Empowering the Battle: Bioenhancers as Allies Against Cancer Drug Resistance

Page: [1552 - 1563] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Drug resistance has been a great hindrance in the path of counteracting diseases like cancer and is driven by drugs misuse and overuse. In terms of cancer, resistance has been developed due to cellular changes, altered growth activation pathways, increased expression of efflux proteins, and changes in the local physiology of cancer (blood supply, tissue hydrodynamics, increased mutation rate/epigenetics, tumor cell heterogeneity). One of the approaches to address these challenges is the use of bioenhancers, which can overcome drug resistance, thereby improving bioavailability (BA).

Conclusion: Bioenhancers when combined with drugs can elicit pharmacological activity. They are generally combined with therapeutic agents at low doses, which increase the BA or therapeutic activity of active pharmaceutical ingredient (API). This review sheds light on the synthesis and classification of bio-enhancers. It also discusses different applications of bio-enhancers like piperine, ginger, quercetin, curcumin, etc. in the treatment of cancer. The review also presents some of the recent advancements in terms of nanocarriers for delivering API combined with bioenhancers.

Graphical Abstract

[1]
Tatiraju, D.V.; Bagade, V.B.; Karambelkar, P.J.; Jadhav, V.M.; Kadam, V. Natural Bioenhancers: An overview. J. Pharmacogn. Phytochem., 2013, 2(3), 55-60.
[2]
Rita, B.; Akhilesh, T. Research and reviews: Journal of pharmaceutics & nanotechnology importance of bioavailability in the pharmaceutical world. J Pharm. Nanotechnol., 2015, 3, 106-115.
[3]
Nikinmaa, M. Factors affecting the bioavailability of chemicals. In: An Introduction to Aquatic Toxicology; Academic Press LTD-Elsevier Science LTD: London, 2014; pp. 65-72.
[http://dx.doi.org/10.1016/B978-0-12-411574-3.00006-2]
[4]
Kumar, S.; Dilbaghi, N.; Rani, R.; Bhanjana, G.; Umar, A. Novel approaches for enhancement of drug bioavailability. RASE, 2013, 2(2), 133-154.
[http://dx.doi.org/10.1166/rase.2013.1038]
[5]
Dudhatra, G.B.; Mody, S.K.; Awale, M.M.; Patel, H.B.; Modi, C.M.; Kumar, A. A comprehensive review on pharmacotherapeutics of herbal bi-oenhancers. ScientificWorldJournal, 2012, 2012, 637953.
[http://dx.doi.org/10.1100/2012/637953]
[6]
Ajazuddin, A.A.; Alexander, A.; Qureshi, A.; Kumari, L.; Vaishnav, P.; Sharma, M.; Saraf, S.; Saraf, S. Role of herbal bioactives as a potential bioavailability enhancer for Active Pharmaceutical Ingredients. Fitoterapia, 2014, 97, 1-14.
[http://dx.doi.org/10.1016/j.fitote.2014.05.005] [PMID: 24862064]
[7]
Randhawa, G.; Kullar, J. Rajkumar, Bioenhancers from mother nature and their applicability in modern medicine. Int. J. Appl. Basic Med. Res., 2011, 1(1), 5-10.
[http://dx.doi.org/10.4103/2229-516X.81972] [PMID: 23776764]
[8]
Kesarwani, K.; Gupta, R.; Mukerjee, A. Bioavailability enhancers of herbal origin: An overview. Asian Pac. J. Trop. Biomed., 2013, 3(4), 253-266.
[http://dx.doi.org/10.1016/S2221-1691(13)60060-X] [PMID: 23620848]
[9]
Verma, C.P.S.; Verma, S.; Ashawat, M.S.; Pandit, V. An overview. Naturallelopment. J. Drug Deliv. Ther., 2019, 9(6), 201-205.
[http://dx.doi.org/10.22270/jddt.v9i6.3682]
[10]
Zafar, N.; Pharm, M. Herbal bioenhancers: A revolutionary concept in modern medicine. Zafar World J. Pharm. Res., 2017, 6, 381-397.
[11]
Gerber, W.; Steyn, D.; Svitina, H.; Hamman, J.; Africa, S.; Africa, S. Capsaicin and piperine as functional excipients for improved drug delivery across nasal epithelial models. Planta Med., 2019, 85(13), 1114-1123.
[http://dx.doi.org/10.1055/a-0978-5172]
[12]
Peterson, B.; Weyers, M.; Steenekamp, J.H.; Steyn, J.D.; Gouws, C.; Hamman, J.H. Drug bioavailability enhancing agents of natural origin (bio-enhancers) that modulate drug membrane permeation and pre-systemic metabolism. Pharmaceutics, 2019, 11(1), 33.
[13]
Singh, S.; Tripathi, J.S.; Rai, N.P. An appraisal of the bioavailability enhancers in Ayurveda in the light of recent pharmacological advances. Ayu, 2016, 37(1), 3-10.
[http://dx.doi.org/10.4103/ayu.AYU_11_15] [PMID: 28827948]
[14]
Shanmugam, S. Natural bioenhancers: Current outlook. Clin. Pharmacol. Biopharm., 2015, 04, 2-4.
[15]
Janrao, C.; Khopade, S.; Bavaskar, A.; Gomte, S.S.; Agnihotri, T.G.; Jain, A. Recent advances of polymer based nanosystems in cancer man-agement. J. Biomater. Sci. Polym. Ed., 2023, 34(9), 1274-1335.
[16]
Agnihotri, T.G.; Gomte, S.S.; Jain, A. Emerging theranostics to combat cancer: A perspective on metal-based nanomaterials. Drug Dev. Ind. Pharm., 2022, 48(11), 585-601.
[http://dx.doi.org/10.1080/03639045.2022.2153862] [PMID: 36448770]
[17]
Gottesman, M.M.; Pastan, I.H. The role of multidrug resistance efflux pumps in cancer: Revisiting a JNCI publication exploring expression of the MDR1 (P-glycoprotein) gene. J. Natl. Cancer Inst., 2015, 107(9), djv222.
[18]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer; Nature; Nature Publishing Group, 2019, pp. 299-309.
[19]
Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resistance; OAE Publishing Inc., 2019, pp. 141-160.
[20]
Li Sun, Y.; Patel, A.; Kumar, P.; Sheng Chen, Z. Anti Juan Cancer A ssociation CACA. Available from: www.cjcsysu.com
[21]
Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2019, 2(2), 141-160.
[http://dx.doi.org/10.20517/cdr.2019.10] [PMID: 34322663]
[22]
Lippert, T.H.; Ruoff, H.J.; Volm, M. Current status of methods to assess cancer drug resistance. Int. J. Med. Sci., 2011, 8(3), 245-253.
[http://dx.doi.org/10.7150/ijms.8.245] [PMID: 21487568]
[23]
Sharma, S. Tumor markers in clinical practice: General principles and guidelines. Indian J. Med. Paediatr. Oncol., 2009, 30(1), 1-8.
[http://dx.doi.org/10.4103/0971-5851.56328] [PMID: 20668599]
[24]
Contractor, K.B.; Aboagye, E.O. Monitoring predominantly cytostatic treatment response with 18F-FDG PET. J. Nucl. Med., 2009, 50(Suppl. 1), 97S-105S.
[http://dx.doi.org/10.2967/jnumed.108.057273] [PMID: 19403880]
[25]
Hutchings, M.; Barrington, S.F. PET/CT for therapy response assessment in lymphoma. J. Nucl. Med., 2009, 50(Suppl. 1), 21S-30S.
[http://dx.doi.org/10.2967/jnumed.108.057190] [PMID: 19380407]
[26]
Leary, M.; Heerboth, S.; Lapinska, K.; Sarkar, S. Sensitization of drug resistant cancer cells: A matter of combination therapy. Cancers; MDPI AG: Basel, 2018.
[27]
Chaudhary, A.; Nagaich, U.; Gulati, N.; Sharma, V.K.; Khosa, R.L. Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: A recent review. J. Adv. Pharm. Educ. Res., 2012, 2, 32-67.
[28]
Tran, P.; Pyo, Y.C.; Kim, D.H.; Lee, S.E.; Kim, J.K.; Park, J.S. Overview of the manufacturing methods of solid dispersion technology for improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics, 2019, 11(3), 132.
[http://dx.doi.org/10.3390/pharmaceutics11030132] [PMID: 30893899]
[29]
Kobayashi, Y.; Ito, S.; Itai, S.; Yamamoto, K. Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate. Int. J. Pharm., 2000, 193(2), 137-146.
[http://dx.doi.org/10.1016/S0378-5173(99)00315-4] [PMID: 10606776]
[30]
Singhal, D.; Curatolo, W. Drug polymorphism and dosage form design: A practical perspective. Adv. Drug Deliv. Rev., 2004, 56(3), 335-347.
[http://dx.doi.org/10.1016/j.addr.2003.10.008] [PMID: 14962585]
[31]
Censi, R.; Di Martino, P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules, 2015, 20(10), 18759-18776.
[http://dx.doi.org/10.3390/molecules201018759] [PMID: 26501244]
[32]
Li, L.; Yin, X.H.; Diao, K.S. Improving the solubility and bioavailability of pemafibrate via a new polymorph form II. ACS Omega, 2020, 5(40), 26245-26252.
[http://dx.doi.org/10.1021/acsomega.0c04005] [PMID: 33073151]
[33]
Smirnova, I.; Suttiruengwong, S.; Seiler, M.; Arlt, W. Dissolution rate enhancement by adsorption of poorly soluble drugs on hydrophilic silica aerogels. Pharm. Dev. Technol., 2005, 9(4), 443-452.
[http://dx.doi.org/10.1081/PDT-200035804] [PMID: 15581080]
[34]
S. SS. A Review: Various Adsorbent Carriers used for Enhancing Dissolution Profile. Trends in Drug Delivery., 2020, 7, 5-9.
[35]
Daravath, B.; Kumari, G. Improvement of bioavailability of poorly soluble racecadotril by solid dispersion with surface adsorption method: A case study. J. Rep. Pharm. Sci., 2021, 10(1), 77-86.
[http://dx.doi.org/10.4103/jrptps.JRPTPS_129_19]
[36]
Stegemann, J.P. Genetic changes NIH Public Access. Tissue Eng., 2007, 23, 1-7.
[37]
Carneiro, S.; Costa Duarte, F.; Heimfarth, L.; Siqueira Quintans, J.; Quintans-Júnior, L.; Veiga Júnior, V.; Neves de Lima, Á. Cyclodextrin-drug inclusion complexes: In vivo and in vitro approaches. Int. J. Mol. Sci., 2019, 20(3), 642.
[http://dx.doi.org/10.3390/ijms20030642] [PMID: 30717337]
[38]
Patel, S.G.; Rajput, S.J. Enhancement of oral bioavailability of cilostazol by forming its inclusion complexes. AAPS PharmSciTech, 2009, 10(2), 660-669.
[http://dx.doi.org/10.1208/s12249-009-9249-7] [PMID: 19459053]
[39]
Oliveira, A.P. Silva, A.L.N.; Viana, L.G.F.C.; Silva, M.G.; Lavor, É.M.; Oliveira-Júnior, R.G.; Alencar-Filho, E.B.; Lima, R.S.; Mendes, R.L.; Rolim, L.A.; Anjos, D.S.C.; Ferraz, L.R.M.; Rolim-Neto, P.J.; Silva, M.F.S.; Pessoa, C.Ó.; Almeida, J.R.G.S. β-Cyclodextrin complex improves the bioavailability and antitumor potential of cirsiliol, a flavone isolated from Leonotis nepetifolia (Lamiaceae). Heliyon, 2019, 5(10), e01692.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01692] [PMID: 31720439]
[40]
Yeh, M.K.; Chang, L.C.; Chiou, A.H.J. Improving tenoxicam solubility and bioavailability by cosolvent system. AAPS PharmSciTech, 2009, 10(1), 166-171.
[http://dx.doi.org/10.1208/s12249-009-9189-2] [PMID: 19224373]
[41]
Xu, W.; Ling, P.; Zhang, T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J. Drug Deliv., 2013, 2013, 1-15.
[http://dx.doi.org/10.1155/2013/340315] [PMID: 23936656]
[42]
Chen, T.; Tu, L.; Wang, G.; Qi, N.; Wu, W.; Zhang, W.; Feng, J. Multi-functional chitosan polymeric micelles as oral paclitaxel delivery systems for enhanced bioavailability and anti-tumor efficacy. Int. J. Pharm., 2020, 578, 119105.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119105] [PMID: 32018019]
[43]
Wang, Q.; Wei, C.; Weng, W.; Bao, R.; Adu-Frimpong, M.; Toreniyazov, E.; Ji, H.; Xu, X.M.; Yu, J. Enhancement of oral bioavailability and hypoglycemic activity of liquiritin-loaded precursor liposome. Int. J. Pharm., 2021, 592, 120036.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120036] [PMID: 33152478]
[44]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[45]
Lee, M.K. Liposomes for enhanced bioavailability of water-insoluble drugs: In vivo evidence and recent approaches. Pharmaceutics, 2020, 12(3), 264.
[http://dx.doi.org/10.3390/pharmaceutics12030264] [PMID: 32183185]
[46]
Sharma, K.S.; Sahoo, J.; Agrawal, S.; Kumari, A. Solid dispersions: A technology for improving bioavailability. J. Anal. Pharm. Res., 2019, 8(4), 127-133.
[http://dx.doi.org/10.15406/japlr.2019.08.00326]
[47]
Singh, S.; Kushwaha, A.K.; Vuddanda, P.R.; Karunanidhi, P.; Singh, S.K. Development and evaluation of solid lipid nanoparticles of ra-loxifene hydrochloride for enhanced bioavailability. BioMed Res. Int., 2013, 2013, 584549.
[48]
Luo, Y.; Chen, D.; Ren, L.; Zhao, X.; Qin, J. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J. Control. Release, 2006, 114(1), 53-59.
[http://dx.doi.org/10.1016/j.jconrel.2006.05.010] [PMID: 16828192]
[49]
Padhye, S.G.; Nagarsenker, M.S. Simvastatin solid lipid nanoparticles for oral delivery: Formulation development and in vivo evaluation. Indian J. Pharm. Sci., 2013, 75(5), 591-598.
[PMID: 24403661]
[50]
Mu, H.; Holm, R. Solid lipid nanocarriers in drug delivery: Characterization and design. Expert Opin. Drug Deliv., 2018, 15(8), 771-785.
[http://dx.doi.org/10.1080/17425247.2018.1504018] [PMID: 30064267]
[51]
Morgen, M.; Bloom, C.; Beyerinck, R.; Bello, A.; Song, W.; Wilkinson, K.; Steenwyk, R.; Shamblin, S. Polymeric nanoparticles for increased oral bioavailability and rapid absorption using celecoxib as a model of a low-solubility, high-permeability drug. Pharm. Res., 2012, 29(2), 427-440.
[http://dx.doi.org/10.1007/s11095-011-0558-7] [PMID: 21863477]
[52]
Mady, F.; Shaker, M. Enhanced anticancer activity and oral bioavailability of ellagic acid through encapsulation in biodegradable polymeric nanoparticles. Int. J. Nanomedicine, 2017, 12, 7405-7417.
[http://dx.doi.org/10.2147/IJN.S147740] [PMID: 29066891]
[53]
Shaker, M.A.; Elbadawy, H.M.; Al Thagfan, S.S.; Shaker, M.A. Enhancement of atorvastatin oral bioavailability via encapsulation in polymeric nanoparticles. Int. J. Pharm., 2021, 592, 120077.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120077] [PMID: 33246047]
[54]
Roy, M.; Mukherjee, S. Reversal of resistance towards cisplatin by curcumin in cervical cancer cells. Asian Pac. J. Cancer Prev., 2014, 15(3), 1403-1410.
[http://dx.doi.org/10.7314/APJCP.2014.15.3.1403] [PMID: 24606473]
[55]
Shah, K.; Mirza, S.; Desai, U.; Jain, N.; Rawal, R. Synergism of curcumin and cytarabine in the down regulation of multi-drug resistance genes in acute myeloid leukemia. Anticancer. Agents Med. Chem., 2015, 16(1), 128-135.
[http://dx.doi.org/10.2174/1871520615666150817115718] [PMID: 26278546]
[56]
Fan, Y.X.; Abulimiti, P.; Zhang, H.L.; Zhou, Y.K.; Zhu, L. Mechanism of reversal of multidrug resistance by curcumin in human colorectal cancer cell. Genet. Mol. Res., 2017, 16(2), 1-13.
[57]
Cho, C.J.; Yang, C.W.; Wu, C.L.; Ho, J.Y.; Yu, C.P.; Wu, S.T.; Yu, D.S. The modulation study of multiple drug resistance in bladder cancer by curcumin and resveratrol. Oncol. Lett., 2019, 18(6), 6869-6876.
[http://dx.doi.org/10.3892/ol.2019.11023] [PMID: 31807190]
[58]
Yang, L.; Li, D.; Tang, P.; Zuo, Y. Curcumin increases the sensitivity of K562/DOX cells to doxorubicin by targeting S100 calcium-binding protein A8 and P-glycoprotein. Oncol. Lett., 2020, 19(1), 83-92.
[PMID: 31897118]
[59]
Li, S.; Yuan, S.; Zhao, Q.; Wang, B.; Wang, X.; Li, K. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed. Pharmacother., 2018, 100, 441-447.
[http://dx.doi.org/10.1016/j.biopha.2018.02.055] [PMID: 29475141]
[60]
Chen, Zhaolin; Huanga, C; Maa, T; Jiangb, L; Tangb, L; Shib, T Reversal effect of quercetin on multidrug resistance via FZD7/β-catenin pathway in hepatocellular carcinoma cells. Phytomedicine, 2018, 43, 37-45.
[61]
Chen, Y.; Zhang, L.; Lu, X.; Wu, K.; Zeng, J.; Gao, Y. Sinomenine reverses multidrug resistance in bladder cancer cells via P-glycoprotein-dependent and independent manners. Pharmazie, 2014, 69(1), 48-54.
[62]
Khakbaz, P.; Panahizadeh, R.; Vatankhah, M.A.; Najafzadeh, N. Allicin Reduces 5-fluorouracil-resistance in Gastric Cancer Cells through Modulating MDR1, DKK1, and WNT5A Expression. Drug Res., 2021, 71(8), 448-454.
[http://dx.doi.org/10.1055/a-1525-1499] [PMID: 34261152]
[63]
Li, S.; Lei, Y.; Jia, Y.; Li, N.; Wink, M.; Ma, Y. Piperine, a piperidine alkaloid from Piper nigrum re-sensitizes P-gp, MRP1 and BCRP dependent multidrug resistant cancer cells. Phytomedicine, 2011, 19(1), 83-87.
[http://dx.doi.org/10.1016/j.phymed.2011.06.031] [PMID: 21802927]
[64]
Morsy, M.A.; El-Sheikh, A.A.K.; Ibrahim, A.R.N.; Khedr, M.A.; Al-Taher, A.Y. In silico comparisons between natural inhibitors of ABCB1/P-glycoprotein to overcome doxorubicin-resistance in the NCI/ADR-RES cell line. Eur. J. Pharm. Sci., 2018, 112, 87-94.
[http://dx.doi.org/10.1016/j.ejps.2017.11.010] [PMID: 29133241]
[65]
Liu, C.M.; Kao, C.L.; Tseng, Y.T.; Lo, Y.C.; Chen, C.Y. Ginger phytochemicals inhibit cell growth and modulate drug resistance factors in docetaxel resistant prostate cancer cell. Molecules, 2017, 22(9), 1477.
[http://dx.doi.org/10.3390/molecules22091477] [PMID: 28872603]
[66]
Rawal, S.; Patel, M.M. Threatening cancer with nanoparticle aided combination oncotherapy. In: J. Control. Release; , 2019; 301, pp. 76-109.
[67]
Kulkarni, D Chapter 10 Current trends on herbal bioenhancers. In: Drug Delivery Technology: Herbal Bioenhancers in Pharmaceuticals; De Gruyter: Berlin, Boston. , 2022; pp. 275-306.
[68]
Moorthi, C.; Kathiresan, K. Curcumin–Piperine/Curcumin–Quercetin/Curcumin–Silibinin dual drug-loaded nanoparticulate combination therapy: A novel approach to target and treat multidrug-resistant cancers. Journal of Medical Hypotheses and Ideas, 2013, 7(1), 15-20.
[http://dx.doi.org/10.1016/j.jmhi.2012.10.005]
[69]
Sedeky, A.S.; Khalil, I.A.; Hefnawy, A.; El-Sherbiny, I.M. Development of core-shell nanocarrier system for augmenting piperine cytotoxic activity against human brain cancer cell line. Eur. J. Pharm. Sci., 2018, 118, 103-112.
[http://dx.doi.org/10.1016/j.ejps.2018.03.030] [PMID: 29597041]
[70]
Tefas, L.R.; Sylvester, B.; Tomuta, I.; Sesarman, A.; Licarete, E.; Banciu, M.; Porfire, A. Development of antiproliferative long-circulating liposomes co-encapsulating doxorubicin and curcumin, through the use of a quality-by-design approach. Drug Des. Devel. Ther., 2017, 11, 1605-1621.
[http://dx.doi.org/10.2147/DDDT.S129008] [PMID: 28579758]
[71]
Pawar, H.; Surapaneni, S.K.; Tikoo, K.; Singh, C.; Burman, R.; Gill, M.S.; Suresh, S. Folic acid functionalized long-circulating co-encapsulated docetaxel and curcumin solid lipid nanoparticles: In vitro evaluation, pharmacokinetic and biodistribution in rats. Drug Deliv., 2016, 23(4), 1453-1468.
[http://dx.doi.org/10.3109/10717544.2016.1138339] [PMID: 26878325]
[72]
Daglioglu, C. Enhancing tumor cell response to multidrug resistance with ph-sensitive quercetin and doxorubicin conjugated multifunctional nanoparticles. Colloids Surf. B Biointerfaces, 2017, 156, 175-185.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.012] [PMID: 28528134]
[73]
Bolat, Z.B.; Islek, Z.; Demir, B.N.; Yilmaz, E.N.; Sahin, F.; Ucisik, M.H. Curcumin- and piperine-loaded emulsomes as combinational treatment approach enhance the anticancer activity of curcumin on HCT116 colorectal cancer model. Front. Bioeng. Biotechnol., 2020, 8, 50.
[http://dx.doi.org/10.3389/fbioe.2020.00050] [PMID: 32117930]
[74]
Wang, Y.; Zhao, L.; Yuan, W.; Liang, L.; Li, M.; Yu, X.; Wang, Y. A natural membrane vesicle exosome-based sinomenine delivery platform for hepatic carcinoma therapy. Curr. Top. Med. Chem., 2021, 21(14), 1224-1234.
[http://dx.doi.org/10.2174/1568026621666210612032004] [PMID: 34126903]
[75]
Patel, G.; Agnihotri, T.G.; Gitte, M.; Shinde, T.; Gomte, S.S.; Goswami, R. Exosomes: A potential diagnostic and treatment modality in the quest for counteracting cancer. Cell. Oncol., 2023, 46(5), 1159-1179.
[http://dx.doi.org/10.1007/s13402-023-00810-z]
[76]
Chivte, V.K.; Tiwari, S.V.; Nikalge, A.P.G. Bioenhancers: A brief review bioenhancers: A brief review. Advanced Journal of Pharmacie and Life Science Research., 2019, 5, 1-18.
[77]
Javed, S.; Ahsan, W.; Kohli, K. The concept of bioenhancers in bioavailability enhancement of drugs – A patent review. Sci. Lett. J., 2016, 1, 143-165.
[78]
Jacquier, A. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat. Rev. Genet., 2009, 10(12), 833-844.
[http://dx.doi.org/10.1038/nrg2683]
[79]
Liang, K-H. 3 - Transcriptomics. In: Bioinformatics for biomedical science and clinical applications; Woodhead Publishing Series in Biomedicine, 2013; pp. 49-82.
[80]
Supplitt, S.; Karpinski, P.; Sasiadek, M.; Laczmanska, I. Current achievements and applications of transcriptomics in personalized cancer medicine. Int. J. Mol. Sci., 2021, 22(3), 1422.
[http://dx.doi.org/10.3390/ijms22031422] [PMID: 33572595]