterization of CoFe2O4@SiO2@NH-NH2-PCuW as an acidic nano catalyst for the synthesis of 1,4-benzodiazepines and a powerful dye remover. Polyhedron, 2019, 166, 233-247.
[http://dx.doi.org/10.1016/j.poly.2019.03.046]
[32]
Kausar, N.; Mukherjee, P.; Das, A.R. Practical carbocatalysis by graphene oxide nanosheets in aqueous medium towards the synthesis of diversified dibenzo[1,4]diazepine scaffolds. RSC Advances, 2016, 6(91), 88904-88910.
[http://dx.doi.org/10.1039/C6RA17520A]
[33]
Nagaraju, S.; Perumal, P. O.; Divakar, K.; Paplal, B.; Kashinath, D. “On water” synthesis of dibenzo-[1,4]-diazepin-1-ones using L -proline as an organocatalyst and under catalyst-free conditions, and their evaluation as α-glucosidase inhibitors. New J. Chem., 2017, 41(17), 8993-9001.
[http://dx.doi.org/10.1039/C7NJ01021D]
[34]
Indalkar, K.S.; Patil, M.S.; Chaturbhuj, G.U. An efficient, environmentally benign, and solvent-free protocol for the synthesis of 4-substituted 1,5-benzodiazepines catalyzed by reusable sulfated polyborate. Tetrahedron Lett., 2017, 58(48), 4496-4502.
[http://dx.doi.org/10.1016/j.tetlet.2017.10.030]
[35]
Bhagat, K.; Singh, A.; Dhiman, S.; Vir Singh, J.; Kaur, R.; Kaur, G.; Kaur Gulati, H.; Singh, P.; Kumar, R.; Salwan, R.; Bhagat, K.; Singh, H.; Sharma, S.; Singh Bedi, P.M. Microwave-assisted synthesis of 11-substituted-3,3-dimethyl-2,3,4,5,10,11-hexahydrodibenzo[b,e][1,4]diazepin-1-one derivatives catalysed by silica supported fluoroboric acid as potent antioxidant and anxiolytic agents. Med. Chem. Res., 2019, 28(12), 2200-2217.
[http://dx.doi.org/10.1007/s00044-019-02447-w]
[36]
Ahmadi, T.; Mohammadi Ziarani, G.; Masoumian Hoseini, S.M.; Badiei, A.; Ranjbar, M.M. Synthesis, characterization, and molecular docking of benzodiazepines in the presence of SrFe12O19 magnetic nanocatalyst. J. Indian Chem. Soc., 2021, 18(8), 2047-2056.
[http://dx.doi.org/10.1007/s13738-021-02163-6]
[37]
Hazai, V.; Szabó, T.; Volk, B.; Milen, M. Propylphosphonic anhydride (T3P®)-mediated three-component synthesis of hexahydrodibenzo[b,e][1,4]diazepin-1-one derivatives. Chem. Heterocycl. Compd., 2020, 56(2), 237-240.
[http://dx.doi.org/10.1007/s10593-020-02650-3]
[38]
Pourghasem, S.; Moeinpour, F.; Mohseni-Shahri, F.S. Cu(II)/polyimide linked COF: An effective mesoporous catalyst for solvent-free 1,5-benzodiazepine synthesis. Arab. J. Chem., 2023, 16(5), 104694-104704.
[http://dx.doi.org/10.1016/j.arabjc.2023.104694]
[39]
Ghadiri, S.K.; Baghbanian, S.M.; Khaksar, S. Mild and highly efficient method for synthesis of 1,5-benzodiazepine using pentafluorobenzenaminium hexafluorophosphate as a novel organocatalyst. J. Mol. Struct., 2023, 1272, 134057-134061.
[http://dx.doi.org/10.1016/j.molstruc.2022.134057]
[40]
Mohlala, R.L.; Coyanis, E.M.; Fernandes, M.A.; Bode, M.L. Catalyst-free synthesis of novel 1,5-benzodiazepines and 3,4-dihydroquinoxalines using isocyanide-based one-pot, three- and four-component reactions. RSC Advances, 2021, 11(39), 24466-24473.
[http://dx.doi.org/10.1039/D1RA04444C] [PMID: 35479051]
[41]
Malmir, M.; Heravi, M.M.; Yekke-Ghasemi, Z.; Saberi, S.; Mirzaei, M. Fabrication of heterogeneous Zr-containing polyoxometalate as an efficient catalyst for the synthesis of a broad range of 1,5-benzodiazepine derivatives. J. Mol. Struct., 2023, 1275, 134631-134641.
[http://dx.doi.org/10.1016/j.molstruc.2022.134631]
[42]
Jiang, J.; Queneau, Y.; Popowycz, F. Ammonium acetate catalyzed formation of 1,5-Benzodiazepines through [4+2+1] Cycloaddition involving 5-Hydroxymethylfurfural. Eur. J. Org. Chem., 2023, 26(19), e202300144.
[http://dx.doi.org/10.1002/ejoc.202300144]
[43]
Prabakaran, K.; Sivakumar, M.; Perumal, M.S. A simple, efficient green protocol for the synthesis of β‐enaminone and enamino ester derivatives by using onion extract as green catalyst. ChemistrySelect, 2017, 2(8), 2363-2372.
[http://dx.doi.org/10.1002/slct.201601515]
[44]
Kaliyan, P.; Matam, S.; Muthu, S.P. Water extract of onion catalyzed Knoevenagel condensation reaction: An efficient green procedure for synthesis of α-cyanoacrylonitriles and α-cyanoacrylates. Asian J. Green Chem., 2019, 3(2), 137-152.
[http://dx.doi.org/10.22034/ajgc.2018.137885.1079]
[45]
Kaliyan, P.; Selvaraj, L.; Muthu, S.P. Water extract of onion catalyst: An economical green route for the synthesis of 2-substituted and 1,2-disubstituted benzimidazole derivatives with high selectivity. J. Heterocycl. Chem., 2021, 58(1), 340-349.
[http://dx.doi.org/10.1002/jhet.4177]
[46]
Tang, W.; Yu, H.; Cai, C.; Zhao, T.; Lu, C.; Zhao, S.; Lu, X. Solvent effects on a derivative of 1,3,4-oxadiazole tautomerization reaction in water: A reaction density functional theory study. Chem. Eng. Sci., 2020, 213, 115380-115387.
[http://dx.doi.org/10.1016/j.ces.2019.115380]
[47]
Yu, X.; Tang, W.; Zhao, T.; Jin, Z.; Zhao, S.; Liu, H. Confinement effect on molecular conformation of alkanes in water-filled cavitands: A combined quantum/classical density functional theory study. Langmuir, 2018, 34(45), 13491-13496.
[http://dx.doi.org/10.1021/acs.langmuir.8b02209] [PMID: 30350710]
[48]
Tang, W.; Cai, C.; Zhao, S.; Liu, H. Development of reaction density functional theory and its application to glycine tautomerization reaction in aqueous solution. J. Phys. Chem. C, 2018, 122(36), 20745-20754.
[http://dx.doi.org/10.1021/acs.jpcc.8b05383]
[49]
Zhang, H.; Tang, W.; Xie, P.; Zhao, S. Demystifying solvent effects on diels–alder reactions in pure and mixed solvents: A combined electronic DFT and QM/MM study. Ind. Eng. Chem. Res., 2023, 62(19), 7721-7730.
[http://dx.doi.org/10.1021/acs.iecr.3c01033]
[50]
Tang, W.; Zhao, J.; Jiang, P.; Xu, X.; Zhao, S.; Tong, Z. Solvent effects on the symmetric and asymmetric SN2 reactions in the acetonitrile solution: A reaction density functional theory study. J. Phys. Chem. B, 2020, 124(15), 3114-3122.
[http://dx.doi.org/10.1021/acs.jpcb.0c00607] [PMID: 32208658]
[51]
Hughes, E.D. Steric hindrance. Q. Rev. Chem. Soc., 1948, 2(2), 107-131.
[http://dx.doi.org/10.1039/qr9480200107]
[52]
Gein, V.L.; Nosova, N.V.; Yankin, A.N.; Bazhina, A.Y.; Dmitriev, M.V. Stereoselective synthesis of novel functionalized cyclohexanone derivatives via the condensation of aromatic aldehydes with acetoacetamide and the influence of the ortho-effect and autocondensation. Tetrahedron Lett., 2019, 60(24), 1592-1596.
[http://dx.doi.org/10.1016/j.tetlet.2019.05.023]
[53]
Tarannum, S.; Siddiqui, Z.N. Fe(OTs) 3/SiO 2: A novel catalyst for the multicomponent synthesis of dibenzodiazepines under solvent-free conditions. RSC Advances, 2015, 5(91), 74242-74250.
[http://dx.doi.org/10.1039/C5RA12085C]
[54]
Moeini korbekandi, M.; Nasr-Esfahani, M.; Mohammadpoor-Baltork, I.; Moghadam, M.; Tangestaninejad, S.; Mirkhani, V. Preparation and application of a new supported nicotine-based organocatalyst for synthesis of various 1, 5-benzodiazepines. Catal. Lett., 2019, 149(4), 1057-1066.
[http://dx.doi.org/10.1007/s10562-019-02668-z]