Cardiovascular & Hematological Disorders-Drug Targets

Author(s): Mahdi Zahedi* and Faezeh Davanloo

DOI: 10.2174/011871529X261360231103075012

Assessing the Frequency of COVID-19 in Patients Undergoing Primary Percutaneous Coronary Intervention (PCI)

Page: [183 - 188] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global health crisis with significant morbidity and mortality.

Objective: The aim of this study was to investigate the incidence of COVID-19 in patients undergoing primary percutaneous coronary intervention (PCI) for myocardial infarction and identify associated demographic and clinical characteristics.

Methods: In this study, a retrospective and descriptive cross-sectional design was used to examine all patients (a total of 85) who experienced acute myocardial infarction and underwent primary percutaneous coronary intervention (PCI). The study measured various parameters, such as COVID-19 status, age, sex, ethnicity, diabetes, and hypertension. Data analysis was conducted using SPSS version 25 software.

Results: Out of the 85 patients who underwent primary percutaneous coronary intervention (PCI) for myocardial infarction (MI), 14 patients (16.5%) were found to have COVID-19. COVID-19 diagnosis was confirmed through RT-PCR testing for 2 patients, while the remaining 12 patients were diagnosed using lung CT scans. Among the COVID-19 patients, 21.4% (n = 3) had background diabetes, and 7.1% (n = 1) had background hypertension. MI recurrence was observed in 14.3% of COVID-19 patients (2 cases). Unfortunately, 1 COVID-19 patient, a 70- year-old Persian woman with diabetes and hypertension, passed away. No significant differences were found in terms of age, sex, ethnicity, underlying diabetes, or underlying hypertension between the COVID-19 and non-COVID-19 groups.

Conclusion: The high occurrence of COVID-19 among myocardial infarction (MI) patients undergoing primary percutaneous coronary intervention (PCI) is worth noting. Further investigation is recommended to explore the impact of demographic and contextual factors on the severity and outcomes of primary PCI in MI patients with COVID-19, as well as the underlying mechanisms involved.

Graphical Abstract

[1]
Turagam, M.K.; Musikantow, D.; Goldman, M.E.; Bassily-Marcus, A.; Chu, E.; Shivamurthy, P.; Lampert, J.; Kawamura, I.; Bokhari, M.; Whang, W.; Bier, B.A.; Malick, W.; Hashemi, H.; Miller, M.A.; Choudry, S.; Pumill, C.; Ruiz-Maya, T.; Hadley, M.; Giustino, G.; Koruth, J.S.; Langan, N.; Sofi, A.; Dukkipati, S.R.; Halperin, J.L.; Fuster, V.; Kohli-Seth, R.; Reddy, V.Y. Malignant arrhythmias in patients with COVID-19. Circ. Arrhythm. Electrophysiol., 2020, 13(11), e008920.
[http://dx.doi.org/10.1161/CIRCEP.120.008920] [PMID: 33026892]
[2]
WHO Coronavirus (COVID-19). Dashboard 2021. [https://covid19.who.int/
[3]
Soumya, R.S.; Unni, T.G.; Raghu, K.G. Impact of COVID-19 on the cardiovascular system: A review of available reports. Cardiovasc. Drugs Ther., 2021, 35(3), 411-425.
[http://dx.doi.org/10.1007/s10557-020-07073-y] [PMID: 32926272]
[4]
Shi, Y.; Wang, G.; Cai, X.; Deng, J.; Zheng, L.; Zhu, H.; Zheng, M.; Yang, B.; Chen, Z. An overview of COVID-19. J. Zhejiang Univ. Sci. B, 2020, 21(5), 343-360.
[http://dx.doi.org/10.1631/jzus.B2000083] [PMID: 32425000]
[5]
Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol., 2020, 17(9), 543-558.
[http://dx.doi.org/10.1038/s41569-020-0413-9] [PMID: 32690910]
[6]
Riphagen, S.; Gomez, X.; Gonzalez-Martinez, C.; Wilkinson, N.; Theocharis, P. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet, 2020, 395(10237), 1607-1608.
[http://dx.doi.org/10.1016/S0140-6736(20)31094-1] [PMID: 32386565]
[7]
Nascimento, B.R.; Brant, L.C.C.; Marino, B.C.A.; Passaglia, L.G.; Ribeiro, A.L.P. Implementing myocardial infarction systems of care in low/middle-income countries. Heart, 2019, 105(1), 20-26.
[http://dx.doi.org/10.1136/heartjnl-2018-313398] [PMID: 30269080]
[8]
Han, J.; Jia, R.; Yang, C.; Jin, Z. Impact of the COVID-19 pandemic on the management of acute myocardial infarction. Int. J. Gen. Med., 2021, 14, 3119-3124.
[http://dx.doi.org/10.2147/IJGM.S313165] [PMID: 34239320]
[9]
Fardman, A.; Zahger, D.; Orvin, K.; Oren, D.; Kofman, N.; Mohsen, J.; Tsafrir, O.; Asher, E.; Rubinshtein, R.; Jamal, J.; Efraim, R.; Halabi, M.; Shacham, Y.; Fortis, L.H.; Cohen, T.; Klempfner, R.; Segev, A.; Beigel, R.; Matetzky, S. Acute myocardial infarction in the Covid-19 era: Incidence, clinical characteristics and in-hospital outcomes—A multicenter registry. PLoS One, 2021, 16(6), e0253524.
[http://dx.doi.org/10.1371/journal.pone.0253524] [PMID: 34143840]
[10]
Ayad, S.; Shenouda, R.; Henein, M. The impact of COVID-19 on in-hospital outcomes of ST-segment elevation myocardial infarction patients. J. Clin. Med., 2021, 10(2), 278.
[http://dx.doi.org/10.3390/jcm10020278] [PMID: 33466588]
[11]
Seif, S.; Ayuna, A.; Kumar, A.; Macdonald, J. Massive coronary thrombosis caused primary percutaneous coronary intervention to fail in a COVID‐19 patient with ST‐elevation myocardial infarction. Catheter. Cardiovasc. Interv., 2021, 97(5), E667-E669.
[http://dx.doi.org/10.1002/ccd.29050] [PMID: 32473051]
[12]
Kwok, C.S.; Gale, C.P.; Kinnaird, T.; Curzen, N.; Ludman, P.; Kontopantelis, E.; Wu, J.; Denwood, T.; Fazal, N.; Deanfield, J.; de Belder, M.A.; Mamas, M. Impact of COVID-19 on percutaneous coronary intervention for ST-elevation myocardial infarction. Heart, 2020, 106(23), 1805-1811.
[http://dx.doi.org/10.1136/heartjnl-2020-317650] [PMID: 32868280]
[13]
Tedeschi, D.; Rizzi, A.; Biscaglia, S.; Tumscitz, C. Acute myocardial infarction and large coronary thrombosis in a patient with COVID‐19. Catheter. Cardiovasc. Interv., 2021, 97(2), 272-277.
[http://dx.doi.org/10.1002/ccd.29179] [PMID: 32767631]
[14]
Xiang, D.; Xiang, X.; Zhang, W.; Yi, S.; Zhang, J.; Gu, X.; Xu, Y.; Huang, K.; Su, X.; Yu, B.; Wang, Y.; Fang, W.; Huo, Y.; Ge, J. Management and outcomes of patients with STEMI during the COVID-19 pandemic in China. J. Am. Coll. Cardiol., 2020, 76(11), 1318-1324.
[http://dx.doi.org/10.1016/j.jacc.2020.06.039] [PMID: 32828614]
[15]
Butala, N.M.; Patel, N.K.; Chhatwal, J.; Vahdat, V.; Pomerantsev, E.V.; Albaghdadi, M.; Sakhuja, R.; Rosenzweig, A.; Elmariah, S. Patient and provider risk in managing ST-elevation myocardial infarction during the COVID-19 pandemic. Circ. Cardiovasc. Interv., 2020, 13(11), e010027.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.120.010027] [PMID: 33167699]
[16]
De Luca, G.; Cercek, M.; Jensen, L.O.; Vavlukis, M.; Calmac, L.; Johnson, T.; Roura i Ferrer, G.; Ganyukov, V.; Wojakowski, W.; von Birgelen, C.; Versaci, F.; Ten Berg, J.; Laine, M.; Dirksen, M.; Casella, G.; Kala, P. Díez Gil, J.L.; Becerra, V.; De Simone, C.; Carrill, X.; Scoccia, A.; Lux, A.; Kovarnik, T.; Davlouros, P.; Gabrielli, G.; Flores Rios, X.; Bakraceski, N.; Levesque, S.; Guiducci, V.; Kidawa, M.; Marinucci, L.; Zilio, F.; Galasso, G.; Fabris, E.; Menichelli, M.; Manzo, S.; Caiazzo, G.; Moreu, J.; Sanchis Forés, J.; Donazzan, L.; Vignali, L.; Teles, R.; Bosa Ojeda, F.; Lehtola, H.; Camacho-Freiere, S.; Kraaijeveld, A.; Antti, Y.; Boccalatte, M.; Martínez-Luengas, I.L.; Scheller, B.; Alexopoulos, D.; Uccello, G.; Faurie, B.; Gutierrez Barrios, A.; Wilbert, B.; Cortese, G.; Moreno, R.; Parodi, G.; Kedhi, E.; Verdoia, M. Impact of COVID-19 pandemic and diabetes on mechanical reperfusion in patients with STEMI: insights from the ISACS STEMI COVID 19 Registry. Cardiovasc. Diabetol., 2020, 19(1), 215.
[http://dx.doi.org/10.1186/s12933-020-01196-0] [PMID: 33339541]