Nanotechnology-based Assays for the Detection of Cancer through Sputum

Page: [633 - 641] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Cancer remains a formidable global health challenge, underscoring the critical need for early and accurate diagnostic tools. In recent years, nanotechnology has emerged as a promising frontier in cancer detection, offering innovative approaches to enhance sensitivity, specificity, and convenience in diagnostics. This comprehensive review delves into the intersection of nanotechnology and sputum-based assays for cancer detection. Sputum, a readily accessible biomarker source, has gained increasing attention due to its potential to house early cancer biomarkers. By harnessing the unique properties of nanoparticles, this review explores how nanotechnology is revolutionizing sputum- based cancer detection. We examine the intrinsic attributes of sputum as a diagnostic fluid, the diverse applications of nanoparticles, and the evolving landscape of cancer-specific biomarkers. Moreover, we provide insights into various nanotechnology assay techniques and their clinical implications while highlighting the challenges and future prospects in this dynamic field. This review aims to elucidate the transformative impact of nanotechnology on cancer diagnostics through sputum, offering a roadmap towards earlier and more accurate cancer detection.

Graphical Abstract

[1]
Shende, P.; Augustine, S.; Prabhakar, B.; Gaud, R.S. Advanced multimodal diagnostic approaches for detection of lung cancer. Expert Rev. Mol. Diagn., 2019, 19(5), 409-417.
[http://dx.doi.org/10.1080/14737159.2019.1607299] [PMID: 30977684]
[2]
Zhang, Y.; Li, M.; Gao, X.; Chen, Y.; Liu, T. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. J. Hematol. Oncol., 2019, 12(1), 137.
[http://dx.doi.org/10.1186/s13045-019-0833-3] [PMID: 31847897]
[3]
Makaram, P.; Owens, D.; Aceros, J. Trends in nanomaterial-based non-invasive diabetes sensing technologies. Diagnostics, 2014, 4(2), 27-46.
[http://dx.doi.org/10.3390/diagnostics4020027] [PMID: 26852676]
[4]
Thwala, L.N.; Ndlovu, S.C.; Mpofu, K.T.; Lugongolo, M.Y.; Mthunzi-Kufa, P. Nanotechnology-based diagnostics for diseases prevalent in developing countries: current advances in point-of-care tests. Nanomaterials, 2023, 13(7), 1247.
[http://dx.doi.org/10.3390/nano13071247] [PMID: 37049340]
[5]
Yadav, S.K.; Yadav, R.D.; Tabassum, H.; Arya, M. Recent developments in nanotechnology-based biosensors for the diagnosis of coronavirus. Plasmonics, 2023, 18(3), 955-969.
[http://dx.doi.org/10.1007/s11468-023-01822-z] [PMID: 37229148]
[6]
Ivanov, Y.D.; Malsagova, K.A.; Goldaeva, K.V.; Kapustina, S.I.; Pleshakova, T.O.; Popov, V.P.; Kozlov, A.F.; Galiullin, R.A.; Shumov, I.D.; Enikeev, D.V.; Potoldykova, N.V.; Ziborov, V.S.; Petrov, O.F.; Dolgoborodov, A.Y.; Glukhov, A.V.; Novikov, S.V.; Grabezhova, V.K.; Yushkov, E.S.; Konev, V.A.; Kovalev, O.B.; Archakov, A.I. Nanoribbon biosensor-based detection of microRNA markers of prostate cancer. Sensors, 2023, 23(17), 7527.
[http://dx.doi.org/10.3390/s23177527] [PMID: 37687982]
[7]
Chopra, H.; Mohanta, Y.K.; Rauta, P.R.; Ahmed, R.; Mahanta, S.; Mishra, P.K.; Panda, P.; Rabaan, A.A.; Alshehri, A.A.; Othman, B.; Alshahrani, M.A.; Alqahtani, A.S.; AL, Basha B.A.; Dhama, K. An insight into advances in developing nanotechnology based therapeutics, drug delivery, diagnostics and vaccines: Multidimensional applications in tuberculosis disease management. Pharmaceuticals, 2023, 16(4), 581.
[http://dx.doi.org/10.3390/ph16040581] [PMID: 37111338]
[8]
Greyling, C.F.; Ganguly, A.; Sardesai, A.U.; Churcher, N.K.M.; Lin, K.C.; Muthukumar, S.; Prasad, S. Passive sweat wearable: A new paradigm in the wearable landscape toward enabling “detect to treat” opportunities. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2023, e1912.
[http://dx.doi.org/10.1002/wnan.1912] [PMID: 37356818]
[9]
Senevirathna, K.; Jayawickrama, S.M.; Jayasinghe, Y.A.; Prabani, K.I.P.; Akshala, K.; Pradeep, R.G.G.R.; Damayanthi, H.D.W.T.; Hettiarachchi, K.; Dorji, T.; Lucero-Prisno, D.E.; Rajapakse, R.M.G.; Kanmodi, K.K.; Jayasinghe, R.D. Nanoplatforms: The future of oral cancer treatment. Health Sci. Rep., 2023, 6(8), e1471.
[http://dx.doi.org/10.1002/hsr2.1471] [PMID: 37547360]
[10]
Park, E.; Choi, S.Y.; Kim, J.; Hildebrandt, N.; Lee, J.S.; Nam, J.M. Nanotechnologies for the diagnosis and treatment of SARS‐CoV‐2 and its variants. Small Methods, 2023, 7(7), 2300034.
[http://dx.doi.org/10.1002/smtd.202300034] [PMID: 37189215]
[11]
Ferrari, E. Gold nanoparticle-based plasmonic biosensors. Biosensors, 2023, 13(3), 411.
[http://dx.doi.org/10.3390/bios13030411] [PMID: 36979623]
[12]
Kantak, M.; Batra, P.; Shende, P. Integration of DNA barcoding and nanotechnology in drug delivery. Int. J. Biol. Macromol., 2023, 230, 123262.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123262] [PMID: 36646350]
[13]
Hou, Y.; Chen, R.; Wang, Z.; Lu, R.; Wang, Y.; Ren, S.; Li, S.; Wang, Y.; Han, T.; Yang, S.; Zhou, H.; Gao, Z. Bio-barcode assay: A useful technology for ultrasensitive and logic-controlled specific detection in food safety: A review. Anal. Chim. Acta, 2023, 1267, 341351.
[http://dx.doi.org/10.1016/j.aca.2023.341351] [PMID: 37257972]
[14]
Salman, A.; Lupi, S.; Vaccari, L.; Piccirilli, F.; Eid, M.M. FTIR microscopy evaluation of the immunogenicity of eco-friendly γFe2O3@Ag@Cs nanocomposite as a platform for the discovery and screening of vaccine adjuvants. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2023, 287(Pt 2), 122087.
[http://dx.doi.org/10.1016/j.saa.2022.122087] [PMID: 36417818]
[15]
Radhakrishnan, K.; Senthil Kumar, P.; Rangasamy, G.; Ankitha, K.; Niyathi, V.; Manivasagan, V.; Saranya, K. Recent advances in nanotechnology and its application for neuro-disease: a review. Appl. Nanosci., 2023, 13(9), 6631-6665.
[http://dx.doi.org/10.1007/s13204-023-02958-4]
[16]
Nam, J.M.; Thaxton, C.S.; Mirkin, C.A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science, 2003, 301(5641), 1884-1886.
[http://dx.doi.org/10.1126/science.1088755] [PMID: 14512622]
[17]
Elghanian, R.; Storhoff, J.J.; Mucic, R.C.; Letsinger, R.L.; Mirkin, C.A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 1997, 277(5329), 1078-1081.
[http://dx.doi.org/10.1126/science.277.5329.1078] [PMID: 9262471]
[18]
Wang, J. Nanomaterial-based electrochemical biosensors. Analyst, 2005, 130(4), 421-426.
[http://dx.doi.org/10.1039/b414248a] [PMID: 15846872]
[19]
Sanvicens, N.; Marco, M.P. Multifunctional nanoparticles – properties and prospects for their use in human medicine. Trends Biotechnol., 2008, 26(8), 425-433.
[http://dx.doi.org/10.1016/j.tibtech.2008.04.005] [PMID: 18514941]
[20]
Kim, J.H.; Kim, J.S.; Choi, H.; Lee, S.M.; Jun, B.H. Nanotechnology based bioassays for cancer diagnostics. J. Nanobiotechnology, 2018, 16(1), 82.
[PMID: 30368242]
[21]
Ghosh, D.; Lee, Y.; Thomas, S.; Kohli, A.G.; Yun, D.S.; Belcher, A.M.; Kelly, K.A. M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat. Nanotechnol., 2012, 7(10), 677-682.
[http://dx.doi.org/10.1038/nnano.2012.146] [PMID: 22983492]
[22]
Cai, W.; Gao, T.; Hong, H.; Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl., 2008, 1, 17-32.
[http://dx.doi.org/10.2147/NSA.S3788] [PMID: 24198458]
[23]
Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S.G.; Nel, A.E.; Tamanoi, F.; Zink, J.I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2008, 2(5), 889-896.
[http://dx.doi.org/10.1021/nn800072t] [PMID: 19206485]
[24]
Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold nanoparticles in chemical and biological sensing. Chem. Rev., 2012, 112(5), 2739-2779.
[http://dx.doi.org/10.1021/cr2001178] [PMID: 22295941]
[25]
Thakor, A.S.; Gambhir, S.S. Nanooncology: The future of cancer diagnosis and therapy. CA Cancer J. Clin., 2013, 63(6), 395-418.
[http://dx.doi.org/10.3322/caac.21199] [PMID: 24114523]
[26]
Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nat. Rev. Cancer, 2005, 5(3), 161-171.
[http://dx.doi.org/10.1038/nrc1566] [PMID: 15738981]
[27]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[28]
Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[29]
Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther., 2008, 83(5), 761-769.
[http://dx.doi.org/10.1038/sj.clpt.6100400] [PMID: 17957183]
[30]
Wang, A.Z.; Langer, R.; Farokhzad, O.C. Nanoparticle delivery of cancer drugs. Annu. Rev. Med., 2012, 63(1), 185-198.
[http://dx.doi.org/10.1146/annurev-med-040210-162544] [PMID: 21888516]
[31]
Xie, J.; Lee, S.; Chen, X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev., 2010, 62(11), 1064-1079.
[http://dx.doi.org/10.1016/j.addr.2010.07.009] [PMID: 20691229]
[32]
Petros, R.A.; DeSimone, J.M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov., 2010, 9(8), 615-627.
[http://dx.doi.org/10.1038/nrd2591] [PMID: 20616808]
[33]
Michalet, X.; Pinaud, F.F.; Bentolila, L.A.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709), 538-544.
[http://dx.doi.org/10.1126/science.1104274] [PMID: 15681376]
[34]
Yezhelyev, M.V.; Gao, X.; Xing, Y.; Al-Hajj, A.; Nie, S.; O’Regan, R.M. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol., 2006, 7(8), 657-667.
[http://dx.doi.org/10.1016/S1470-2045(06)70793-8] [PMID: 16887483]
[35]
Medarova, Z.; Pham, W.; Farrar, C.; Petkova, V.; Moore, A. In vivo imaging of siRNA delivery and silencing in tumors. Nat. Med., 2007, 13(3), 372-377.
[http://dx.doi.org/10.1038/nm1486] [PMID: 17322898]
[36]
Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett., 2010, 10(9), 3223-3230.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[37]
Heath, J.R.; Davis, M.E. Nanotechnology and Cancer. Annu. Rev. Med., 2008, 59(1), 251-265.
[http://dx.doi.org/10.1146/annurev.med.59.061506.185523] [PMID: 17937588]
[38]
Estelrich, J.; Sánchez-Martín, M.J.; Busquets, M.A. Nanoparticles in magnetic resonance imaging: From simple to dual contrast agents. Int. J. Nanomedicine, 2015, 10, 1727-1741.
[PMID: 25834422]
[39]
Benezra, M.; Penate-Medina, O.; Zanzonico, P.B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S.; Wolchok, J.; Larson, S.M.; Wiesner, U.; Bradbury, M.S. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest., 2011, 121(7), 2768-2780.
[http://dx.doi.org/10.1172/JCI45600] [PMID: 21670497]
[40]
Weissleder, R.; Nahrendorf, M.; Pittet, M.J. Imaging macrophages with nanoparticles. Nat. Mater., 2014, 13(2), 125-138.
[http://dx.doi.org/10.1038/nmat3780] [PMID: 24452356]
[41]
Woodman, C.; Vundu, G.; George, A.; Wilson, C.M. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer. Semin. Cancer Biol., 2021, 69, 349-364.
[http://dx.doi.org/10.1016/j.semcancer.2020.02.009] [PMID: 32088362]
[42]
Kim, P.S.; Djazayeri, S.; Zeineldin, R. Novel nanotechnology approaches to diagnosis and therapy of ovarian cancer. Gynecol. Oncol., 2011, 120(3), 393-403.
[http://dx.doi.org/10.1016/j.ygyno.2010.11.029] [PMID: 21168905]
[43]
Altintas, Z.; Tothill, I. Biomarkers and biosensors for the early diagnosis of lung cancer. Sens. Actuators B Chem., 2013, 188, 988-998.
[http://dx.doi.org/10.1016/j.snb.2013.07.078]
[44]
Kadhim, M.M.; Rheima, A.M.; Abbas, Z.S.; Jlood, H.H.; Hachim, S.K.; Kadhum, W.R. kianfar, E. Evaluation of a biosensor-based graphene oxide-DNA nanohybrid for lung cancer. RSC Advances, 2023, 13(4), 2487-2500.
[http://dx.doi.org/10.1039/D2RA05808A] [PMID: 36741187]
[45]
Sajeevan, B.; Gopika, M.G. Biosensors for salivary biomarker detection of cancer and neurodegenerative diseases. In: Biosensors Nanotechnology, 2nd ed; 215-244.
[46]
Rastogi, A.; Yadav, K.; Mishra, A.; Singh, M.S.; Chaudhary, S.; Manohar, R.; Parmar, A.S. Early diagnosis of lung cancer using magnetic nanoparticles-integrated systems. Nanotechnol. Rev., 2022, 11(1), 544-574.
[http://dx.doi.org/10.1515/ntrev-2022-0032]
[47]
Chen, M.; Shou, Z.; Jin, X.; Chen, Y. Emerging strategies in nanotechnology to treat respiratory tract infections: realizing current trends for future clinical perspectives. Drug Deliv., 2022, 29(1), 2442-2458.
[http://dx.doi.org/10.1080/10717544.2022.2089294] [PMID: 35892224]
[48]
Wang, B.; Lv, F.; Li, F.; Yang, K.; Zhao, L.; Gao, Y. Long non-coding NNA POU5F1B promotes the occurrence and development of non-small cell lung cancer. J. Biomed. Nanotechnol., 2023, 19(6), 1091-1097.
[http://dx.doi.org/10.1166/jbn.2023.3609]
[49]
Zheng, X.; Wu, Y.; Zuo, H.; Chen, W.; Wang, K. Metal nanoparticles as novel agents for lung cancer diagnosis and therapy. Small, 2023, 19(18), 2206624.
[http://dx.doi.org/10.1002/smll.202206624] [PMID: 36732908]
[50]
Ahmad, A.; Imran, M.; Ahsan, H. Biomarkers as biomedical bioindicators: Approaches and techniques for the detection, analysis, and validation of novel biomarkers of diseases. Pharmaceutics, 2023, 15(6), 1630.
[http://dx.doi.org/10.3390/pharmaceutics15061630]
[51]
Zhong, W.; Zhang, X.; Zeng, Y.; Lin, D.; Wu, J. Recent applications and strategies in nanotechnology for lung diseases. Nano Res., 2021, 14(7), 2067-2089.
[http://dx.doi.org/10.1007/s12274-020-3180-3] [PMID: 33456721]