N-Heterocycle based Degraders (PROTACs) Manifesting Anticancer Efficacy: Recent Advances

Page: [1184 - 1208] Pages: 25

  • * (Excluding Mailing and Handling)

Abstract

Proteolysis Targeting Chimeras (PROTACs) technology has emerged as a promising strategy for the treatment of undruggable therapeutic targets. Researchers have invested a great effort in developing druggable PROTACs; however, the problems associated with PROTACs, including poor solubility, metabolic stability, cell permeability, and pharmacokinetic profile, restrict their clinical utility. Thus, there is a pressing need to expand the size of the armory of PROTACs which will escalate the chances of pinpointing new PROTACs with optimum pharmacokinetic and pharmacodynamics properties. N- heterocycle is a class of organic frameworks that have been widely explored to construct new and novel PROTACs. This review provides an overview of recent efforts of medicinal chemists to develop N-heterocycle-based PROTACs as effective cancer therapeutics. Specifically, the recent endeavors centred on the discovery of PROTACs have been delved into various classes based on the E3 ligase they target (MDM2, IAP, CRBN, and other E3 ligases). Mechanistic insights revealed during the biological assessment of recently furnished Nheterocyclic- based PROTACs constructed via the utilization of ligands for various E3 ligases have been discussed.

Graphical Abstract

[1]
Haverkos H, Rohrer M, Pickworth W. The cause of invasive cervical cancer could be multifactorial. Biomed Pharmacother 2000; 54(1): 54-9.
[http://dx.doi.org/10.1016/S0753-3322(00)88642-4] [PMID: 10721464]
[2]
Nagy JD, Armbruster D. Evolution of uncontrolled proliferation and the angiogenic switch in cancer. Math Biosci Eng 2012; 9(4): 843-76.
[http://dx.doi.org/10.3934/mbe.2012.9.843] [PMID: 23311425]
[3]
Lee KL, Chen G, Chen TY, Kuo YC, Su YK. Effects of cancer stem cells in triple-negative breast cancer and brain metastasis: Challenges and solutions. Cancers 2020; 12(8): 2122.
[http://dx.doi.org/10.3390/cancers12082122] [PMID: 32751846]
[4]
Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science 2011; 331(6024): 1559-64.
[http://dx.doi.org/10.1126/science.1203543] [PMID: 21436443]
[5]
Lo SS, Wu CW, Hsieh MC, Kuo HS, Lui WY, P’Eng FK. Relationship between age and clinical characteristics of patients with gastric cancer. J Gastroenterol Hepatol 1996; 11(6): 511-4.
[http://dx.doi.org/10.1111/j.1440-1746.1996.tb01693.x] [PMID: 8792301]
[6]
Wu GHM, Auvinen A, Yen AMF, et al. The impact of interscreening interval and age on prostate cancer screening with prostate-specific antigen. Eur Urol 2012; 61(5): 1011-8.
[http://dx.doi.org/10.1016/j.eururo.2012.01.008] [PMID: 22264679]
[7]
Lin HC, Wu CH, Lee HC. Risk factors for suicide following hospital discharge among cancer patients. Psychooncology 2009; 18(10): 1038-44.
[http://dx.doi.org/10.1002/pon.1483] [PMID: 19156684]
[8]
Lin YH, Kuo HH, Tseng LH, Qiu JT, Chang FS, Lin CT. Complete remission of relapsed cervical cancer through immunochemoradiotherapy: Two case reports and three proposed mechanism. Gynecol Minim Invasive Ther 2016; 5(3): 127-31.
[http://dx.doi.org/10.1016/j.gmit.2016.01.008]
[9]
Tabar L, Duffy SW, Yen M-F, et al. All-cause mortality among breast cancer patients in a screening trial: Support for breast cancer mortality as an end point. J Med Screen 2002; 9(4): 159-62.
[http://dx.doi.org/10.1136/jms.9.4.159] [PMID: 12518005]
[10]
Chen CL, Chiou HY, Hsu LI, et al. Arsenic in drinking water and risk of urinary tract cancer: A follow-up study from northeastern Taiwan. Cancer Epidemiol Biomarkers Prev 2010; 19(1): 101-10.
[http://dx.doi.org/10.1158/1055-9965.EPI-09-0333] [PMID: 20056628]
[11]
Chang TS, Chen CL, Wu YC, et al. Inflammation promotes expression of stemness-related properties in HBV-related hepatocellular carcinoma. PLoS One 2016; 11(2): e0149897.
[http://dx.doi.org/10.1371/journal.pone.0149897] [PMID: 26919045]
[12]
Anuraga G, Tang WC, Phan N, et al. Comprehensive analysis of prognostic and genetic signatures for general transcription factor III (GTF3) in clinical colorectal cancer patients using bioinformatics approaches. Curr Issues Mol Biol 2021; 43(1): 2-20.
[http://dx.doi.org/10.3390/cimb43010002] [PMID: 33925358]
[13]
Horng JT, Hu KC, Wu LC, et al. Identifying the combination of genetic factors that determine susceptibility to cervical cancer. IEEE Trans Inf Technol Biomed 2004; 8(1): 59-66.
[http://dx.doi.org/10.1109/TITB.2004.824738] [PMID: 15055802]
[14]
Wen Cheng Y, Lee H. Y.; Lee, H. Environmental exposure and lung cancer among nonsmokers: an example of Taiwanese female lung cancer. J Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev 2003; 21(1): 1-28.
[http://dx.doi.org/10.1081/GNC-120021371]
[15]
Hsu L-I, Wu M-M, Wang Y-H, et al. Association of environmental arsenic exposure, genetic polymorphisms of susceptible genes, and skin cancers in Taiwan. Biomed Res Int 2015; 2015
[http://dx.doi.org/10.1155/2015/892579]
[16]
Lin RK, Hsieh YS, Lin P, et al. The tobacco-specific carcinogen NNK induces DNA methyltransferase 1 accumulation and tumor suppressor gene hypermethylation in mice and lung cancer patients. J Clin Invest 2010; 120(2): 521-32.
[http://dx.doi.org/10.1172/JCI40706] [PMID: 20093774]
[17]
Kuo YH, Shiau AL, Tung CL, et al. Expression of prothymosin α in lung cancer is associated with squamous cell carcinoma and smoking. Oncol Lett 2019; 17(6): 5740-6.
[http://dx.doi.org/10.3892/ol.2019.10248] [PMID: 31105795]
[18]
Chung MH, Chao TY, Chou KR, Lee HL. Health-promoting lifestyle factors of cancer survivors in Taiwan. Cancer Nurs 2009; 32(3): E8-E14.
[http://dx.doi.org/10.1097/NCC.0b013e318199002b] [PMID: 19295426]
[19]
Hsiao JR, Huang CC, Ou CY, et al. Investigating the health disparities in the association between lifestyle behaviors and the risk of head and neck cancer. Cancer Sci 2020; 111(8): 2974-86.
[http://dx.doi.org/10.1111/cas.14530] [PMID: 32539207]
[20]
Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: An overview. Int J Cancer 2021; 149(4): 778-89.
[http://dx.doi.org/10.1002/ijc.33588] [PMID: 33818764]
[21]
Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Health 2019; 85(1): 8.
[http://dx.doi.org/10.5334/aogh.2419] [PMID: 30741509]
[22]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[23]
Lee WS, Chen RJ, Wang YJ, et al. in vitro and in vivo studies of the anticancer action of terbinafine in human cancer cell lines: G0/G1 p53 -associated cell cycle arrest. Int J Cancer 2003; 106(1): 125-37.
[http://dx.doi.org/10.1002/ijc.11194] [PMID: 12794767]
[24]
Kuo YC. Cancer Science and Pediatrics 2019: Meridian on cancer therapy-Yu Cheng Kuo-Taipei Medical University, Taiwan. Pediatric Oncology: Open Access 2021; 6(3): 4-4.
[25]
Shen SC, Chen YC, Hsu FL, Lee WR. Differential apoptosis-inducing effect of quercetin and its glycosides in human promyeloleukemic HL-60 cells by alternative activation of the caspase 3 cascade. J Cell Biochem 2003; 89(5): 1044-55.
[http://dx.doi.org/10.1002/jcb.10559] [PMID: 12874837]
[26]
Huang KW, Hsu FF, Qiu JT, et al. Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer. Sci Adv 2020; 6(3): eaax5032.
[http://dx.doi.org/10.1126/sciadv.aax5032] [PMID: 31998834]
[27]
Wakabayashi G, Lee Y-C, Luh F, Kuo C-N, Chang W-C, Yen Y. Development and clinical applications of cancer immunotherapy against PD-1 signaling pathway. J Biomed Sci 2019; 26: 1-13.
[28]
Roxburgh CSD, McMillan DC. Cancer and systemic inflammation: Treat the tumour and treat the host. Br J Cancer 2014; 110(6): 1409-12.
[http://dx.doi.org/10.1038/bjc.2014.90] [PMID: 24548867]
[29]
Sun JL, Lin CC. Relationships among daytime napping and fatigue, sleep quality, and quality of life in cancer patients. Cancer Nurs 2016; 39(5): 383-92.
[http://dx.doi.org/10.1097/NCC.0000000000000299] [PMID: 26378400]
[30]
Huang SM, Lee CH, Chien LY, Liu HE, Tai CJ. Postoperative quality of life among patients with thyroid cancer. J Adv Nurs 2004; 47(5): 492-9.
[http://dx.doi.org/10.1111/j.1365-2648.2004.03128.x] [PMID: 15312112]
[31]
Tseng TH, Chien MH, Lin WL, et al. Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21 WAF1/CIP1 expression. Environ Toxicol 2017; 32(2): 434-44.
[http://dx.doi.org/10.1002/tox.22247] [PMID: 26872304]
[32]
Yang JD, Chen JT, Liu SH, Chen RM. Contribution of the testosterone androgen receptor–pard3b signaling axis to tumorigenesis and malignance of glioblastoma multiforme through stimulating cell proliferation and colony formation. J Clin Med 2022; 11(16): 4818.
[http://dx.doi.org/10.3390/jcm11164818] [PMID: 36013056]
[33]
Raguz S, Yagüe E. Resistance to chemotherapy: new treatments and novel insights into an old problem. Br J Cancer 2008; 99(3): 387-91.
[http://dx.doi.org/10.1038/sj.bjc.6604510] [PMID: 18665178]
[34]
Bailly C, Thuru X, Quesnel B. Combined cytotoxic chemotherapy and immunotherapy of cancer: Modern times. NAR cancer, 2020; 2(1)
[35]
Preissner S, Dunkel M, Hoffmann MF, et al. Drug cocktail optimization in chemotherapy of cancer. PLoS One 2012; 7(12): e51020.
[http://dx.doi.org/10.1371/journal.pone.0051020] [PMID: 23236419]
[36]
Ameta KL, Kant R, Penoni A, Maspero A, Scapinello L. N-Heterocycles. Springer 2022.
[http://dx.doi.org/10.1007/978-981-19-0832-3]
[37]
Ghasemi Z, Azizi S, Salehi R, Kafil HS. Synthesis of azo dyes possessing N-heterocycles and evaluation of their anticancer and antibacterial properties. Monatsh Chem 2018; 149(1): 149-57.
[http://dx.doi.org/10.1007/s00706-017-2073-y]
[38]
Lang DK, Kaur R, Arora R, Saini B, Arora S. Nitrogen-containing heterocycles as anticancer agents: An overview. Anticancer Agents Med Chem 2020; 20(18): 2150-68.
[http://dx.doi.org/10.2174/1871520620666200705214917] [PMID: 32628593]
[39]
Zhi S, Li Y, Qiang J, Hu J, Song W, Zhao J. Synthesis and anticancer evaluation of benzo-N-heterocycles transition metal complexes against esophageal cancer cell lines. J Inorg Biochem 2019; 201: 110816.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110816] [PMID: 31518868]
[40]
Dudhe R, Sharma PK, Verma P, Chaudhary A. Pyrimidine as anticancer agent: A review. Int J Adv Sci Res 2011; 2(03): 10-7.
[41]
Dorababu A. Report on recently (2017–20) designed quinoline-based human cancer cell growth inhibitors. ChemistrySelect 2020; 5(44): 13902-15.
[http://dx.doi.org/10.1002/slct.202003888]
[42]
Sachdeva H, Saquib M, Tanwar K. Design and development of triazole derivatives as prospective anticancer agents: A review. Anticancer Agents Med Chem 2022; 22(19): 3269-79.
[http://dx.doi.org/10.2174/1871520622666220412133112] [PMID: 35418291]
[43]
Crider AM, Lamey R, Floss HG, Cassady JM, Bradner WJ. Synthesis of nitrosourea derivatives of pyridine and piperidine as potential anticancer agents. J Med Chem 1980; 23(8): 848-51.
[http://dx.doi.org/10.1021/jm00182a007] [PMID: 7401113]
[44]
Hughes GR, Dudey AP, Hemmings AM, Chantry A. Frontiers in PROTACs. Drug Discov Today 2021; 26(10): 2377-83.
[http://dx.doi.org/10.1016/j.drudis.2021.04.010] [PMID: 33872800]
[45]
Maneiro M, De Vita E, Conole D, Kounde CS, Zhang Q, Tate EW. PROTACs, molecular glues and bifunctionals from bench to bedside: Unlocking the clinical potential of catalytic drugs. Prog Med Chem 2021; 60: 67-190.
[http://dx.doi.org/10.1016/bs.pmch.2021.01.002] [PMID: 34147206]
[46]
Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc Natl Acad Sci USA 2001; 98(15): 8554-9.
[http://dx.doi.org/10.1073/pnas.141230798] [PMID: 11438690]
[47]
Lai AC, Crews CM. Induced protein degradation: An emerging drug discovery paradigm. Nat Rev Drug Discov 2017; 16(2): 101-14.
[http://dx.doi.org/10.1038/nrd.2016.211] [PMID: 27885283]
[48]
Gu S, Cui D, Chen X, Xiong X, Zhao Y. PROTACs: an emerging targeting technique for protein degradation in drug discovery. BioEssays 2018; 40(4): 1700247.
[http://dx.doi.org/10.1002/bies.201700247] [PMID: 29473971]
[49]
Paiva SL, Crews CM. Targeted protein degradation: Elements of PROTAC design. Curr Opin Chem Biol 2019; 50: 111-9.
[http://dx.doi.org/10.1016/j.cbpa.2019.02.022] [PMID: 31004963]
[50]
Graham H. The mechanism of action and clinical value of PROTACs: A graphical review. Cell Signal 2022; 99: 110446.
[http://dx.doi.org/10.1016/j.cellsig.2022.110446] [PMID: 35995302]
[51]
Zhou X, Dong R, Zhang JY, Zheng X, Sun LP. PROTAC: A promising technology for cancer treatment. Eur J Med Chem 2020; 203: 112539.
[http://dx.doi.org/10.1016/j.ejmech.2020.112539] [PMID: 32698111]
[52]
Wang C, Zheng C, Wang H, Zhang L, Liu Z, Xu P. The state of the art of PROTAC technologies for drug discovery. Eur J Med Chem 2022; 235: 114290.
[http://dx.doi.org/10.1016/j.ejmech.2022.114290] [PMID: 35307618]
[53]
Troup RI, Fallan C, Baud MG. Current strategies for the design of PROTAC linkers: A critical review. Explor target anti-tumor ther 2020; 1(5): 273-312.
[54]
Yang F, Wen Y, Wang C, et al. Efficient targeted oncogenic KRASG12C degradation via first reversible-covalent PROTAC. Eur J Med Chem 2022; 230: 114088.
[http://dx.doi.org/10.1016/j.ejmech.2021.114088] [PMID: 35007863]
[55]
Gao X, Burris HA III, Vuky J, et al. Shen, Androgen receptor signaling inhibition in advanced castration resistance prostate cancer: what is expected for the near future? J Am Soc Clin Oncol 2022; 14(24): 6071.
[56]
Hamilton E, Vahdat L, Han HS, et al. Abstract PD13-08: First-in-human safety and activity of ARV-471, a novel PROTAC® estrogen receptor degrader, in ER+/HER2- locally advanced or metastatic breast cancer. Cancer Res 2022; 82(4_Supplement): PD13-08.
[http://dx.doi.org/10.1158/1538-7445.SABCS21-PD13-08]
[57]
Jiang H, Xiong H, Gu SX, Wang M. E3 ligase ligand optimization of clinical PROTACs. Front Chem 2023; 11: 1098331.
[http://dx.doi.org/10.3389/fchem.2023.1098331] [PMID: 36733714]
[58]
Arvinas I. Arvinas releases interim clinical data further demonstrating the powerful potential of PROTAC® Protein degraders ARV-471 and ARV-110. 2020.
[59]
Qi SM, Dong J, Xu ZY, Cheng XD, Zhang WD, Qin JJ. PROTAC: An effective targeted protein degradation strategy for cancer therapy. Front Pharmacol 2021; 12: 692574.
[http://dx.doi.org/10.3389/fphar.2021.692574] [PMID: 34025443]
[60]
Mullard A. Targeted protein degraders crowd into the clinic. 2021; 20(4): 247-50.
[61]
Gao H, Sun X, Rao Y. PROTAC technology: Opportunities and challenges. ACS Med Chem Lett 2020; 11(3): 237-40.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00597] [PMID: 32184950]
[62]
Martín-Acosta P, Xiao X. PROTACs to address the challenges facing small molecule inhibitors. Eur J Med Chem 2021; 210: 112993.
[http://dx.doi.org/10.1016/j.ejmech.2020.112993] [PMID: 33189436]
[63]
Jiang Y, Deng Q, Zhao H, et al. Development of stabilized peptide-based PROTACs against estrogen receptor α. ACS Chem Biol 2018; 13(3): 628-35.
[http://dx.doi.org/10.1021/acschembio.7b00985] [PMID: 29271628]
[64]
Lu M, Liu T, Jiao Q, et al. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur J Med Chem 2018; 146: 251-9.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.063] [PMID: 29407955]
[65]
Toure M, Crews CM. Small-molecule PROTACS: New approaches to protein degradation. Angew Chem Int Ed 2016; 55(6): 1966-73.
[http://dx.doi.org/10.1002/anie.201507978] [PMID: 26756721]
[66]
Wang H, Chen M, Zhang X, Xie S, Qin J, Li J. Peptide-based PROTACs: Current challenges and future perspectives. Curr Med Chem 2023.
[PMID: 36718000]
[67]
Da Y, Liu S, Lin P, et al. Design, synthesis, and biological evaluation of small molecule PROTACs for potential anticancer effects. Med Chem Res 2020; 29(2): 334-40.
[http://dx.doi.org/10.1007/s00044-019-02485-4]
[68]
Kim JY, Lee R, Xiao G, Forbes D, Bargonetti J. MDM2-C Functions as an E3 Ubiquitin Ligase. Cancer Manag Res 2020; 12: 7715-24.
[http://dx.doi.org/10.2147/CMAR.S260943] [PMID: 32904724]
[69]
Chen Y, Jin J. The application of ubiquitin ligases in the PROTAC drug design. Acta Biochim Biophys Sin 2020; 52(7): 776-90.
[http://dx.doi.org/10.1093/abbs/gmaa053] [PMID: 32506133]
[70]
Schneekloth AR, Pucheault M, Tae HS, Crews CM. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg Med Chem Lett 2008; 18(22): 5904-8.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.114] [PMID: 18752944]
[71]
Hines J, Lartigue S, Dong H, Qian Y, Crews CM. MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res 2019; 79(1): 251-62.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-2918] [PMID: 30385614]
[72]
Sun Y. Targeting E3 ubiquitin ligases for cancer therapy. Cancer Biol Ther 2003; 2(6): 621-7.
[http://dx.doi.org/10.4161/cbt.2.6.677] [PMID: 14688465]
[73]
Ma Z, Ji Y, Yu Y, Liang D. Specific non-genetic IAP-based protein erasers (SNIPERs) as a potential therapeutic strategy. Eur J Med Chem 2021; 216: 113247.
[http://dx.doi.org/10.1016/j.ejmech.2021.113247] [PMID: 33652355]
[74]
Zhang X, He Y, Zhang P, et al. Discovery of IAP-recruiting BCL-XL PROTACs as potent degraders across multiple cancer cell lines. Eur J Med Chem 2020; 199: 112397.
[http://dx.doi.org/10.1016/j.ejmech.2020.112397] [PMID: 32388279]
[75]
Ohoka N, Okuhira K, Ito M, et al. in vivo knockdown of pathogenic proteins via specific and non-genetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs). J Biol Chem 2017; 292(11): 4556-70.
[http://dx.doi.org/10.1074/jbc.M116.768853] [PMID: 28154167]
[76]
Miah AH, Smith ieD, Rackham M, et al. Optimization of a Series of RIPK2 PROTACs. J Med Chem 2021; 64(17): 12978-3003.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01118] [PMID: 34432979]
[77]
Park S, Kim D, Lee W, et al. Discovery of pan-IAP degraders via a CRBN recruiting mechanism. Eur J Med Chem 2023; 245(Pt 2): 114910.
[http://dx.doi.org/10.1016/j.ejmech.2022.114910] [PMID: 36410083]
[78]
Shi Q, Chen L. Cereblon: A protein crucial to the multiple functions of immunomodulatory drugs as well as cell metabolism and disease generation. J Immunol Res 2017; 2017
[http://dx.doi.org/10.1155/2017/9130608]
[79]
Jaime-Figueroa S, Buhimschi AD, Toure M, Hines J, Crews CM. Design, synthesis and biological evaluation of Proteolysis Targeting Chimeras (PROTACs) as a BTK degraders with improved pharmacokinetic properties. Bioorg Med Chem Lett 2020; 30(3): 126877.
[http://dx.doi.org/10.1016/j.bmcl.2019.126877] [PMID: 31879210]
[80]
Li Y, Yang J, Aguilar A, et al. Discovery of MD-224 as a first-in-class, highly potent, and efficacious proteolysis targeting chimera murine double minute 2 degrader capable of achieving complete and durable tumor regression. J Med Chem 2019; 62(2): 448-66.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00909] [PMID: 30525597]
[81]
Zhang C, Han XR, Yang X, et al. Jin, J., Proteolysis targeting chimeras (PROTACs) of anaplastic lymphoma kinase (ALK). Eur J Med Chem 2018; 151: 304-14.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.071] [PMID: 29627725]
[82]
Varga JK, Diffley K, Welker Leng KR, Fierke CA, Schueler-Furman O. Structure-based prediction of HDAC6 substrates validated by enzymatic assay reveals determinants of promiscuity and detects new potential substrates. Sci Rep 2022; 12(1): 1788.
[http://dx.doi.org/10.1038/s41598-022-05681-2] [PMID: 35110592]
[83]
Wu H, Yang K, Zhang Z, et al. Development of multifunctional histone deacetylase 6 degraders with potent antimyeloma activity. J Med Chem 2019; 62(15): 7042-57.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00516] [PMID: 31271281]
[84]
Jagtap P, Szabó C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 2005; 4(5): 421-40.
[http://dx.doi.org/10.1038/nrd1718] [PMID: 15864271]
[85]
Chaitanya GV, Alexander JS, Babu PP. PARP-1 cleavage fragments: Signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 2010; 8(1): 31.
[http://dx.doi.org/10.1186/1478-811X-8-31] [PMID: 21176168]
[86]
Cao C, Yang J, Chen Y, et al. Discovery of SK-575 as a highly potent and efficacious proteolysis-targeting chimera degrader of PARP1 for treating cancers. J Med Chem 2020; 63(19): 11012-33.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00821] [PMID: 32924477]
[87]
Izawa D, Pines J. The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature 2015; 517(7536): 631-4.
[http://dx.doi.org/10.1038/nature13911] [PMID: 25383541]
[88]
Lu J, Huang Y, Huang J, et al. Discovery of the first examples of threonine tyrosine kinase PROTAC degraders. J Med Chem 2022; 65(3): 2313-28.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01768] [PMID: 35084180]
[89]
Luccio E. Inhibition of nuclear receptor binding SET domain 2/multiple myeloma SET domain by LEM-06 implication for epigenetic cancer therapies. J Cancer Prev 2015; 20(2): 113-20.
[http://dx.doi.org/10.15430/JCP.2015.20.2.113] [PMID: 26151044]
[90]
Meng F, Xu C, Park KS, Kaniskan HÜ, Wang GG, Jin J. Discovery of a first-in-class degrader for nuclear receptor binding SET domain protein 2 (NSD2) and Ikaros/Aiolos. J Med Chem 2022; 65(15): 10611-25.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00807] [PMID: 35895319]
[91]
Jarusiewicz JA, Yoshimura S, Mayasundari A, et al. Phenyl dihydrouracil: An alternative cereblon binder for PROTAC design. ACS Med Chem Lett 2023; 14(2): 141-5.
[http://dx.doi.org/10.1021/acsmedchemlett.2c00436] [PMID: 36793425]
[92]
Krasavin M, Adamchik M, Bubyrev A, et al. Synthesis of novel glutarimide ligands for the E3 ligase substrate receptor Cereblon (CRBN): Investigation of their binding mode and antiproliferative effects against myeloma cell lines. Eur J Med Chem 2023; 246: 114990.
[http://dx.doi.org/10.1016/j.ejmech.2022.114990] [PMID: 36476642]
[93]
Chen H, Nguyen NH, Magtoto CM, et al. Design and characterization of a heterobifunctional degrader of KEAP1. Redox Biol 2023; 59: 102552.
[http://dx.doi.org/10.1016/j.redox.2022.102552] [PMID: 36473314]
[94]
Ding M, Shao Y, Sun D, et al. Design, synthesis, and biological evaluation of BRD4 degraders. Bioorg Med Chem 2023; 78: 117134.
[http://dx.doi.org/10.1016/j.bmc.2022.117134] [PMID: 36563515]
[95]
Wang P, Zhu H, Liu J, et al. Design, synthesis, and biological evaluation of novel protopanoxadiol derivatives based PROTACs technology for the treatment of lung cancer. Bioorg Chem 2023; 131: 106327.
[http://dx.doi.org/10.1016/j.bioorg.2022.106327] [PMID: 36549254]
[96]
Kamura T, Koepp DM, Conrad MN, et al. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 1999; 284(5414): 657-61.
[http://dx.doi.org/10.1126/science.284.5414.657] [PMID: 10213691]
[97]
Buckley DL, Van Molle I, Gareiss PC, et al. Targeting the von hippel-lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J Am Chem Soc 2012; 134(10): 4465-8.
[http://dx.doi.org/10.1021/ja209924v] [PMID: 22369643]
[98]
Haase VH. The VHL/HIF oxygen-sensing pathway and its relevance to kidney disease. Kidney Int 2006; 69(8): 1302-7.
[http://dx.doi.org/10.1038/sj.ki.5000221] [PMID: 16531988]
[99]
Kang CH, Lee DH, Lee CO, Du Ha J, Park CH, Hwang JY. Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC). Biochem Biophys Res Commun 2018; 505(2): 542-7.
[http://dx.doi.org/10.1016/j.bbrc.2018.09.169] [PMID: 30274779]
[100]
Clark PGK, Vieira LCC, Tallant C, et al. LP99: discovery and synthesis of the first selective BRD7/9 bromodomain inhibitor. Angew Chem 2015; 127(21): 6315-9.
[http://dx.doi.org/10.1002/ange.201501394] [PMID: 27346896]
[101]
Zoppi V, Hughes SJ, Maniaci C, et al. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel–Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J Med Chem 2019; 62(2): 699-726.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01413] [PMID: 30540463]
[102]
Smith BE, Wang SL, Jaime-Figueroa S, et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun 2019; 10(1): 131.
[http://dx.doi.org/10.1038/s41467-018-08027-7] [PMID: 30631068]
[103]
Wang C, Wang H, Zheng C, et al. Research progress of MEK1/2 inhibitors and degraders in the treatment of cancer. Eur J Med Chem 2021; 218: 113386.
[http://dx.doi.org/10.1016/j.ejmech.2021.113386] [PMID: 33774345]
[104]
Wang C, Wang H, Zheng C, et al. Discovery of Coumarin-Based MEK1/2 protac effective in human cancer cells. ACS Med Chem Lett 2023; 14(1): 92-102.
[http://dx.doi.org/10.1021/acsmedchemlett.2c00446] [PMID: 36655129]
[105]
Najafi M, Farhood B, Mortezaee K, Kharazinejad E, Majidpoor J, Ahadi R. Hypoxia in solid tumors: A key promoter of cancer stem cell (CSC) resistance. J Cancer Res Clin Oncol 2020; 146(1): 19-31.
[http://dx.doi.org/10.1007/s00432-019-03080-1] [PMID: 31734836]
[106]
Janczy-Cempa E, Mazuryk O, Sirbu D, et al. Nitro-Pyrazinotriazapentalene scaffolds– nitroreductase quantification and in vitro fluorescence imaging of hypoxia. Sens Actuators B Chem 2021; 346: 130504.
[http://dx.doi.org/10.1016/j.snb.2021.130504]
[107]
Shi S, Du Y, Zou Y, et al. Rational design for nitroreductase (NTR)-responsive proteolysis targeting chimeras (PROTACs) selectively targeting tumor tissues. J Med Chem 2022; 65(6): 5057-71.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02221] [PMID: 35175763]
[108]
Zhou C, Fan Z, Zhou Z, et al. Discovery of the first-in-class agonist-based SOS1 PROTACs effective in human cancer cells harboring various KRAS mutations. J Med Chem 2022; 65(5): 3923-42.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01774] [PMID: 35230841]
[109]
Xiao W, Chen X, Liu L, Shu Y, Zhang M, Zhong Y. Role of protein arginine methyltransferase 5 in human cancers. Biomed Pharmacother 2019; 114: 108790.
[http://dx.doi.org/10.1016/j.biopha.2019.108790] [PMID: 30903920]
[110]
Shen Y, Gao G, Yu X, et al. Discovery of first-in-class protein arginine methyltransferase 5 (PRMT5) degraders. J Med Chem 2020; 63(17): 9977-89.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01111] [PMID: 32787082]
[111]
Smalley JP, Baker IM, Pytel WA, et al. Optimization of class I histone deacetylase PROTACs reveals that HDAC1/2 degradation is critical to induce apoptosis and cell arrest in cancer cells. J Med Chem 2022; 65(7): 5642-59.
[http://dx.doi.org/10.1021/acs.jmedchem.1c02179] [PMID: 35293758]
[112]
Cubillos-Rojas M, Loren G, Hakim YZ, Verdaguer X, Riera A, Nebreda AR. Synthesis and biological activity of a VHL-Based protac specific for p38α. Cancers 2023; 15(3): 611.
[http://dx.doi.org/10.3390/cancers15030611] [PMID: 36765568]
[113]
Maniaci C, Hughes SJ, Testa A, et al. Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat Commun 2017; 8(1): 830.
[http://dx.doi.org/10.1038/s41467-017-00954-1] [PMID: 29018234]
[114]
Pei H, Peng Y, Zhao Q, Chen Y. Small molecule PROTACs: An emerging technology for targeted therapy in drug discovery. RSC Advances 2019; 9(30): 16967-76.
[http://dx.doi.org/10.1039/C9RA03423D] [PMID: 35519875]
[115]
He S, Ma J, Fang Y, et al. Homo-PROTAC mediated suicide of MDM2 to treat non-small cell lung cancer. Acta Pharm Sin B 2021; 11(6): 1617-28.
[http://dx.doi.org/10.1016/j.apsb.2020.11.022] [PMID: 34221872]
[116]
Steinebach C, Lindner S, Udeshi ND, et al. Homo-PROTACs for the chemical knockdown of cereblon. ACS Chem Biol 2018; 13(9): 2771-82.
[http://dx.doi.org/10.1021/acschembio.8b00693] [PMID: 30118587]
[117]
Kannt A, Đikić I. Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. Cell Chem Biol 2021; 28(7): 1014-31.
[http://dx.doi.org/10.1016/j.chembiol.2021.04.007] [PMID: 33945791]
[118]
Ishida T, Ciulli A. E3 ligase ligands for PROTACs: How they were found and how to discover new ones. SLAS Discov 2021; 26(4): 484-502.
[http://dx.doi.org/10.1177/2472555220965528] [PMID: 33143537]
[119]
Li L, Mi D, Pei H, et al. in vivo target protein degradation induced by PROTACs based on E3 ligase DCAF15. Signal Transduct Target Ther 2020; 5(1): 129.
[http://dx.doi.org/10.1038/s41392-020-00245-0] [PMID: 32713946]
[120]
Ward CC, Kleinman JI, Brittain SM, et al. Covalent ligand screening uncovers a RNF4 E3 ligase recruiter for targeted protein degradation applications. ACS Chem Biol 2019; 14(11): 2430-40.
[http://dx.doi.org/10.1021/acschembio.8b01083] [PMID: 31059647]
[121]
Spradlin JN, Hu X, Ward CC, et al. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat Chem Biol 2019; 15(7): 747-55.
[http://dx.doi.org/10.1038/s41589-019-0304-8] [PMID: 31209351]
[122]
Ohoka N, Tsuji G, Shoda T, et al. Development of small molecule chimeras that recruit AhR E3 ligase to target proteins. ACS Chem Biol 2019; 14(12): 2822-32.
[http://dx.doi.org/10.1021/acschembio.9b00704] [PMID: 31580635]
[123]
Shanmugasundaram K, Shao P, Chen H, et al. A modular PROTAC design for target destruction using a degradation signal based on a single amino acid. J Biol Chem 2019; 294(41): 15172-5.
[http://dx.doi.org/10.1074/jbc.AC119.010790] [PMID: 31511327]
[124]
Wei M, Zhao R, Cao Y, et al. First orally bioavailable prodrug of proteolysis targeting chimera (PROTAC) degrades cyclin-dependent kinases 2/4/6 in vivo. Eur J Med Chem 2021; 209: 112903.
[http://dx.doi.org/10.1016/j.ejmech.2020.112903] [PMID: 33256948]
[125]
Jin YH, Lu MC, Wang Y, et al. Azo-PROTAC: Novel light-controlled small-molecule tool for protein knockdown. J Med Chem 2020; 63(9): 4644-54.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02058] [PMID: 32153174]
[126]
Testa A, Hughes SJ, Lucas X, Wright JE, Ciulli A. Structure-based design of a macrocyclic PROTAC. Angew Chem Int Ed 2020; 59(4): 1727-34.
[http://dx.doi.org/10.1002/anie.201914396] [PMID: 31746102]
[127]
Yang J, Chang Y, Tien JCY, et al. Discovery of a highly potent and selective dual PROTAC degrader of CDK12 and CDK13. J Med Chem 2022; 65(16): 11066-83.
[http://dx.doi.org/10.1021/acs.jmedchem.2c00384] [PMID: 35938508]
[128]
Kargbo RB. PROTAC compounds targeting α-synuclein protein for treating neurogenerative disorders: Alzheimer’s and Parkinson’s diseases. ACS Med Chem Lett 2020; 11(6): 1086-7.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00192] [PMID: 32550983]
[129]
Montrose K, Krissansen GW. Design of a PROTAC that antagonizes and destroys the cancer-forming X-protein of the hepatitis B virus. Biochem Biophys Res Commun 2014; 453(4): 735-40.
[http://dx.doi.org/10.1016/j.bbrc.2014.10.006] [PMID: 25305486]
[130]
Kargbo RB. PROTAC molecules for the treatment of Autoimmune disorders. ACS Med Chem Lett 2019; 10(3): 276-7.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00042] [PMID: 30891126]
[131]
Luo G, Li Z, Lin X, et al. Discovery of an orally active VHL-recruiting PROTAC that achieves robust HMGCR degradation and potent hypolipidemic activity in vivo. Acta Pharm Sin B 2021; 11(5): 1300-14.
[http://dx.doi.org/10.1016/j.apsb.2020.11.001] [PMID: 34094835]
[132]
Michaelides IN, Collie GW. E3 ligases meet their match: Fragment-based approaches to discover new E3 ligands and to unravel E3 biology. J Med Chem 2023; 66(5): 3173-94.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01882] [PMID: 36821822]
[133]
Wu J, Wang W, Leung C-H. Computational strategies for PROTAC drug discovery. Acta Mater Med 2023; 2(1): 42-53.
[134]
Zaidman D, Prilusky J, London N. PRosettaC: Rosetta based modeling of PROTAC mediated ternary complexes. J Chem Inf Model 2020; 60(10): 4894-903.
[http://dx.doi.org/10.1021/acs.jcim.0c00589] [PMID: 32976709]
[135]
Li F, Hu Q, Zhang X, et al. DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs. Nat Commun 2022; 13(1): 7133.
[http://dx.doi.org/10.1038/s41467-022-34807-3] [PMID: 36414666]
[136]
Kao CT, Lin CT, Chou CL, Lin CC. Fragment Linker Prediction Using the Deep Encoder-Decoder Network for PROTACs Drug Design. J Chem Inf Model 2023; 63(10): 2918-27.
[http://dx.doi.org/10.1021/acs.jcim.2c01287] [PMID: 37150933]