Oxidative Stress in Beta-thalassemia Patients: Role of Enzymatic and Non-enzymatic Modulators

Page: [1030 - 1037] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Oxidative stress is a pathophysiological state that arises due to an imbalance created between ROS generation and the antioxidant potential of the host cell. Transfusion- dependent beta-thalassemia major patients are at high risk of cellular and molecular damages induced by ROS mainly due to iron overload caused by repetitive blood transfusion.

Objectives: To analyze oxidative stress status levels in β-thalassemia patients. To analyze the expression profile of enzymatic (NOS2, OGG1, HuR, SOD2) and non-enzymatic (VDR) redox regulators in β-thalassemia patients. To assess polymorphism in VDR (rs2228570) and NOS2 (rs944725) in β-thalassemia patients. To analyze serum vitamin D levels of β-TM patients compared to healthy individuals.

Methods: The present case-control study aimed to identify Vitamin D levels in the serum of β-thalassemia patients and compared it with healthy subjects. The study further analyzed VDR FOKI (rs2228570) polymorphism through ARMS-PCR. Expression profiling of VDR, anti-oxidant enzyme (SOD2 and GPx), and their respective regulator (HuR and NrF2) transcripts was done by the 2–ΔΔCt method.

Results: The study reports that there is no a significant difference between the Vitamin D levels among healthy and patients. VDR polymorphism analysis (rs2228570) demonstrates that although the C allele is prevalent in the study cohort, the frequency of the T allele is comparatively higher in β-thalassemia patients as compared to healthy subjects. Furthermore, patients express lower levels of anti-oxidant enzymes despite having increased oxidative stress.

Conclusion: The study reports that β-thalassemia patients are at higher risk of cellular and molecular damages induced by oxidative stress and their associated pathologies inefficient enzymatic and non-enzymatic anti-oxidant defense systems.

Graphical Abstract

[1]
Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/8416763] [PMID: 28819546]
[2]
Rajendran, P.; Nandakumar, N.; Rengarajan, T.; Palaniswami, R.; Gnanadhas, E.N.; Lakshminarasaiah, U.; Gopas, J.; Nishigaki, I. Antioxidants and human diseases. Clin. Chim. Acta, 2014, 436, 332-347.
[http://dx.doi.org/10.1016/j.cca.2014.06.004] [PMID: 24933428]
[3]
Halliwell, B.; Gutteridge, J.M. Free radicals in biology and medicine; Oxford university press: USA, 2015.
[http://dx.doi.org/10.1093/acprof:oso/9780198717478.001.0001]
[4]
Mohammadi, M. Oxidative stress and polycystic ovary syndrome: A brief review. Int. J. Prev. Med., 2019, 10(1), 86.
[http://dx.doi.org/10.4103/ijpvm.IJPVM_576_17] [PMID: 31198521]
[5]
Kumari, S.; Badana, A.K.; G, M.M.; G, S.; Malla, R. Reactive oxygen species: a key constituent in cancer survival. Biomark. Insights, 2018, 13
[http://dx.doi.org/10.1177/1177271918755391] [PMID: 29449774]
[6]
Nagababu, E.; Fabry, M.E.; Nagel, R.L.; Rifkind, J.M. Heme degradation and oxidative stress in murine models for hemoglobinopathies: Thalassemia, sickle cell disease and hemoglobin C disease. Blood Cells Mol. Dis., 2008, 41(1), 60-66.
[http://dx.doi.org/10.1016/j.bcmd.2007.12.003] [PMID: 18262448]
[7]
Zhao, J.; Yang, M.; Shao, J.; Bai, Y.; Li, M. Association between VDR FokI polymorphism and intervertebral disk degeneration. Genomics Proteomics Bioinformatics, 2015, 13(6), 371-376.
[http://dx.doi.org/10.1016/j.gpb.2015.11.003] [PMID: 26772150]
[8]
Kerr Whitfield, G.; Remus, L.S.; Jurutka, P.W.; Zitzer, H.; Oza, A.K.; Dang, H.T.L.; Haussler, C.A.; Galligan, M.A.; Thatcher, M.L.; Dominguez, C.E.; Haussler, M.R. Functionally relevant polymorphisms in the human nuclear vitamin D receptor gene. Mol. Cell. Endocrinol., 2001, 177(1-2), 145-159.
[http://dx.doi.org/10.1016/S0303-7207(01)00406-3] [PMID: 11377830]
[9]
Matés, M. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology, 2000, 153(1-3), 83-104.
[http://dx.doi.org/10.1016/S0300-483X(00)00306-1] [PMID: 11090949]
[10]
Shah, F.; Huey, K.; Deshpande, S.; Turner, M.; Chitnis, M.; Schiller, E.; Yucel, A.; Moro Bueno, L.; Oliva, E.N. Relationship between Serum Ferritin and Outcomes in β-Thalassemia: A Systematic Literature Review. J. Clin. Med., 2022, 11(15), 4448.
[http://dx.doi.org/10.3390/jcm11154448] [PMID: 35956067]
[11]
Kim, Y.; Kimball, S.; Karthikeyan, M.; Hempel, N. Translational regulation of Sod2 occurs during early anchorage independence. Free Radic. Biol. Med., 2020, 159, S56.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.10.150]
[12]
Zakaria, N.A.; Islam, M.A.; Abdullah, W.Z.; Bahar, R.; Mohamed Yusoff, A.A.; Abdul Wahab, R.; Shamsuddin, S.; Johan, M.F. Epigenetic insights and potential modifiers as therapeutic targets in β–thalassemia. Biomolecules, 2021, 11(5), 755.
[http://dx.doi.org/10.3390/biom11050755] [PMID: 34070036]
[13]
Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(5), 3217-3266.
[http://dx.doi.org/10.1016/j.bbagen.2012.09.018] [PMID: 23036594]
[14]
Srikantan, S.; Gorospe, M. HuR function in disease. Front. Biosci., 2012, 17(1), 189-205.
[http://dx.doi.org/10.2741/3921] [PMID: 22201738]
[15]
Srinoun, K.; Sathirapongsasuti, N.; Paiboonsukwong, K.; Sretrirutchai, S.; Wongchanchailert, M.; Fucharoen, S. miR-144 regulates oxidative stress tolerance of thalassemic erythroid cell via targeting NRF2. Ann. Hematol., 2019, 98(9), 2045-2052.
[http://dx.doi.org/10.1007/s00277-019-03737-4] [PMID: 31243572]
[16]
Ashrafizadeh, M.; Ahmadi, Z.; Samarghandian, S.; Mohammadinejad, R.; Yaribeygi, H.; Sathyapalan, T.; Sahebkar, A. MicroRNA-mediated regulation of Nrf2 signaling pathway: Implications in disease therapy and protection against oxidative stress. Life Sci., 2020, 244, 117329.
[http://dx.doi.org/10.1016/j.lfs.2020.117329] [PMID: 31954747]
[17]
Lahiri, D.K.; Numberger, J.I., Jr A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res., 1991, 19(19), 5444.
[http://dx.doi.org/10.1093/nar/19.19.5444] [PMID: 1681511]
[18]
Jafari, M.; Pirouzi, A.; Anoosheh, S.; Farnia, P.; Tajik, N. Rapid and simultaneous detection of vitamin D receptor gene polymorphisms by a single ARMS-PCR assay. Mol. Diagn. Ther., 2014, 18(1), 97-103.
[http://dx.doi.org/10.1007/s40291-013-0060-5] [PMID: 24127289]
[19]
Gay, C.; Collins, J.; Gebicki, J.M. Hydroperoxide assay with the ferric-xylenol orange complex. Anal. Biochem., 1999, 273(2), 149-155.
[http://dx.doi.org/10.1006/abio.1999.4208] [PMID: 10469484]
[20]
Junho, C.V.C.; Trentin-Sonoda, M.; Panico, K.; dos Santos, R.S.N.; Abrahão, M.V.; Vernier, I.C.S.; Fürstenau, C.R.; Carneiro-Ramos, M.S. Cardiorenal syndrome: long road between kidney and heart. Heart Fail. Rev., 2022, 27(6), 2137-2153.
[http://dx.doi.org/10.1007/s10741-022-10218-w] [PMID: 35133552]
[21]
Cao, A.; Galanello, R. Beta-thalassemia. Genet. Med., 2010, 12(2), 61-76.
[http://dx.doi.org/10.1097/GIM.0b013e3181cd68ed] [PMID: 20098328]
[22]
Fahim, F.M.; Saad, K.; Askar, E.A.; Eldin, E.N.; Thabet, A.F. Growth parameters and vitamin D status in children with thalassemia major in upper Egypt. Int. J. Hematol. Oncol. Stem Cell Res., 2013, 7(4), 10-14.
[PMID: 24505537]
[23]
Claster, S.; Wood, J.C.; Noetzli, L.; Carson, S.M.; Hofstra, T.C.; Khanna, R.; Coates, T.D. Nutritional deficiencies in iron overloaded patients with hemoglobinopathies. Am. J. Hematol., 2009, 84(6), 344-348.
[http://dx.doi.org/10.1002/ajh.21416] [PMID: 19415722]
[24]
Pirinççioğlu, A.G.; Akpolat, V.; Köksal, O.; Haspolat, K.; Söker, M. Bone mineral density in children with beta-thalassemia major in Diyarbakir. Bone, 2011, 49(4), 819-823.
[http://dx.doi.org/10.1016/j.bone.2011.07.014] [PMID: 21798385]
[25]
Tzoulis, P.; Ang, A.L.; Shah, F.T.; Berovic, M.; Prescott, E.; Jones, R.; Barnard, M. Prevalence of low bone mass and vitamin D deficiency in β-thalassemia major. Hemoglobin, 2014, 38(3), 173-178.
[http://dx.doi.org/10.3109/03630269.2014.905792] [PMID: 24762040]
[26]
Palomer, X.; González-Clemente, J.M.; Blanco-Vaca, F.; Mauricio, D. Role of vitamin D in the pathogenesis of type 2 diabetes mellitus. Diabetes Obes. Metab., 2008, 10(3), 185-197.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00710.x] [PMID: 18269634]
[27]
Dimitriadou, M.; Christoforidis, A.; Fidani, L.; Economou, M.; Perifanis, V.; Tsatra, I.; Katzos, G.; Athanassiou-Metaxa, M. Fok-I gene polymorphism of vitamin D receptor in patients with beta-thalassemia major and its effect on vitamin D status. Hematology, 2011, 16(1), 54-58.
[http://dx.doi.org/10.1179/102453311X12902908411878] [PMID: 21269569]
[28]
Khan, S; Ansari, S; Khan, T. Association of exon 2 vitamin D receptor (FokI) gene polymorphism among thalassemic patients in Karachi. Int. J. Biol. Biotechnol. (Pakistan), 2014, 11(4), 451-457.
[29]
Elhoseiny, S.M.; Morgan, D.S.; Rabie, A.M.; Bishay, S.T. Vitamin D receptor (VDR) gene polymorphisms (FokI, BsmI) and their relation to vitamin D status in pediatrics βeta thalassemia major. Indian J. Hematol. Blood Transfus., 2016, 32(2), 228-238.
[http://dx.doi.org/10.1007/s12288-015-0552-z] [PMID: 27065588]
[30]
Abbassy, H.A.; Abo Elwafa, R.A.H.; Omar, O.M. Bone mineral density and vitamin D receptor genetic variants in egyptian children with beta thalassemia major on vitamin D supplementation. Mediterr. J. Hematol. Infect. Dis., 2019, 11(1), e2019013.
[http://dx.doi.org/10.4084/mjhid.2019.013] [PMID: 30671219]
[31]
Singh, K.; Kumar, R.; Shukla, A.; Phadke, S.R.; Agarwal, S. Status of 25-hydroxyvitamin D deficiency and effect of vitamin D receptor gene polymorphisms on bone mineral density in thalassemia patients of North India. Hematology, 2012, 17(5), 291-296.
[http://dx.doi.org/10.1179/1607845412Y.0000000017] [PMID: 22971535]
[32]
Soroush, N.; Radfar, M.; Hamidi, A.K.; Abdollahi, M.; Qorbani, M.; Razi, F.; Esfahani, E.N.; Amoli, M.M. Vitamin D receptor gene FokI variant in diabetic foot ulcer and its relation with oxidative stress. Gene, 2017, 599, 87-91.
[http://dx.doi.org/10.1016/j.gene.2016.11.012] [PMID: 27836663]
[33]
Padma, T.; Vamsi, U.M.; Swapna, N.; Usha, G. Risk conferred by FokI polymorphism of vitamin D receptor (VDR) gene for essential hypertension. Indian J. Hum. Genet., 2011, 17(3), 201-206.
[http://dx.doi.org/10.4103/0971-6866.92104] [PMID: 22345993]
[34]
Thanuthanakhun, N.; Nuntakarn, L.; Sampattavanich, S.; Anurathapan, U.; Phuphanitcharoenkun, S.; Pornpaiboonstid, S.; Borwornpinyo, S.; Hongeng, S. Investigation of FoxO3 dynamics during erythroblast development in β-thalassemia major. PLoS One, 2017, 12(11), e0187610.
[http://dx.doi.org/10.1371/journal.pone.0187610] [PMID: 29099866]
[35]
Dosunmu-Ogunbi, A.; Zhang, Y.; Nouraie, S.M.; Straub, A. The role of SOD2 in maintaining endothelial cell function in SCD. Blood, 2019, 134(Suppl. 1), 3563.
[http://dx.doi.org/10.1182/blood-2019-131238]
[36]
Miar, A.; Hevia, D.; Muñoz-Cimadevilla, H.; Astudillo, A.; Velasco, J.; Sainz, R.M.; Mayo, J.C. Manganese superoxide dismutase (SOD2/MnSOD)/catalase and SOD2/GPx1 ratios as biomarkers for tumor progression and metastasis in prostate, colon, and lung cancer. Free Radic. Biol. Med., 2015, 85, 45-55.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.001] [PMID: 25866291]
[37]
Ghaffari, S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid. Redox Signal., 2008, 10(11), 1923-1940.
[http://dx.doi.org/10.1089/ars.2008.2142] [PMID: 18707226]
[38]
Klöss, S.; Rodenbach, D.; Bordel, R.; Mülsch, A. Human-antigen R (HuR) expression in hypertension: downregulation of the mRNA stabilizing protein HuR in genetic hypertension. Hypertension, 2005, 45(6), 1200-1206.
[http://dx.doi.org/10.1161/01.HYP.0000165674.58470.8f] [PMID: 15883232]
[39]
Kim, Y.S.; Tang, P.W.; Welles, J.E.; Pan, W.; Javed, Z.; Elhaw, A.T.; Mythreye, K.; Kimball, S.R.; Hempel, N. HuR-dependent SOD2 protein synthesis is an early adaptation to anchorage-independence. Redox Biol., 2022, 53, 102329.
[http://dx.doi.org/10.1016/j.redox.2022.102329] [PMID: 35594792]
[40]
Patne, A.; Hisalkar, P.; Gaikwad, S.; Patil, S. Alterations in antioxidant enzyme status with lipid peroxidation in β thalassemia major patients. Int J Pharm Life Sci., 2012, 3(10), 2003-2006.
[41]
Waseem, F.; Khemomal, K.A.; Sajid, R. Antioxidant status in beta thalassemia major: a single-center study. Indian J. Pathol. Microbiol., 2011, 54(4), 761-763.
[PMID: 22234105]
[42]
Feng, T.; Dabo, A.; Geraghty, P.; Evgrafov, O.; Foronjy, R. The effect of hur on airway epithelial GPX-1 expression. In: C65 COPD: Pre-clinical models and mechanisms; American Thoracic Society, 2022; p. A4636-A.
[43]
Dzik, K.P.; Kaczor, J.J. Mechanisms of vitamin D on skeletal muscle function: oxidative stress, energy metabolism and anabolic state. Eur. J. Appl. Physiol., 2019, 119(4), 825-839.
[http://dx.doi.org/10.1007/s00421-019-04104-x] [PMID: 30830277]
[44]
Livrea, M; Tesoriere, L; Pintaudi, A; Calabrese, A; Maggio, A; Freisleben, H Oxidative stress and antioxidant status in beta-thalassemia major: Iron overload and depletion of lipid-soluble antioxidants. Blood, 1996, 88(9), 3608-3614.
[http://dx.doi.org/10.1182/blood.V88.9.3608.bloodjournal8893608]
[45]
Ghone, R.A.; Kumbar, K.M.; Suryakar, A.N.; Katkam, R.V.; Joshi, N.G. Oxidative stress and disturbance in antioxidant balance in beta thalassemia major. Indian J. Clin. Biochem., 2008, 23(4), 337-340.
[http://dx.doi.org/10.1007/s12291-008-0074-7] [PMID: 23105782]
[46]
Shaw, J.; Chakraborty, A.; Nag, A.; Chattopadyay, A.; Dasgupta, A.K.; Bhattacharyya, M. Intracellular iron overload leading to DNA damage of lymphocytes and immune dysfunction in thalassemia major patients. Eur. J. Haematol., 2017, 99(5), 399-408.
[http://dx.doi.org/10.1111/ejh.12936] [PMID: 28815805]