A Review of Clinical Trials of Cancer and Its Treatment as a Vaccine

Page: [7 - 33] Pages: 27

  • * (Excluding Mailing and Handling)

Abstract

Background: Cancer and infectious diseases are one of the greatest challenges of modern medicine. An unhealthy lifestyle, poor drug use, or drug misuse contribute to the rise in morbidity and mortality brought on by these illnesses. The inadequacies of the medications now being used to treat these disorders, along with the growing issue of drug resistance, have compelled researchers to look for novel compounds with therapeutic promise. The number of infections and diseases has significantly abated due to vaccine development and use over time, which is described in detail. Several novel vaccines can now be produced by manipulating Deoxyribonucleic acid (DNA), Ribonucleic acid (RNA), Messenger Ribonucleic acid (mRNA), proteins, viral vector Recombinant, and other molecules due to advances in genetic engineering and our understanding of the immune defense.

Objective: The main topic of discussion is cancer-based vaccinations, which were developed less than a decade ago but have already been used to treat a wide range of both life-threatening and deadly diseases. It contains clinical studies for cancer vaccines against kidney, liver, prostate, cervix, and certain RNA-based cancer vaccines against breast and bladder cancer.

Results: Numerous studies using various DNA and RNA-based methods have been conducted on the basis of cancer, with 9-10 diseases related to DNA and 8–9 diseases associated with RNA. Some of these studies have been completed, while others have been eliminated due to a lack of research; further studies are ongoing regarding the same.

Conclusion: This brief discussion of vaccines and their varieties with examples also discusses vaccine clinical trials in relation to cancer diseases in this DNA and RNA-based cancer vaccine that has had successful clinical trials like the cervical cancer drug VGX-3100, the kidney cancer drug Pembrolizumab, MGN-1601, the prostate cancer drug pTVG-HP with rhGM-CSF, the melanoma cancer drug proteasome siRNA, and the lung cancer drug FRAME-001.

Graphical Abstract

[1]
Czochor J, Turchick A. Introduction. Vaccines. Yale J Biol Med 2014; 87(4): 401-2.
[PMID: 25647837]
[2]
Banchereau J, Palucka K. Cancer vaccines on the move. Nat Rev Clin Oncol 2018; 15(1): 9-10.
[http://dx.doi.org/10.1038/nrclinonc.2017.149] [PMID: 28895570]
[3]
Kallerup RS, Foged C. Classification of vaccines. In: Foged C, Rades T, Perrie Y, Hook S, Eds. Subunit Vaccine Delivery Advances in Delivery Science and Technology. In: Foged C, Rades T, Perrie Y, Hook S, Eds. New York, NY: Springer 2015; pp. 15-29.
[http://dx.doi.org/10.1007/978-1-4939-1417-3_2]
[4]
Depelsenaire AC, Kendall MA, Young PR, Muller DA. Introduction to vaccines and vaccination. In Micro and nanotechnology in vaccine development, Micro and Nano Technologies. William Andrew Publishing 2017; pp. 47-62.
[http://dx.doi.org/10.1016/B978-0-323-39981-4.00003-8]
[5]
Yang B, Jeang J, Yang A, Wu TC, Hung CF. DNA vaccine for cancer immunotherapy. Hum Vaccin Immunother 2014; 10(11): 3153-64.
[http://dx.doi.org/10.4161/21645515.2014.980686] [PMID: 25625927]
[6]
Moyle PM. Progress in vaccine development. Curr Protoc Microbiol 2015; 36(1): 11-26.
[http://dx.doi.org/10.1002/9780471729259.mc1801s36] [PMID: 25641099]
[7]
Wang B. Gene inoculation generates immune responses against human miinuni> dericiency virus type 1. Proc Natt Acad Sci 1993; 90: 4156-60.
[http://dx.doi.org/10.1073/pnas.90.9.4156] [PMID: 8483929]
[8]
Yadav DK, Yadav N, Khurana SM. Vaccines: Present status and applications. In: Animal Biotechnology: Models in Discovery and Translation. Academic Press 2014; pp. 491-508.
[http://dx.doi.org/10.1016/B978-0-12-416002-6.00026-2]
[9]
Pascolo S. Messenger RNA-based vaccines. Expert Opin Biol Ther 2004; 4(8): 1285-94.
[http://dx.doi.org/10.1517/14712598.4.8.1285] [PMID: 15268662]
[10]
Machado BAS, Hodel KVS, Fonseca LMS, et al. The importance of RNA-based vaccines in the fight against COVID-19: An overview. Vaccines 2021; 9(11): 1345.
[http://dx.doi.org/10.3390/vaccines9111345] [PMID: 34835276]
[11]
Silveira MM, Moreira GMSG, Mendonça M. DNA vaccines against COVID-19: Perspectives and challenges. Life Sci 2021; 267: 118919.
[http://dx.doi.org/10.1016/j.lfs.2020.118919] [PMID: 33352173]
[12]
Lundstrom K. RNA-based drugs and vaccines. Expert Rev Vaccines 2015; 14(2): 253-63.
[http://dx.doi.org/10.1586/14760584.2015.959932] [PMID: 25220891]
[13]
Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247(4949): 1465-8.
[http://dx.doi.org/10.1126/science.1690918] [PMID: 1690918]
[14]
Iavarone C, O’hagan DT, Yu D, Delahaye NF, Ulmer JB. Mechanism of action of mRNA-based vaccines. Expert Rev Vaccines 2017; 16(9): 871-81.
[http://dx.doi.org/10.1080/14760584.2017.1355245] [PMID: 28701102]
[15]
Pascolo S. Synthetic messenger RNA-based vaccines: From scorn to hype. Viruses 2021; 13(2): 270.
[http://dx.doi.org/10.3390/v13020270] [PMID: 33572452]
[16]
Rossen RD, Birdsall HH. Allergy and immunology. In: Medical Secrets. E-Book Elesvier Mosby 2011; pp. 291-343.
[http://dx.doi.org/10.1016/B978-0-323-06398-2.00012-6]
[17]
Plitnick LM. Global regulatory guidelines for vaccines. In: Nonclinical development of novel biologics biosimilars vaccines and specialty biologics. Academic Press 2013; pp. 225-41.
[http://dx.doi.org/10.1016/B978-0-12-394810-6.00009-5]
[18]
Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020; 369(6499): 77-81.
[http://dx.doi.org/10.1126/science.abc1932] [PMID: 32376603]
[19]
Wood JM, Robertson JS. From lethal virus to life-saving vaccine: Developing inactivated vaccines for pandemic influenza. Nat Rev Microbiol 2004; 2(10): 842-7.
[http://dx.doi.org/10.1038/nrmicro979] [PMID: 15378048]
[20]
Abinaya RV, Viswanathan P. Biotechnology-based therapeutics. In Translational Biotechnology, A Journey from Laboratory to Clinics. Academic Press 2021; pp. 27-52.
[http://dx.doi.org/10.1016/B978-0-12-821972-0.00019-8]
[21]
Bröker M, Berti F, Schneider J, Vojtek I. Polysaccharide conjugate vaccine protein carriers as a “neglected valency” – Potential and limitations. Vaccine 2017; 35(25): 3286-94.
[http://dx.doi.org/10.1016/j.vaccine.2017.04.078] [PMID: 28487056]
[22]
Vartak A, Sucheck S. Recent advances in subunit vaccine carriers. Vaccines 2016; 4(2): 12.
[http://dx.doi.org/10.3390/vaccines4020012] [PMID: 27104575]
[23]
Haemophilus Influenzae Type b (Hib) VIS. Available from:https://www.cdc.gov/vaccines/hcp/vis/vis-statements/hib.html(accessed Oct. 12, 2022)
[24]
Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccines 2014; 2(3): 624-41.
[http://dx.doi.org/10.3390/vaccines2030624] [PMID: 26344749]
[25]
Bubeník J. Genetically engineered dendritic cell-based cancer vaccines (Review). Int J Oncol 2001; 18(3): 475-8.
[http://dx.doi.org/10.3892/ijo.18.3.475] [PMID: 11179474]
[26]
Geall AJ, Mandl CW, Ulmer JB. RNA: The new revolution in nucleic acid vaccines. Semin Immunol 2013; 25(2): 152-9.
[http://dx.doi.org/10.1016/j.smim.2013.05.001]
[27]
Fleeton MN, Chen M, Berglund P, et al. Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis 2001; 183(9): 1395-8.
[http://dx.doi.org/10.1086/319857] [PMID: 11294672]
[28]
Jones RGA, Liu Y, Rigsby P, Sesardic D. An improved method for development of toxoid vaccines and antitoxins. J Immunol Methods 2008; 337(1): 42-8.
[http://dx.doi.org/10.1016/j.jim.2008.05.009] [PMID: 18571196]
[29]
Strikas RA, Mawle AC, Pickering LK, Orenstein WA. Active immunization. In: Principles and Practice of Pediatric Infectious Diseases. Elsevier 2018; pp. 43-71.
[http://dx.doi.org/10.1016/B978-0-323-40181-4.00006-2]
[30]
Cheng K, Zhao R, Li Y, et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nat Commun 2021; 12(1): 2041.
[http://dx.doi.org/10.1038/s41467-021-22308-8] [PMID: 33824314]
[31]
Cheng K, Kang Q, Zhao X. Biogenic nanoparticles as immunomodulator for tumor treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12(6): e1646.
[http://dx.doi.org/10.1002/wnan.1646] [PMID: 32464709]
[32]
Bachmann MF, Jennings GT. Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 2010; 10(11): 787-96.
[http://dx.doi.org/10.1038/nri2868] [PMID: 20948547]
[33]
Mayrand D, Grenier D. Biological activities of outer membrane vesicles. Can J Microbiol 1989; 35(6): 607-13.
[http://dx.doi.org/10.1139/m89-097] [PMID: 2670152]
[34]
Immunization - ClinicalKey Available from: https://www.clinicalkey.com/#!/content/book/3-s2.0-B9780323482554003167 (accessed Oct. 12, 2022)
[35]
Payton NM, Lodaya RN, Padilla AM. Lyophilized vaccine development. In: Practical Aspects of Vaccine Development. Academic Press 2022; pp. 297-327.
[http://dx.doi.org/10.1016/B978-0-12-814357-5.00002-7]
[36]
Klein JO, Sawabe E, Inase N, Yoshizawa Y. Nippon rinsho. Jpn J Clin Med 2009; 60(1): 302-14.
[http://dx.doi.org/10.1016/B978-1-4160-4044-6.50032-7]
[37]
Talwar GP. My journey with human chorionic gonadotropin: Development of a unique vaccine for control of fertility In: 100 Years of Human Chorionic Gonadotropin, Reviews and New Perspectives. Elsevier 2020; pp. 209-25.
[http://dx.doi.org/10.1016/B978-0-12-820050-6.00019-9]
[38]
Girard MP, Koff WC. Human immunodeficiency virus vaccines. In Plotkin’s Vaccines. Elsevier 2018; pp. 400-29.
[http://dx.doi.org/10.1016/B978-0-323-35761-6.00029-8]
[39]
Ulmer JB, Mason PW, Geall A, Mandl CW. RNA-based vaccines. Vaccine 2012; 30(30): 4414-8.
[http://dx.doi.org/10.1016/j.vaccine.2012.04.060] [PMID: 22546329]
[40]
Cui Z. DNA vaccine. Adv Genet 2005; 54: 257-89.
[http://dx.doi.org/10.1016/S0065-2660(05)54011-2] [PMID: 16096015]
[41]
Versteeg L, Almutairi MM, Hotez PJ, Pollet J. Enlisting the mRNA vaccine platform to combat parasitic infections. Vaccines 2019; 7(4): 122.
[http://dx.doi.org/10.3390/vaccines7040122] [PMID: 31547081]
[42]
Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol 2019; 10: 594.
[http://dx.doi.org/10.3389/fimmu.2019.00594] [PMID: 30972078]
[43]
Weiner DB, Nabel GJ. Development of gene-based vectors for immunization. In: Plotkin’s Vaccines. Elsevier 2018.
[http://dx.doi.org/10.1016/B978-0-323-35761-6.00067-5]
[44]
Ertl HC. Next generation of rabies vaccines. In: Rabies, Scientific Basis of the Disease and its Management. Academic Press 2020; pp. 509-26.
[http://dx.doi.org/10.1016/B978-0-12-818705-0.00015-7]
[45]
Cid R, Bolívar J. Platforms for production of protein-based vaccines: From classical to next-generation strategies. Biomolecules 2021; 11(8): 1072.
[http://dx.doi.org/10.3390/biom11081072] [PMID: 34439738]
[46]
Srivastava IK, Liu MA, Liu MD. Gene vaccines. Ann Intern Med 2003; 138(7): 550-9.
[http://dx.doi.org/10.7326/0003-4819-138-7-200304010-00011] [PMID: 12667025]
[47]
Zahoor MA, Khurshid M, Qureshi R, Naz A, Shahid M. Cell culture-based viral vaccines: Current status and future prospects. Future Virol 2016; 11(7): 549-62.
[http://dx.doi.org/10.2217/fvl-2016-0006]
[48]
Broadbent AJ, Boonnak K, Subbarao K. Respiratory virus vaccines. In Mucosal Immunol. Elsevier Inc 2015; pp. 1129-70.
[http://dx.doi.org/10.1016/B978-0-12-415847-4.00059-8]
[49]
Putnak R, Porter K, Schmaljohn C. DNA vaccines for flaviviruses. In: Advances in Virus Research. Elsevier 2003; pp. 445-69.
[http://dx.doi.org/10.1016/S0065-3527(03)61012-2]
[50]
Sami D, Ennaji MM. Global epidemiology and genetic variability of rabies viruses. In: Emerging and Reemerging Viral Pathogens. Elsevier 2020.
[http://dx.doi.org/10.1016/B978-0-12-814966-9.00014-7]
[51]
Leitner WW, Ying H, Restifo NP. DNA and RNA-based vaccines: Principles, progress and prospects. Vaccine 1999; 18(9-10): 765-77.
[http://dx.doi.org/10.1016/S0264-410X(99)00271-6] [PMID: 10580187]
[52]
Valilou SF, Keshavarz-fathi M. Genetic vaccine for cancer. In: Vaccines for Cancer Immunotherapy, Nima Rezaei and Mahsa Keshavarz-Fathi. Elsevier 2019; pp. 129-43.
[http://dx.doi.org/10.1016/B978-0-12-814039-0.00010-2]
[53]
Norrby E. The pathogenesis of persistent infections. In: Textbook of Medical Virology. Butterworth-Heinemann 1983; pp. 144-54.
[http://dx.doi.org/10.1016/B978-0-407-00253-1.50021-9]
[54]
Gershon AA, Breuer J, Cohen JI, et al. Varicella zoster virus infection. Nat Rev Dis Primers 2015; 1(1): 15016.
[http://dx.doi.org/10.1038/nrdp.2015.16] [PMID: 27188665]
[55]
Pfaller S. Innovative methods for determining the microbiological quality of drinking water. In: Comprehensive Water Quality and Purification. Elsevier 2014; pp. 230-48.
[http://dx.doi.org/10.1016/B978-0-12-382182-9.00036-0]
[56]
Gerba CP. Environmentally transmitted pathogens. In: Environmental microbiology. Academic Press 2009; pp. 445-84.
[http://dx.doi.org/10.1016/B978-0-12-394626-3.00022-3]
[57]
Artenstein AW, Opal JM, Opal SM, Tramont EC, Peter G, Russell PK. History of U.S. military contributions to the study of vaccines against infectious diseases. Mil Med 2005; 170(4S): 3-11.
[http://dx.doi.org/10.7205/MILMED.170.4S.3] [PMID: 15916278]
[58]
Fougeroux C, Holst P. Future prospects for the development of cost-effective adenovirus vaccines. Int J Mol Sci 2017; 18(4): 686.
[http://dx.doi.org/10.3390/ijms18040686] [PMID: 28420073]
[59]
Cella D, Yount S, Brucker PS, et al. Development and validation of a scale to measure disease-related symptoms of kidney cancer. Value Health 2007; 10(4): 285-93.
[http://dx.doi.org/10.1111/j.1524-4733.2007.00183.x] [PMID: 17645683]
[60]
Sivarajah S, Emerick K, Kaufman HL. What surgeons need to know about gene therapy for cancer. Adv Surg 2022; 56(1): 151-68.
[http://dx.doi.org/10.1016/j.yasu.2022.02.006] [PMID: 36096566]
[61]
Park Y. Obesity and cancer: Epidemiological evidence. In: Encyclopedia of Cancer. Elsevier 2018; pp. 88-97.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.65037-7]
[62]
Tagliamonte M, Petrizzo A, Mauriello A, Tornesello ML, Buonaguro FM, Buonaguro L. Potentiating cancer vaccine efficacy in liver cancer. OncoImmunology 2018; 7(10): e1488564.
[http://dx.doi.org/10.1080/2162402X.2018.1488564] [PMID: 30288355]
[63]
Vaccines That Can Help Prevent Cancer Available from: https://www.cdc.gov/cancer/dcpc/prevention/vaccination.htm (accessed Sep. 28, 2022)
[64]
Tangpukdee N, Duangdee C, Wilairatana P, Krudsood S. Malaria diagnosis: A brief review. Korean J Parasitol 2009; 47(2): 93-102.
[http://dx.doi.org/10.3347/kjp.2009.47.2.93] [PMID: 19488414]
[65]
Scholar E. Malaria Compreh Pharmacol Ref 2007; 1–5: 1-5.
[http://dx.doi.org/10.1016/B978-008055232-3.60932-8]
[66]
D’Souza J, Nderitu D. Ethical considerations for introducing RTS,S/AS01 in countries with moderate to high Plasmodium falciparum malaria transmission. Lancet Glob Health 2021; 9(12): e1642-3.
[http://dx.doi.org/10.1016/S2214-109X(21)00498-8] [PMID: 34798015]
[67]
Harrington KJ, Nutting CM. Radiation therapy for head and neck cancer kate newbold and shreerang a bhide. In: InPrinciples and Practice of Head and Neck Surgery and Oncology. CRC Press 2009.
[http://dx.doi.org/10.3109/9781439825464-9]
[68]
Das P, Deshmukh N, Badore N, Ghulaxe C, Patel P. A review article on melanoma. J pharm Sci Res 2016; 8(2): 112.
[69]
Federico SM, McCarville MB, Shulkin BL, et al. A pilot trial of humanized anti-GD2 monoclonal antibody (hu14.18K322A) with chemotherapy and natural killer cells in children with recurrent/refractory neuroblastoma. Clin Cancer Res 2017; 23(21): 6441-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0379] [PMID: 28939747]
[70]
Routine vaccination against chickenpox? Drug Ther Bull 2012; 50(4): 42-5.
[http://dx.doi.org/10.1136/dtb.2012.04.0098] [PMID: 22495050]
[71]
Yang S, Zhang W, Shen Q, et al. Aichi virus strains in children with gastroenteritis, China. Emerg Infect Dis 2009; 15(10): 1703-5.
[http://dx.doi.org/10.3201/eid1510.090522] [PMID: 19861087]
[72]
Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet 2019; 393(10167): 169-82.
[http://dx.doi.org/10.1016/S0140-6736(18)32470-X] [PMID: 30638582]
[73]
Kirby T. FDA approves new upgraded Gardasil 9. Lancet Oncol 2015; 16(2): e56.
[http://dx.doi.org/10.1016/S1470-2045(14)71191-X] [PMID: 25532625]
[74]
Pantuck J. Bladder cancer. In: Nutritional Oncology. ELsevier 2006.
[http://dx.doi.org/10.1016/B978-012088393-6/50082-8]
[75]
Efstathiou JA, Zietman AL. Bladder cancer. In: Clinical Radiation Oncology. Elsevier 2016; pp. 1096-1120.e6.
[http://dx.doi.org/10.1016/B978-0-323-24098-7.00054-X]
[76]
BCG vaccines: WHO position paper Available from: https://apps.who.int/iris/handle/10665/260307 (accessed Sep. 28, 2022)
[77]
Houghton BB, Chalasani V, Hayne D, et al. Intravesical chemotherapy plus bacille Calmette-Guérin in non-muscle invasive bladder cancer: A systematic review with meta-analysis. BJU Int 2013; 111(6): 977-83.
[http://dx.doi.org/10.1111/j.1464-410X.2012.11390.x] [PMID: 23253618]
[78]
Green J, Fuge O, Allchorne P, Vasdev N. Immunotherapy for bladder cancer. Res Rep Urol 2015; 7: 65-79.
[http://dx.doi.org/10.2147/RRU.S63447] [PMID: 26000263]
[79]
Gupta S. Viral hepatitis: Historical perspective, etiology, epidemiology, and pathophysiology. In: Studies on Hepatitis Viruses: Life Cycle, Structures, Functions, and Inhibition 0. Elsevier 2018; pp. 1-14.
[http://dx.doi.org/10.1016/B978-0-12-813330-9.00001-6]
[80]
Dotzauer A. Hepatitis A virus. In: Desk Encyclopedia of Human and Virology. Academic press, Elsevier 2008; p. 343.
[http://dx.doi.org/10.1016/B978-012374410-4.00412-X]
[81]
te Winkel B, Schaefer C. Infections during breastfeeding. In: Drugs During Pregnancy and Lactation Treatment Options and Risk Assessment. Academic Press 2015; pp. 821-33.
[http://dx.doi.org/10.1016/B978-0-12-408078-2.00040-8]
[82]
Theeten H, Van Herck K, Van Der Meeren O, Crasta P, Van Damme P, Hens N. Long-term antibody persistence after vaccination with a 2-dose Havrix™ (inactivated hepatitis A vaccine): 20 years of observed data, and long-term model-based predictions. Vaccine 2015; 33(42): 5723-7.
[http://dx.doi.org/10.1016/j.vaccine.2015.07.008] [PMID: 26190091]
[83]
Pijlman GP, Suhrbier A, Khromykh AA. Kunjin virus replicons: An RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications. Expert Opin Biol Ther 2018; 6(2): 135-45.
[http://dx.doi.org/10.1517/14712598.6.2.135]
[84]
Lundstrom K. Latest development on RNA-based drugs and vaccines. Future Sci OA 2018; 4(5): 0151.
[http://dx.doi.org/10.4155/fsoa-2017-0151]
[85]
Granstein RD, Ding W, Ozawa H. Induction of anti-tumor immunity with epidermal cells pulsed with tumor-derived RNA or intradermal administration of RNA. J Invest Dermatol 2000; 114(4): 632-6.
[http://dx.doi.org/10.1046/j.1523-1747.2000.00929.x] [PMID: 10733665]
[86]
Kreiter S, Selmi A, Diken M, et al. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res 2010; 70(22): 9031-40.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0699] [PMID: 21045153]
[87]
Rosa SS, Prazeres DMF, Azevedo AM, Marques MPC. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine 2021; 39(16): 2190-200.
[http://dx.doi.org/10.1016/j.vaccine.2021.03.038] [PMID: 33771389]
[88]
Kuzmin IV, Rupprecht CE. Rabies virus. In: Encyclopedia of Virology. Elsevier 2008; pp. 367-73.
[http://dx.doi.org/10.1016/B978-012374410-4.00482-9]
[89]
Rabies vaccine, human diploid cell Pregnancy and Breastfeeding Warnings. 2019. Available from: https://www.drugs.com/pregnancy/rabies-vaccine-human-diploid-cell.html (Accessed: Sep. 28, 2022)
[90]
Brady AG, Carville AA. Digestive system diseases of nonhuman primates. In: Nonhuman Primates in Biomedical Research. Elsevier 2012.
[http://dx.doi.org/10.1016/B978-0-12-381366-4.00012-2]
[91]
Bhalla P, Forrest GN, Gershon M, et al. Disseminated, persistent, and fatal infection due to the vaccine strain of varicella-zoster virus in an adult following stem cell transplantation. Clin Infect Dis 2015; 60(7): 1068-74.
[http://dx.doi.org/10.1093/cid/ciu970] [PMID: 25452596]
[92]
Libbey JE, Fujinami RS. Adaptive immune response to viral infections in the central nervous system. In: InHandbook of clinical neurology. Elsevier 2014.
[http://dx.doi.org/10.1016/B978-0-444-53488-0.00010-9]
[93]
Azap A, Pehlivanoglu F. Measles Emerging Infectious Diseases: Clinical Case Studies. Elsevier Inc. 2014; pp. 346-57.
[http://dx.doi.org/10.1016/B978-0-12-416975-3.00026-1]
[94]
Moss WJ, Griffin DE, Feinstone WH. Measles. In: Vaccines for Biodefense and Emerging and Neglected Diseases. Elsevier 2009; pp. 551-65.
[http://dx.doi.org/10.1016/B978-0-12-369408-9.00030-5]
[95]
Maurice R. Hilleman, PhD, DSc. Semin Pediatr Infect Dis 2005; 16(3): 225-6.
[http://dx.doi.org/10.1053/j.spid.2005.05.002] [PMID: 16044396]
[96]
Kowalzik F, Faber J, Knuf M. MMR and MMRV vaccines. Vaccine 2018; 36(36): 5402-7.
[http://dx.doi.org/10.1016/j.vaccine.2017.07.051] [PMID: 28757060]
[97]
Groseth A, Feldmann H, Strong JE. The ecology of Ebola virus. Trends Microbiol 2007; 15(9): 408-16.
[http://dx.doi.org/10.1016/j.tim.2007.08.001] [PMID: 17698361]
[98]
Formenty P. Ebola virus disease. In: Emerging Infectious Diseases. Academic Press 2014; pp. 121-34.
[http://dx.doi.org/10.1016/B978-0-12-416975-3.00009-1]
[99]
Sharma AR, Lee YH, Nath S, Lee SS. Recent developments and strategies of Ebola virus vaccines. Curr Opin Pharmacol 2021; 60: 46-53.
[http://dx.doi.org/10.1016/j.coph.2021.06.008] [PMID: 34329960]
[100]
Marzi A, Robertson SJ, Haddock E, et al. VSV-EBOV rapidly protects macaques against infection with the 2014/15 Ebola virus outbreak strain. Science 2015; 349(6249): 739-42.
[http://dx.doi.org/10.1126/science.aab3920] [PMID: 26249231]
[101]
Marzi A, Hanley PW, Haddock E, Martellaro C, Kobinger G, Feldmann H. Efficacy of vesicular stomatitis virus-Ebola virus postexposure treatment in rhesus macaques infected with Ebola virus Makona. J Infect Dis 2016; 214 (Suppl. 3): S360-6.
[http://dx.doi.org/10.1093/infdis/jiw218] [PMID: 27496978]
[102]
Beheshti M, Langsteger W, Rezaee A. PET/CT in cancer: An interdisciplinary approach to individualized imaging. Elsevier Health Sciences 2017.
[http://dx.doi.org/10.1016/B978-0-323-48567-8.00010-9]
[103]
HOWARD P. CHAPTER 20 - Prostate Cancer. In: Nutritional OncologyAcademic Press 2006.
[http://dx.doi.org/10.1016/B978-012088393-6/50076-2]
[104]
Nelson WG, Antonarakis ES, Carter HB, De Marzo AM, DeWeese TL. Prostate. Cancer Clin Oncol 2020; 1401-1432.e7.
[http://dx.doi.org/10.1016/B978-0-323-47674-4.00081-5]
[105]
Giles GG. Prostate Cancer. In: International Encyclopedia of Public Health. Academic Press 2008.
[http://dx.doi.org/10.1016/B978-012373960-5.00260-4]
[106]
Plosker GL. Sipuleucel-T. Drugs 2011; 71(1): 101-8.
[http://dx.doi.org/10.2165/11206840-000000000-00000] [PMID: 21175243]
[107]
Small EJ, Schellhammer PF, Higano CS, et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol 2006; 24(19): 3089-94.
[http://dx.doi.org/10.1200/JCO.2005.04.5252] [PMID: 16809734]
[108]
Reilly R. Breast Cancer xPharm: The Comprehensive Pharmacology Reference. Elsevier Inc 2007; pp. 1-9.
[http://dx.doi.org/10.1016/B978-008055232-3.60809-8]
[109]
Romm A, Mills’ S, Hardy ML. Breast cancer. In: Botanical Medicine for Women’s Health. St. Louis, MO: Churchill Livingstone 2010; pp. 306-20.
[http://dx.doi.org/10.1016/B978-0-443-07277-2.00012-X]
[110]
Veronesi U, Boyle P. Breast Cancer. International Encyclopedia of Public Health 2017; pp. 272-80.
[http://dx.doi.org/10.1007/978-3-319-48848-6]
[111]
Holmes JP, Clifton GT, Patil R, et al. Use of booster inoculations to sustain the clinical effect of an adjuvant breast cancer vaccine. Cancer 2011; 117(3): 463-71.
[http://dx.doi.org/10.1002/cncr.25586] [PMID: 20845479]
[112]
Troy SB, Maldonado YA. Polioviruses. In: Principles and practice of pediatric infectious diseases. Elsevier 2012; pp. 1168-72.
[http://dx.doi.org/10.1016/B978-1-4377-2702-9.00237-3]
[113]
Ruiz SI, Zumbrun EE, Nalca A. Animal models of human viral diseases. In: Animal Models for the Study of Human Disease. Elsevier 2013.
[http://dx.doi.org/10.1016/B978-0-12-415894-8.00038-5]
[114]
Garg RR, Karst SM. Interactions between enteric viruses and the gut microbiota. In: Viral Gastroenteritis, Molecular Epidemiology and Pathogenesis. Academic Press 2016; pp. 535-44.
[http://dx.doi.org/10.1016/B978-0-12-802241-2.00026-2]
[115]
Sutter RW, Kew OM, Cochi SL, Aylward RB. Poliovirus vaccine-live. In: Plotkin’s Vaccines. 2018; pp. 866-917.e16.
[http://dx.doi.org/10.1016/B978-0-323-35761-6.00048-1]
[116]
Orimune (Oral Poliovirus Vaccine): Uses, Dosage, Side Effects, Interactions, Warning. Available from: https://www.rxlist.com/orimune-drug.htm#description (Accessed: Sep. 27, 2022)
[117]
Influenza LA. Influenza. In: Encyclopedia of Virology. Elsevier 2008; pp. 95-104.
[http://dx.doi.org/10.1016/B978-012374410-4.00654-3]
[118]
Thompson MG, Pierse N, Huang QS, et al. Influenza vaccine effectiveness in preventing influenza-associated intensive care admissions and attenuating severe disease among adults in New Zealand 2012–2015. Vaccine 2018; 3639: 5916-25.
[http://dx.doi.org/10.1016/j.vaccine.2018.07.028]
[119]
Ferdinands JM, Thompson MG, Blanton L, Spencer S, Grant L, Fry AM. Does influenza vaccination attenuate the severity of breakthrough infections? A narrative review and recommendations for further research. Vaccine 2021; 39(28): 3678-95.
[http://dx.doi.org/10.1016/j.vaccine.2021.05.011] [PMID: 34090700]
[120]
Heller R, Heller LC. Gene electrotransfer clinical trials. Adv Genet 2015; 89: 235-62.
[http://dx.doi.org/10.1016/bs.adgen.2014.10.006]
[121]
Choi YJ, Hur SY, Kim TJ, et al. A phase II, prospective, randomized, multicenter, open-label study of GX-188E, an HPV DNA vaccine, in patients with cervical intraepithelial neoplasia 3. Clin Cancer Res 2020; 26(7): 1616-23.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1513] [PMID: 31727676]
[122]
Home - ClinicalTrials.gov. Available from: https://clinicaltrials.gov/ (accessed Oct. 18, 2022)
[123]
Grünwald V, Weikert S, Schmidt-Wolf IGH, et al. Final results of patients with metastatic renal cell carcinoma treated with MGN1601 in the ASET study. J Clin Oncol 2014; 32(15) (Suppl.): e15590-0.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.e15590]
[124]
McNeel DG, Becker JT, Eickhoff JC, et al. Real-time immune monitoring to guide plasmid DNA vaccination schedule targeting prostatic acid phosphatase in patients with castration-resistant prostate cancer. Clin Cancer Res 2014; 20(14): 3692-704.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0169] [PMID: 24850844]
[125]
Mohebtash M, Madan RA, Arlen PM, et al. Phase I trial of targeted therapy with PSA-TRICOM vaccine (V) and ipilimumab (ipi) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 2009; 27(15) (Suppl.): 5144-4.
[http://dx.doi.org/10.1200/jco.2009.27.15_suppl.5144]
[126]
Heery CR, Palena C, McMahon S, et al. Study of a poxviral TRICOM-based vaccine directed against the transcription factor brachyuryphase I trial of MVA-Brachyury-TRICOM. Clin Cancer Res 2017; 23(22): 6833-45.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1087] [PMID: 28855356]
[127]
Dondulkar A, Akojwar N, Katta C, et al. Inhalable polymeric micro and nano-immunoadjuvants for developing therapeutic vaccines in the treatment of non-small cell lung cancer. Curr Pharm Des 2022; 28(5): 395-409.
[http://dx.doi.org/10.2174/1381612827666211104155604] [PMID: 34736378]
[128]
Backhaus P, Noto B, Avramovic N, et al. Targeting PSMA by radioligands in non-prostate disease-current status and future perspectives. Eur J Nucl Med Mol Imaging 2018; 45(5): 860-77.
[http://dx.doi.org/10.1007/s00259-017-3922-y] [PMID: 29335762]
[129]
Christopher RH. Phase I study of a poxviral tricom-based vaccine directed against the transcription factor brachyury. Clin Cancer Res 2017; 23(22): 6833-45.
[130]
Markowitz J. IFx-Hu2.0 phase I first in human study for unresectable melanoma for an intralesional ‘in-situ vaccine’ approach. J Clin Oncol 2022; 40(16)
[http://dx.doi.org/10.1200/JCO.2022.40.16_suppl.e21542]
[131]
Konno R, Yoshikawa H, Okutani M, et al. Efficacy of the human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical intraepithelial neoplasia and cervical infection in young Japanese women. Hum Vaccin Immunother 2014; 10(7): 1781-94.
[http://dx.doi.org/10.4161/hv.28712] [PMID: 25424783]
[132]
Cafri G, Gartner JJ, Zaks T, et al. mRNA vaccine-induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer. J Clin Invest 2020; 130(11): 5976-88.
[http://dx.doi.org/10.1172/JCI134915] [PMID: 33016924]
[133]
Karras NA, Weeres M, Sessions W, et al. A randomized trial of one versus two doses of influenza vaccine after allogeneic transplantation. Biol Blood Marrow Transplant 2013; 19(1): 109-16.
[http://dx.doi.org/10.1016/j.bbmt.2012.08.015] [PMID: 22940056]
[134]
Sabari J, Ramirez KA, Schwarzenberger P, et al. Abstract B209: Phase 1/2 study of mRNA vaccine therapy + durvalumab (durva) ± tremelimumab (treme) in patients with metastatic non-small cell lung cancer (NSCLC). Cancer Immunol Res 2019; 7(2) (Supplement): B209-9.
[http://dx.doi.org/10.1158/2326-6074.CRICIMTEATIAACR18-B209]
[135]
Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol 2022; 11(1): 3.
[http://dx.doi.org/10.1186/s40164-022-00257-2] [PMID: 35074008]
[136]
Poddighe D, Castelli L, Marseglia GL, Bruni P. A sudden onset of a pseudo-neurological syndrome after HPV-16/18 AS04-adjuvated vaccine: Might it be an autoimmune/inflammatory syndrome induced by adjuvants (ASIA) presenting as a somatoform disorder? Immunol Res 2014; 60(2-3): 236-46.
[http://dx.doi.org/10.1007/s12026-014-8575-3] [PMID: 25388965]
[137]
Stübgen JP. Immune-mediated myelitis following hepatitis B vaccination. Autoimmun Rev 2012; 12(2): 144-9.
[http://dx.doi.org/10.1016/j.autrev.2012.03.008] [PMID: 22498789]
[138]
Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 2019; 4(1): 7.
[http://dx.doi.org/10.1038/s41541-019-0103-y] [PMID: 30774998]