An Overview of Biosynthetic Pathway and Therapeutic Potential of Naringin

Article ID: e2210299X244607 Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Naringin is a naturally obtained chemical from plants that is formed as a secondary metabolite in them. It possesses significant properties that are useful to humans. The primary sources of naringin extract include fruits of the citrus family which are Citrus reticulata, Citrus bergamia, Citrus aurantium, and Citrus paradisi. It belongs to a class of alcohols primarily consisting of a fused ring system which is responsible for its different medicinal properties, as a consequence, it is widely used in the nutraceutical market nowadays. Nutraceuticals are a part of food that provides health benefits by giving supplements to the body; their final extract form is white in color having crystalline properties with a melting point of 83oC and solubility of 1 mg/ml at 40oC. The absorption of nutraceuticals occurs inside the stomach as it requires a specific pH range between 3.5-4.2. After absorption, it gets converted into naringenin in the liver via a cascade of reactions like dehydrogenation, acetylation, and hydrolysis. Several enzymes are responsible for its conversion into an active form which includes cytochrome P-450, and chalcone isomerase. Its bioavailability depends on a variety of factors including disease condition, gastric moiety, pH of absorption site, the presence of other drugs, and many more. It gets metabolized in the liver itself and finally excreted in the urine. It can be tolerated by the body at high doses, but other conditions can cause its toxicity inside the human body. Its primary properties include anti-inflammatory actions, anti-aging properties, antibacterial properties, anti-cancer properties, and obesity issues.

[1]
Zhang, F.Y.; Du, G.J.; Zhang, L.; Zhang, C.L.; Lu, W.L.; Liang, W. Naringenin enhances the anti-tumor effect of doxorubicin through selectively inhibiting the activity of multidrug resistance-associated proteins but not P-glycoprotein. Pharm. Res., 2009, 26(4), 914-925.
[http://dx.doi.org/10.1007/s11095-008-9793-y] [PMID: 19067124]
[2]
Fouad, A.A.; Albuali, W.H.; Jresat, I. Protective effect of naringenin against lipopolysaccharide-induced acute lung injury in rats. Pharmacology, 2016, 97(5-6), 224-232.
[http://dx.doi.org/10.1159/000444262] [PMID: 26872264]
[3]
Yadav, A.V.; Prakashan, N. Routes of administration of drugs, Pharmacology and Toxicology, 19th ed; , 2008, pp. 4-12.
[4]
Kumar, S; Pandey, AK Chemistry and biological activities of flavonoids: An overview., Sci. World J., 2013, 2013, 162750.
[http://dx.doi.org/10.1155/2013/162750]
[6]
Demiralay, E.Ç.; Koç, D.; Daldal, Y.D.; Çakır, C. Determination of chromatographic and spectrophotometric dissociation constants of some beta lactam antibiotics. J. Pharm. Biomed. Anal., 2012, 71, 139-143.
[http://dx.doi.org/10.1016/j.jpba.2012.06.023] [PMID: 22901760]
[7]
Hsiu, S.L.; Huang, T.Y.; Hou, Y.C.; Chin, D.H.; Chao, P.D.L. Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits. Life Sci., 2002, 70(13), 1481-1489.
[http://dx.doi.org/10.1016/S0024-3205(01)01491-6] [PMID: 11895099]
[8]
Middleton, E., Jr Effect of plant flavonoids on immune and inflammatory cell function. Adv. Exp. Med. Biol., 1998, 439, 175-182.
[http://dx.doi.org/10.1007/978-1-4615-5335-9_13] [PMID: 9781303]
[9]
Guo, L.Q.; Fukuda, K.; Ohta, T.; Yamazoe, Y. Role of furanocoumarin derivatives on grapefruit juice-mediated inhibition of human CYP3A activity. Drug Metab. Dispos., 2000, 28(7), 766-771.
[PMID: 10859150]
[10]
Kimball, D.A. Analyses of other citrus juice characteristics.Citrus Processing; Springer: Boston, MA, 1999.
[http://dx.doi.org/10.1007/978-1-4615-4973-4_7]
[11]
Bailey, D.G.; Arnold, J.M.O.; Strong, H.A.; Munoz, C.; Spence, J.D. Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics. Clin. Pharmacol. Ther., 1993, 54(6), 589-594.
[http://dx.doi.org/10.1038/clpt.1993.195] [PMID: 8275614]
[12]
Cui, J.; Juhasz, B.; Tosaki, A.; Maulik, N.; Das, D.K. Cardioprotection with grapes. J. Cardiovasc. Pharmacol., 2002, 40(5), 762-769.
[http://dx.doi.org/10.1097/00005344-200211000-00014] [PMID: 12409985]
[13]
Kutsuna, S.; Hori, H.; Sonoda, T. IwakamiT, Wakisaka A. preferential solvation ofperfluorooctanoic acid (PFOA) by methanol in methanol-water mixtures. Atmos. Environ., 2012, 49, 411-414.
[http://dx.doi.org/10.1016/j.atmosenv.2011.12.009]
[14]
Alam, P.; Parvez, M.K.; Arbab, A.H.; Al-Dosari, M.S. Quantitative analysis of rutin, quercetin, naringenin, and gallic acid by validated RP- and NP-HPTLC methods for quality control of anti-HBV active extract of Guiera senegalensis. Pharm. Biol., 2017, 55(1), 1317-1323.
[http://dx.doi.org/10.1080/13880209.2017.1300175] [PMID: 28283004]
[15]
Murray, M. Mechanisms and significance of inhibitory drug interactions involving cytochrome P450 enzymes. Int J Mol Med., 1999, 3(3), 227-238.
[16]
Kesse-Guyot, E.; Fezeu, L.; Galan, P.; Hercberg, S.; Czernichow, S.; Castetbon, K. Adherence to French nutritional guidelines is associated with lower risk of metabolic syndrome. J. Nutr., 2011, 141(6), 1134-1139.
[http://dx.doi.org/10.3945/jn.110.136317] [PMID: 21490288]
[17]
Sowers, J.R.; Epstein, M. Diabetes mellitus and associated hypertension, vascular disease, and nephropathy. An update. Hypertension, 1995, 26(6), 869-879.
[http://dx.doi.org/10.1161/01.HYP.26.6.869] [PMID: 7490142]
[18]
Panula, P.; Chazot, P.L.; Cowart, M.; Gutzmer, R.; Leurs, R.; Liu, W.L.S.; Stark, H.; Thurmond, R.L.; Haas, H.L. International union of basic and clinical pharmacology. XCVIII. Histamine receptors. Pharmacol. Rev., 2015, 67(3), 601-655.
[http://dx.doi.org/10.1124/pr.114.010249] [PMID: 26084539]
[19]
Jardim, ACG; Shimizu, JF; Rahal, P; Harris, M Plant-derived antivirals against hepatitis c virus infection. Virol J., 2018, 15(1), 34.
[http://dx.doi.org/10.1186/s12985-018-0945-3]
[20]
Aldrich, C.; Bertozzi, C.; Georg, G.I.; Kiessling, L.; Lindsley, C.; Liotta, D.; Merz, K.M., Jr; Schepartz, A.; Wang, S. The ecstasy and agony of assay interference compounds. J. Med. Chem., 2017, 60(6), 2165-2168.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00229] [PMID: 28244745]
[21]
Attia, S.M. Abatement by naringin of lomefloxacin-induced genomic instability in mice. Mutagenesis, 2008, 23(6), 515-521.
[http://dx.doi.org/10.1093/mutage/gen045] [PMID: 18755759]
[22]
Wang, K.; Chen, Z.; Huang, J.; Huang, L.; Luo, N.; Liang, X.; Liang, M.; Xie, W. Naringenin prevents ischaemic stroke damage via anti-apoptotic and anti-oxidant effects. Clin. Exp. Pharmacol. Physiol., 2017, 44(8), 862-871.
[http://dx.doi.org/10.1111/1440-1681.12775] [PMID: 28453191]
[23]
Kanaze, F.I.; Termentzi, A.; Gabrieli, C.; Niopas, I.; Georgarakis, M.; Kokkalou, E. The phytochemical analysis and antioxidant activity assessment of orange peel ( Citrus sinensis ) cultivated in Greece-Crete indicates a new commercial source of hesperidin. Biomed. Chromatogr., 2009, 23(3), 239-249.
[http://dx.doi.org/10.1002/bmc.1090] [PMID: 18823075]
[24]
Bharti, S.; Rani, N.; Krishnamurthy, B.; Arya, D. Preclinical evidence for the pharmacological actions of naringin: A review. Planta Med., 2014, 80(6), 437-451.
[http://dx.doi.org/10.1055/s-0034-1368351] [PMID: 24710903]
[25]
Da Pozzo, E; Giacomelli, C; Costa, B TSPO PIGA ligands promote neurosteroidogenesis and human astrocyte well-being. Int J Mol Sci., 2016, 17(7), 1028.
[http://dx.doi.org/10.3390/ijms17071028]
[26]
de Jesus, B.B.; Blasco, M.A. Assessing cell and organ senescence biomarkers. Circ. Res., 2012, 111(1), 97-109.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.247866] [PMID: 22723221]
[27]
Fedenko, VS; Landi, M; Shemet, SA Metallophenolomics: A novel integrated approach to study complexation of plant phenolics with metal/metalloid ions. Int J Mol Sci., 2022, 23(19), 11370.
[http://dx.doi.org/10.3390/ijms231911370]
[28]
Croce, N; Pitaro, M; Gallo, V; Antonini, G. Toxicity of usnic acid: A narrative review. J Toxicol., 2022, 8244340.
[http://dx.doi.org/10.1155/2022/8244340]
[29]
Ayob, Z.; Mohd Bohari, S.P.; Abd Samad, A.; Jamil, S. Cytotoxic activities against breast cancer cells of local justicia gendarussa crude extracts. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/732980] [PMID: 25574182]
[30]
Zeeshan, HM; Lee, GH; Kim, HR; Chae, HJ Endoplasmic reticulum stress and associated ROS. Int J Mol Sci., 2016, 17(3), 327.
[http://dx.doi.org/10.3390/ijms17030327]
[31]
Fang, T.; Wang, Y.; Ma, Y.; Su, W.; Bai, Y.; Zhao, P. A rapid LC/MS/MS quantitation assay for naringin and its two metabolites in rats plasma. J. Pharm. Biomed. Anal., 2006, 40(2), 454-459.
[http://dx.doi.org/10.1016/j.jpba.2005.07.031] [PMID: 16406442]
[32]
Guy, B.; Briand, O.; Lang, J.; Saville, M.; Jackson, N. Development of the sanofi pasteur tetravalent dengue vaccine: One more step forward. Vaccine, 2015, 33(50), 7100-7111.
[http://dx.doi.org/10.1016/j.vaccine.2015.09.108] [PMID: 26475445]
[33]
Ahmadi, A.; Hassandarvish, P.; Lani, R.; Yadollahi, P.; Jokar, A.; Bakar, S.A.; Zandi, K. Inhibition of chikungunya virus replication by hesperetin and naringenin. RSC Advances, 2016, 6(73), 69421-69430.
[http://dx.doi.org/10.1039/C6RA16640G]
[34]
Johnson, M.K.; Loo, G. Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA. Mutat. Res. DNA Repair, 2000, 459(3), 211-218.
[http://dx.doi.org/10.1016/S0921-8777(99)00074-9] [PMID: 10812333]
[35]
Nagappan, A.; Lee, H.J.; Saralamma, V.V.G.; Park, H.S.; Hong, G.E.; Yumnam, S.; Raha, S.; Charles, S.N.; Shin, S.C.; Kim, E.H.; Lee, W.S.; Kim, G.S. Flavonoids isolated from Citrus platymamma induced G2/M cell cycle arrest and apoptosis in A549 human lung cancer cells. Oncol. Lett., 2016, 12(2), 1394-1402.
[http://dx.doi.org/10.3892/ol.2016.4793] [PMID: 27446443]
[36]
Kanno, S.; Tomizawa, A.; Hiura, T.; Osanai, Y.; Shouji, A.; Ujibe, M.; Ohtake, T.; Kimura, K.; Ishikawa, M. Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-implanted mice. Biol. Pharm. Bull., 2005, 28(3), 527-530.
[http://dx.doi.org/10.1248/bpb.28.527] [PMID: 15744083]
[37]
Sirovina, D.; Oršolić, N.; Gregorović, G.; Končić, M.Z. Naringenin ameliorates pathological changes in liver and kidney of diabetic mice: A preliminary study / Naringenin reducira histopatološke promjene u jetri i bubregu miševa s dijabetesom. Arh. Hig. Rada Toksikol., 2016, 67(1), 19-24.
[http://dx.doi.org/10.1515/aiht-2016-67-2708] [PMID: 27092635]
[38]
Mahmoud, A.M.; Ashour, M.B.; Abdel-Moneim, A.; Ahmed, O.M. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J. Diabetes Complications, 2012, 26(6), 483-490.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.06.001] [PMID: 22809898]
[39]
Sachdeva, A.K.; Kuhad, A.; Chopra, K. Naringin ameliorates memory deficits in experimental paradigm of Alzheimer’s disease by attenuating mitochondrial dysfunction. Pharmacol. Biochem. Behav., 2014, 127, 101-110.
[http://dx.doi.org/10.1016/j.pbb.2014.11.002] [PMID: 25449356]
[40]
Stohs, SJ; Preuss, HG; Keith, SC; Keith, PL; Miller, H; Kaats, GR Effects of p-synephrine alone and in combination with selected bioflavonoids on resting metabolism, blood pressure, heart rate and self-reported mood changes. Int J Med Sci., 2011, 8(4), 295-301.
[http://dx.doi.org/10.7150/ijms.8.295]
[41]
Jäger, AK; Saaby, L Flavonoids and the CNS. Molecules, 2011, 16(1), 1471-1485.
[http://dx.doi.org/10.3390/molecules16021471]
[42]
Mollace, V.; Sacco, I.; Janda, E.; Malara, C.; Ventrice, D.; Colica, C.; Visalli, V.; Muscoli, S.; Ragusa, S.; Muscoli, C.; Rotiroti, D.; Romeo, F. Hypolipemic and hypoglycaemic activity of bergamot polyphenols: From animal models to human studies. Fitoterapia, 2011, 82(3), 309-316.
[http://dx.doi.org/10.1016/j.fitote.2010.10.014] [PMID: 21056640]
[43]
Choi, YJ; Lee, DH; Kim, HS; Kim, YK An exploratory study on the effect of daily fruits and vegetable juice on human gut microbiota. Food Sci Biotechnol, 2018, 27(5), 1377-1386.
[http://dx.doi.org/10.1007/s10068-018-0372-7]
[44]
Pereira-Caro, G.; Polyviou, T.; Ludwig, I.A.; Nastase, A.M.; Moreno-Rojas, J.M.; Garcia, A.L.; Malkova, D.; Crozier, A. Bioavailability of orange juice (poly)phenols: the impact of short-term cessation of training by male endurance athletes. Am. J. Clin. Nutr., 2017, 106(3), 791-800.
[http://dx.doi.org/10.3945/ajcn.116.149898] [PMID: 28747329]
[45]
Koopman, F.; Beekwilder, J.; Crimi, B.; van Houwelingen, A.; Hall, R.D.; Bosch, D.; van Maris, A.J.A.; Pronk, J.T.; Daran, J.M. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb. Cell Fact., 2012, 11(1), 155.
[http://dx.doi.org/10.1186/1475-2859-11-155] [PMID: 23216753]
[46]
Jeandet, P.; Sobarzo-Sánchez, E.; Clément, C.; Nabavi, S.F.; Habtemariam, S.; Nabavi, S.M.; Cordelier, S. Engineering stilbene metabolic pathways in microbial cells. Biotechnol. Adv., 2018, 36(8), 2264-2283.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.002] [PMID: 30414914]
[47]
Álvarez-Álvarez, R; Botas, A; Albillos, SM; Rumbero, A; Martín, JF; Liras, P Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus. Microb Cell Fact., 2015, 14, 178.
[http://dx.doi.org/10.1186/s12934-015-0373-7]
[48]
Eichenberger, M.; Lehka, B.J.; Folly, C.; Fischer, D.; Martens, S.; Simón, E.; Naesby, M. Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties. Metab. Eng., 2017, 39, 80-89.
[http://dx.doi.org/10.1016/j.ymben.2016.10.019] [PMID: 27810393]
[49]
Wu, J; Zhou, T; Du, G; Zhou, J; Chen, J Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in escherichia coli. PLoS One, 2014, 9(7), e101492.
[http://dx.doi.org/10.1371/journal.pone.0101492]
[50]
Pandey, R.P.; Parajuli, P.; Koffas, M.A.G.; Sohng, J.K. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology. Biotechnol. Adv., 2016, 34(5), 634-662.
[http://dx.doi.org/10.1016/j.biotechadv.2016.02.012] [PMID: 26946281]
[51]
Trantas, EA; Koffas, MA; Xu, P; Ververidis, F When plants produce not enough or at all: Metabolic engineering of flavonoids in microbial hosts. Front Plant Sci., 2015, 6, 7.
[http://dx.doi.org/10.3389/fpls.2015.00007]
[52]
Nabavi, S.M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J.; Giampieri, F.; Battino, M.; Sobarzo-Sanchez, E.; Nabavi, S.F.; Yousefi, B.; Jeandet, P.; Xu, S.; Shirooie, S. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol. Adv., 2020, 38, 107316.
[http://dx.doi.org/10.1016/j.biotechadv.2018.11.005] [PMID: 30458225]
[53]
Yin, J.; Liang, Y.; Wang, D.; Yan, Z.; Yin, H.; Wu, D.; Su, Q. Naringenin induces laxative effects by upregulating the expression levels of c-Kit and SCF, as well as those of aquaporin 3 in mice with loperamide-induced constipation. Int. J. Mol. Med., 2017, 41(2), 649-658.
[http://dx.doi.org/10.3892/ijmm.2017.3301] [PMID: 29207043]
[54]
Salehi, B; Fokou, PVT; Sharifi-Rad, M The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals, 2019, 12(1), 11.
[http://dx.doi.org/10.3390/ph12010011]
[55]
Ke, JY; Banh, T; Hsiao, YH Citrus flavonoid naringenin reduces mammary tumor cell viability, adipose mass, and adipose inflammation in obese ovariectomized mice., Mol Nutr Food Res., 2017, 61 9.
[http://dx.doi.org/10.1002/mnfr.201600934]
[56]
Pinho-Ribeiro, F.A.; Zarpelon, A.C.; Fattori, V.; Manchope, M.F.; Mizokami, S.S.; Casagrande, R.; Verri, W.A., Jr Naringenin reduces inflammatory pain in mice. Neuropharmacology, 2016, 105, 508-519.
[http://dx.doi.org/10.1016/j.neuropharm.2016.02.019] [PMID: 26907804]
[57]
Wang, Q.; Yang, J.; Zhang, X.; Zhou, L.; Liao, X.; Yang, B. Practical synthesis of naringenin. J. Chem. Res., 2015, 39(8), 455-457.
[http://dx.doi.org/10.3184/174751915X14379994045537]
[58]
National center for biotechnology information, pubchem compound database. Available from: https://pubchem.ncbi.nlm.nih.gov/ (Accessed on 16 November 2018).
[59]
Jayachitra, J.; Nalini, N. Effect of naringenin (citrus flavanone) on lipid profile in ethanol-induced toxicity in rats. J. Food Biochem., 2012, 36(4), 502-511.
[http://dx.doi.org/10.1111/j.1745-4514.2011.00561.x]
[60]
Erlund, I.; Meririnne, E.; Alfthan, G.; Aro, A. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice. J. Nutr., 2001, 131(2), 235-241.
[http://dx.doi.org/10.1093/jn/131.2.235] [PMID: 11160539]
[61]
Frabasile, S; Koishi, AC; Kuczera, D The citrus flavanone naringenin impairs dengue virus replication in human cells. Sci Rep., 2017, 7, 41864.
[http://dx.doi.org/10.1038/srep41864]
[62]
Oo, A; Hassandarvish, P; Chin, SP; Lee, VS; Abu Bakar, S; Zandi, K In silico study on anti-Chikungunya virus activity of hesperetin. PeerJ., 2016, 4, 2602.
[http://dx.doi.org/10.7717/peerj.2602]
[63]
Gonçalves, D; Lima, C; Ferreira, P Orange juice as dietary source of antioxidants for patients with hepatitis C under antiviral therapy. Food Nutr Res., 2017, 61(1), 1296675.
[http://dx.doi.org/10.1080/16546628.2017.1296675]
[64]
Pereira-Caro, G.; Borges, G.; van der Hooft, J.; Clifford, M.N.; Del Rio, D.; Lean, M.E.J.; Roberts, S.A.; Kellerhals, M.B.; Crozier, A. Orange juice (poly)phenols are highly bioavailable in humans. Am. J. Clin. Nutr., 2014, 100(5), 1378-1384.
[http://dx.doi.org/10.3945/ajcn.114.090282] [PMID: 25332336]
[65]
Kanaze, F.I.; Bounartzi, M.I.; Georgarakis, M.; Niopas, I. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur. J. Clin. Nutr., 2007, 61(4), 472-477.
[http://dx.doi.org/10.1038/sj.ejcn.1602543] [PMID: 17047689]
[66]
Zeng, X.; Su, W.; Bai, Y.; Chen, T.; Yan, Z.; Wang, J.; Su, M.; Zheng, Y.; Peng, W.; Yao, H. Urinary metabolite profiling of flavonoids in Chinese volunteers after consumption of orange juice by UFLC-Q-TOF-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1061-1062, 79-88.
[http://dx.doi.org/10.1016/j.jchromb.2017.07.015] [PMID: 28711784]
[67]
Aschoff, J.K.; Riedl, K.M.; Cooperstone, J.L.; Högel, J.; Bosy-Westphal, A.; Schwartz, S.J.; Carle, R.; Schweiggert, R.M. Urinary excretion of Citrus flavanones and their major catabolites after consumption of fresh oranges and pasteurized orange juice: A randomized cross-over study. Mol. Nutr. Food Res., 2016, 60(12), 2602-2610.
[http://dx.doi.org/10.1002/mnfr.201600315] [PMID: 27488098]
[68]
Duque, A.L.R.F.; Monteiro, M.; Adorno, M.A.T.; Sakamoto, I.K.; Sivieri, K. An exploratory study on the influence of orange juice on gut microbiota using a dynamic colonic model. Food Res. Int., 2016, 84, 160-169.
[http://dx.doi.org/10.1016/j.foodres.2016.03.028]
[69]
Zaidun, N.H.; Thent, Z.C.; Latiff, A.A. Combating oxidative stress disorders with citrus flavonoid: Naringenin. Life Sci., 2018, 208, 111-122.
[http://dx.doi.org/10.1016/j.lfs.2018.07.017] [PMID: 30021118]
[70]
Amawi, H; Ashby, CR, Jr; Tiwari, AK Cancer chemoprevention through dietary flavonoids: What's limiting. Chin J Cancer., 2017, 36(1), 50.
[http://dx.doi.org/10.1186/s40880-017-0217-4]
[71]
Testai, L; Calderone, V. Nutraceutical value of citrus flavanones and their implications in cardiovascular disease. Nutrients, 2017, 9(5), 502.
[http://dx.doi.org/10.3390/nu9050502]
[72]
Yamada, T.; Hayasaka, S.; Shibata, Y.; Ojima, T.; Saegusa, T.; Gotoh, T.; Ishikawa, S.; Nakamura, Y.; Kayaba, K. Frequency of citrus fruit intake is associated with the incidence of cardiovascular disease: the Jichi Medical School cohort study. J. Epidemiol., 2011, 21(3), 169-175.
[http://dx.doi.org/10.2188/jea.JE20100084] [PMID: 21389640]
[73]
Knekt, P.; Kumpulainen, J.; Järvinen, R.; Rissanen, H.; Heliövaara, M.; Reunanen, A.; Hakulinen, T.; Aromaa, A. Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr., 2002, 76(3), 560-568.
[http://dx.doi.org/10.1093/ajcn/76.3.560] [PMID: 12198000]
[74]
Cassidy, A.; Rimm, E.B.; O’Reilly, É.J.; Logroscino, G.; Kay, C.; Chiuve, S.E.; Rexrode, K.M. Dietary flavonoids and risk of stroke in women. Stroke, 2012, 43(4), 946-951.
[http://dx.doi.org/10.1161/STROKEAHA.111.637835] [PMID: 22363060]
[75]
Onakpoya, I.; O’Sullivan, J.; Heneghan, C.; Thompson, M. The effect of grapefruits ( Citrus paradisi ) on body weight and cardiovascular risk factors: A systematic review and meta-analysis of randomized clinical trials. Crit. Rev. Food Sci. Nutr., 2017, 57(3), 602-612.
[http://dx.doi.org/10.1080/10408398.2014.901292] [PMID: 25880021]
[76]
Reshef, N.; Hayari, Y.; Goren, C.; Boaz, M.; Madar, Z.; Knobler, H. Antihypertensive effect of sweetie fruit in patients with stage I hypertension. Am. J. Hypertens., 2005, 18(10), 1360-1363.
[http://dx.doi.org/10.1016/j.amjhyper.2005.05.021] [PMID: 16202862]
[77]
Toth, PP; Patti, AM; Nikolic, D Bergamot reduces plasma lipids, atherogenic small dense ldl, and subclinical atherosclerosis in subjects with moderate Hypercholesterolemia: A 6 months prospective study. Front Pharmacol., 2016, 6, 299.
[http://dx.doi.org/10.3389/fphar.2015.00299]
[78]
Zhu, Z; Xie, W; Li, Y; Zhu, Z; Zhang, W. Effect of naringin treatment on postmenopausal osteoporosis in ovariectomized rats: A meta-analysis and systematic review. Evid Based Complement Alternat Med., 2021, 2021, 6016874.
[http://dx.doi.org/10.1155/2021/6016874]
[79]
Rebello, C.J.; Beyl, R.A.; Lertora, J.J.L.; Greenway, F.L.; Ravussin, E.; Ribnicky, D.M.; Poulev, A.; Kennedy, B.J.; Castro, H.F.; Campagna, S.R.; Coulter, A.A.; Redman, L.M. Safety and pharmacokinetics of naringenin: A randomized, controlled, single-ascending-dose clinical trial. Diabetes Obes. Metab., 2020, 22(1), 91-98.
[http://dx.doi.org/10.1111/dom.13868] [PMID: 31468636]