Enhancing Opiorphin’s Metabolic Stability and Preserving its Potent Analgesic Effect: A Systematic Review

Page: [74 - 88] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Opiorphin has been reported to show a stronger analgesic effect than morphine without causing side effects brought about by morphine-like drugs. Functional opiorphin analogs have been created to enhance its metabolic stability and preserve its potent analgesic effect.

Objective: We conducted a systematic review to summarize all opiorphin analogs and identify those with the strongest metabolic stability and antinociceptive effect.

Methods: From a total of 122 articles, 11 made it to the quantitative synthesis phase. The included articles were categorized into the type of modifications used to improve the metabolic stability of the peptide, metabolism and toxicity profile, drug absorption and in vitro cytotoxicity, anti-nociceptive effect, the opiorphin analogs’ administration in animals or humans, and the type of the test used to test the antinociceptive effect.

Results: The substitution of natural amino acid with a non-natural amino acid, side-chain modifications, or D-aminoacid substitution were the most used type of peptide modification to create opiorphin analogs. STR-324 and PEGylated liposomes loaded with opiorphin showed the best metabolism and toxicity performance. [C]-[(CH2)6]-QRF-[S-O-(CH2)8]-R showed high stability in human plasma and stronger inhibitory potency. YQRFSR and PEGylated liposomes loaded with opiorphin showed a stronger antinociceptive effect than the parent opiorphin or morphine, with an analgesic effect of PEGylated liposomes lasting more than 50%. Intravenous administration was the preferred method of opiorphin analog administration, and different tests were used to test the antinociceptive effect.

Conclusion: This paper presents the first systematic review discussing opiorphin and opiorphin analogs and identifies the most promising candidates for future research.

Graphical Abstract

[1]
Williams, ACdC Updating the definition of pain. PAIN, 2016, 157(11), 2420-2423.
[http://dx.doi.org/10.1097/j.pain.0000000000000613]
[2]
Matthes, H.W.D.; Maldonado, R.; Simonin, F.; Valverde, O.; Slowe, S.; Kitchen, I.; Befort, K.; Dierich, A.; Le Meur, M.; Dollé, P.; Tzavara, E.; Hanoune, J.; Roques, B.P.; Kieffer, B.L. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the µ-opioid-receptor gene. Nature, 1996, 383(6603), 819-823.
[http://dx.doi.org/10.1038/383819a0] [PMID: 8893006]
[3]
Meert, T.F.; Vermeirsch, H.A. A preclinical comparison between different opioids: Antinociceptive versus adverse effects. Pharmacol. Biochem. Behav., 2005, 80(2), 309-326.
[http://dx.doi.org/10.1016/j.pbb.2004.12.002] [PMID: 15680184]
[4]
McQuay, H. Opioids in pain management. Lancet, 1999, 353(9171), 2229-2232.
[http://dx.doi.org/10.1016/S0140-6736(99)03528-X] [PMID: 10393001]
[5]
Reddy, S.S.; Ramakrishnan, P.; Nejad, N.K.Y.; Vineeth, S.; Tupakula, P. An analgesic to bridge the gap between Narcotics and NSAIDs. Opiorphin. Int. J. Basic Clin. Pharmacol., 2018, 7, 1432.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20182695]
[6]
Trang, T.; Al-Hasani, R.; Salvemini, D.; Salter, MW; Gutstein, H.; Cahill, CM Pain and poppies: The good, the bad, and the ugly of opioid analgesics. J. Neurosci., 2015, 35(41), 13879-13888.
[http://dx.doi.org/10.1523/JNEUROSCI.2711-15.2015]
[7]
Southerland, W.A.; Gillis, J.; Kuppalli, S.; Fonseca, A.; Mendelson, A.; Horine, S.V.; Bansal, N.; Gulati, A. Dual enkephalinase inhibitors and their role in chronic pain management. Curr. Pain Headache Rep., 2021, 25(5), 29.
[http://dx.doi.org/10.1007/s11916-021-00949-0] [PMID: 33761014]
[8]
Mordarski, S.; Lysenko, L.; Gerber, H.; Zietek, M.; Gredes, T.; Dominiak, M. The effect of treatment with fentanyl patches on pain relief and improvement in overall daily functioning in patients with postherpetic neuralgia. J. Physiol. Pharmacol., 2009, 60(Suppl. 8), 31-35.
[PMID: 20400789]
[9]
Stein, C.; Schäfer, M.; Machelska, H. Attacking pain at its source: New perspectives on opioids. Nat. Med., 2003, 9(8), 1003-1008.
[http://dx.doi.org/10.1038/nm908] [PMID: 12894165]
[10]
Roques, B.P.; Fournié-Zaluski, M.C.; Wurm, M. Inhibiting the breakdown of endogenous opioids and cannabinoids to alleviate pain. Nat. Rev. Drug Discov., 2012, 11(4), 292-310.
[http://dx.doi.org/10.1038/nrd3673] [PMID: 22460123]
[11]
Schmidt, C.O.; Schweikert, B.; Wenig, C.M.; Schmidt, U.; Gockel, U.; Freynhagen, R.; Tölle, T.R.; Baron, R.; Kohlmann, T. Modelling the prevalence and cost of back pain with neuropathic components in the general population. Eur. J. Pain, 2009, 13(10), 1030-1035.
[http://dx.doi.org/10.1016/j.ejpain.2008.12.003] [PMID: 19201230]
[12]
Wisner, A; Dufour, E; Messaoudi, M; Nejdi, A; Marcel, A Ungeheuer, MN Human Opiorphin, a natural antinociceptive modulator of opioid-dependent pathways. Proc. Natl. Acad. Sci. USA, 2006, 103(47), 17979-17984.
[http://dx.doi.org/10.1073/pnas.0605865103]
[13]
Wollemann, M.; Rougeot, C. Human opiorphin an endogenous inhibitor of enkephalin-inactivating ectopeptidases that displays antinociception: A review. Curr. Bioact. Compd., 2016, 12(4), 230-235.
[http://dx.doi.org/10.2174/1573407212666160425171005]
[14]
Boucher, Y.; Braud, A.; Dufour, E.; Agbo-Godeau, S.; Baaroun, V.; Descroix, V.; Guinnepain, M.T.; Ungeheuer, M.N.; Ottone, C.; Rougeot, C. Opiorphin levels in fluids of burning mouth syndrome patients: A case-control study. Clin. Oral Investig., 2017, 21(7), 2157-2164.
[http://dx.doi.org/10.1007/s00784-016-1991-0] [PMID: 27834029]
[15]
Ozdogan, M.S.; Gungormus, M.; Ince Yusufoglu, S.; Ertem, S.Y.; Sonmez, C.; Orhan, M. Salivary opiorphin in dental pain: A potential biomarker for dental disease. Arch. Oral Biol., 2019, 99, 15-21.
[http://dx.doi.org/10.1016/j.archoralbio.2018.12.006] [PMID: 30590229]
[16]
Busserolles, J.; Lolignier, S.; Kerckhove, N.; Bertin, C.; Authier, N.; Eschalier, A. Replacement of current opioid drugs focusing on MOR-related strategies. Pharmacol. Ther., 2020, 210, 107519.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107519] [PMID: 32165137]
[17]
Salarić, I.; Sabalić, M.; Alajbeg, I. Opiorphin in burning mouth syndrome patients: A case-control study. Clin. Oral Investig., 2017, 21(7), 2363-2370.
[http://dx.doi.org/10.1007/s00784-016-2031-9] [PMID: 28013436]
[18]
Al-Safar, M.; Al-Sandook, T.; Taha, M. A possible new concept in the mechanism of action of local anesthesia. Am. J. Med. Biol. Res., 2013, 1, 134-137.
[http://dx.doi.org/10.12691/ajmbr-1-4-5]
[19]
Parida, S.K.; Guruprasad, T.; Krishnakumar, V.B.; Ravi, R.P. A study of salivary opiorphin levels using different anesthetic drugs and techniques = A randomized controlled clinical study. J. Stomatol. Oral Maxillofac. Surg., 2018, 119(3), 169-171.
[http://dx.doi.org/10.1016/j.jormas.2017.11.017] [PMID: 29247820]
[20]
Nejad, NK; Ramakrishna, P; Kar, A; Sujatha, S Quantitative analysis and expression of salivary opiorphin in painful oral soft-tissue conditions: A descriptive study. J. Global Oral Health, 2020, 3, 123-127.
[http://dx.doi.org/10.25259/JGOH_41_2020]
[21]
Paszynska, E.; Hernik, A.; Slopien, A.; Boucher, Y.; Tyszkiewicz-Nwafor, M.; Roszak, M.; Bilska, K.; Dmitrzak-Weglarz, M. Expression of salivary immunoglobulins and their association with analgesic neuropeptide opiorphin in anorexia nervosa during adolescence. J. Eat. Disord., 2022, 10(1), 118.
[http://dx.doi.org/10.1186/s40337-022-00637-3] [PMID: 35953876]
[22]
Singh, P.; Kongara, K.; Harding, D.; Ward, N.; Dukkipati, V.S.R.; Johnson, C.; Chambers, P. Comparison of electroencephalographic changes in response to acute electrical and thermal stimuli with the tail flick and hot plate test in rats administered with opiorphin. BMC Neurol., 2018, 18(1), 43.
[http://dx.doi.org/10.1186/s12883-018-1047-y] [PMID: 29673329]
[23]
König, M.; Zimmer, A.M.; Steiner, H.; Holmes, P.V.; Crawley, J.N.; Brownstein, M.J.; Zimmer, A. Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature, 1996, 383(6600), 535-538.
[http://dx.doi.org/10.1038/383535a0] [PMID: 8849726]
[24]
Filliol, D.; Ghozland, S.; Chluba, J.; Martin, M.; Matthes, H.W.D.; Simonin, F.; Befort, K.; Gavériaux-Ruff, C.; Dierich, A.; LeMeur, M.; Valverde, O.; Maldonado, R.; Kieffer, B.L. Mice deficient for δ- and µ-opioid receptors exhibit opposing alterations of emotional responses. Nat. Genet., 2000, 25(2), 195-200.
[http://dx.doi.org/10.1038/76061] [PMID: 10835636]
[25]
Ragnauth, A; Schuller, A; Morgan, M; Chan, J; Ogawa, S; Pintar, J Female preproenkephalin-knockout mice display altered emotional responses. Proc. Natl. Acad. Sci., 2001, 98(4), 1958-1963.
[http://dx.doi.org/10.1073/pnas.98.4.1958]
[26]
Nieto, M.M.; Guen, S.L.E.; Kieffer, B.L.; Roques, B.P.; Noble, F. Physiological control of emotion-related behaviors by endogenous enkephalins involves essentially the delta opioid receptors. Neuroscience, 2005, 135(2), 305-313.
[http://dx.doi.org/10.1016/j.neuroscience.2005.06.025] [PMID: 16112476]
[27]
Noble, F.; Roques, B.P. Protection of endogenous enkephalin catabolism as natural approach to novel analgesic and antidepressant drugs. Expert Opin. Ther. Targets, 2007, 11(2), 145-159.
[http://dx.doi.org/10.1517/14728222.11.2.145] [PMID: 17227231]
[28]
Al-Rodhan, N.; Chipkin, R.; Yaksh, T.L. The antinociceptive effects of SCH-32615, a neutral endopeptidase (enkephalinase) inhibitor, microinjected into the periaqueductal, ventral medulla and amygdala. Brain Res., 1990, 520(1-2), 123-130.
[http://dx.doi.org/10.1016/0006-8993(90)91697-F] [PMID: 2207626]
[29]
Thanawala, V.; Kadam, V.; Ghosh, R. Enkephalinase inhibitors: Potential agents for the management of pain. Curr. Drug Targets, 2008, 9(10), 887-894.
[http://dx.doi.org/10.2174/138945008785909356] [PMID: 18855623]
[30]
Plante, G.E.; VanItallie, T.B. Opioids for cancer pain: The challenge of optimizing treatment. Metabolism, 2010, 59(Suppl. 1), S47-S52.
[http://dx.doi.org/10.1016/j.metabol.2010.07.010] [PMID: 20837194]
[31]
Noble, F.; Smadja, C.; Valverde, O.; Maldonado, R.; Coric, P.; Turcaud, S.; Fournié-Zaluski, M.C.; Roques, B.P. Pain-suppressive effects on various nociceptive stimuli (thermal, chemical, electrical and inflammatory) of the first orally active enkephalin-metabolizing enzyme inhibitor RB 120. Pain, 1997, 73(3), 383-391.
[http://dx.doi.org/10.1016/S0304-3959(97)00125-5] [PMID: 9469529]
[32]
Roques, B.P.; Fournié-Zaluski, M.C.; Soroca, E.; Lecomte, J.M.; Malfroy, B.; Llorens, C.; Schwartz, J.C. The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature, 1980, 288(5788), 286-288.
[http://dx.doi.org/10.1038/288286a0] [PMID: 7001254]
[33]
Roques, B.P. Novel approaches to targeting neuropeptide systems. Trends Pharmacol. Sci., 2000, 21(12), 475-483.
[http://dx.doi.org/10.1016/S0165-6147(00)01571-6] [PMID: 11121837]
[34]
Tóth, F.; Tóth, G.; Benyhe, S.; Rougeot, C.; Wollemann, M. Opiorphin highly improves the specific binding and affinity of MERF and MEGY to rat brain opioid receptors. Regul. Pept., 2012, 178(1-3), 71-75.
[http://dx.doi.org/10.1016/j.regpep.2012.06.011] [PMID: 22771829]
[35]
Jutkiewicz, EM RB101-mediated protection of endogenous opioids: Potential therapeutic utility? CNS Drug Rev., 2007, 13(2), 192-205.
[http://dx.doi.org/10.1111/j.1527-3458.2007.00011.x]
[36]
Poras, H.; Bonnard, E.; Dangé, E.; Fournié-Zaluski, M.C.; Roques, B.P. New orally active dual enkephalinase inhibitors (DENKIs) for central and peripheral pain treatment. J. Med. Chem., 2014, 57(13), 5748-5763.
[http://dx.doi.org/10.1021/jm500602h] [PMID: 24927250]
[37]
Ozdogan, S.; Sonmez, C.; Yolcu, D.; Gungormus, M. Tear opiorphin levels in ocular pain caused by corneal foreign body. Cornea, 2020, 39(11), 1377-1380.
[http://dx.doi.org/10.1097/ICO.0000000000002383] [PMID: 32482963]
[38]
Giuliano, E; Paolino, D; Fresta, M; Cosco, D. Drug-loaded biocompatible nanocarriers embedded in poloxamer 407 hydrogels as therapeutic formulations. Medicines, 2018, 6(1)
[http://dx.doi.org/10.3390/medicines6010007]
[39]
Rougeot, C.; Robert, F.; Menz, L.; Bisson, J.F.; Messaoudi, M. Systemically active human opiorphin is a potent yet non-addictive analgesic without drug tolerance effects. J. Physiol. Pharmacol., 2010, 61(4), 483-490.
[PMID: 20814077]
[40]
Nishimura, K.; Hazato, T. Isolation and identification of an endogenous inhibitor of enkephalin-degrading enzymes from bovine spinal cord. Biochem. Biophys. Res. Commun., 1993, 194(2), 713-719.
[http://dx.doi.org/10.1006/bbrc.1993.1880] [PMID: 8343155]
[41]
Yamamoto, Y.; Ono, H.; Ueda, A.; Shimamura, M.; Nishimura, K.; Hazato, T. Spinorphin as an endogenous inhibitor of enkephalin-degrading enzymes: Roles in pain and inflammation. Curr. Protein Pept. Sci., 2002, 3(6), 587-599.
[http://dx.doi.org/10.2174/1389203023380404] [PMID: 12470213]
[42]
Popik, P.; Kamysz, E.; Kreczko, J.; Wróbel, M. Human opiorphin: The lack of physiological dependence, tolerance to antinociceptive effects and abuse liability in laboratory mice. Behav. Brain Res., 2010, 213(1), 88-93.
[http://dx.doi.org/10.1016/j.bbr.2010.04.045] [PMID: 20438769]
[43]
Mennini, N; Mura, P; Nativi, C; Richichi, B; Di Cesare Mannelli, L; Ghelardini, C. Injectable liposomal formulations of opiorphin as a new therapeutic strategy in pain management. Future Sci. OA, 2015, 1(3), Fso2.
[http://dx.doi.org/10.4155/fso.14.3]
[44]
Javelot, H.; Messaoudi, M.; Garnier, S.; Rougeot, C. Human opiorphin is a naturally occurring antidepressant acting selectively on enkephalin-dependent delta-opioid pathways. J. Physiol. Pharmacol., 2010, 61(3), 355-362.
[PMID: 20610867]
[45]
Brkljačić, L.; Sabalić, M.; Salarić, I.; Jerić, I.; Alajbeg, I.; Nemet, I. Development and validation of a liquid chromatography=tandem mass spectrometry method for the quantification of opiorphin in human saliva. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011, 879(32), 3920-3926.
[http://dx.doi.org/10.1016/j.jchromb.2011.11.003] [PMID: 22119435]
[46]
Yang, Q.Z.; Lu, S.S.; Tian, X.Z.; Yang, A.M.; Ge, W.W.; Chen, Q. The antidepressant-like effect of human opiorphin via opioid-dependent pathways in mice. Neurosci. Lett., 2011, 489(2), 131-135.
[http://dx.doi.org/10.1016/j.neulet.2010.12.002] [PMID: 21145938]
[47]
Paszynska, E.; Dmitrzak-Weglarz, M.; Roszak, M.; Boucher, Y.; Dutkiewicz, A.; Tyszkiewicz-Nwafor, M.; Gawriolek, M.; Otulakowska-Skrzynska, J.; Rzatowski, S.; Slopien, A. Salivary opiorphin levels in anorexia nervosa: A case-control study. World J. Biol. Psychiatry, 2020, 21(3), 212-219.
[http://dx.doi.org/10.1080/15622975.2018.1517948] [PMID: 30179071]
[48]
Bogeas, A; Dufour, E; Bisson, J; Messaoudi, M; Rougeot, C Structure-activity relationship study and function-based peptidomimetic design of human opiorphin with improved bioavailability property and unaltered analgesic activity. Biochem. Pharmacol., 2013, 2(3), 2167-0501.
[49]
Tian, X.; Chen, J.; Xiong, W.; He, T.; Chen, Q. Effects and underlying mechanisms of human opiorphin on colonic motility and nociception in mice. Peptides, 2009, 30(7), 1348-1354.
[http://dx.doi.org/10.1016/j.peptides.2009.04.002] [PMID: 19442408]
[50]
Bocsik, A.; Darula, Z.; Tóth, G.; Deli, M.A.; Wollemann, M. Transfer of opiorphin through a blood-brain barrier culture model. Arch. Med. Res., 2015, 46(6), 502-506.
[http://dx.doi.org/10.1016/j.arcmed.2015.06.009] [PMID: 26143971]
[51]
Belluzzi, J.D.; Grant, N.; Garsky, V.; Sarantakis, D.; Wise, C.D.; Stein, L. Analgesia induced in vivo by central administration of enkephalin in rat. Nature, 1976, 260(5552), 625-626.
[http://dx.doi.org/10.1038/260625a0] [PMID: 1264229]
[52]
Noble, F; Banisadr, G; Jardinaud, F; Popovici, T; Lai-Kuen, R; Chen, H First discrete autoradiographic distribution of aminopeptidase N in various structures of rat brain and spinal cord using the selective iodinated inhibitor [125I]RB 129. Neuroscience, 2001, 105(2), 479-488.
[http://dx.doi.org/10.1016/S0306-4522(01)00185-3]
[53]
Waksman, G; Hamel, E; Delay-Goyet, P; Roques, BP Neuronal localization of the neutral endopeptidase ‘enkephalinase’ in rat brain revealed by lesions and autoradiography. Embo J., 1986, 5(12), 3136-6.
[http://dx.doi.org/10.1002/j.1460-2075.1986.tb04624.x]
[54]
Mosnaim, A.D.; Wolf, M.E.; Nguyen, T.D.; Puente, J.; Freitag, F.; Diamond, S. Degradation kinetics of leucine5-enkephalin by plasma samples from healthy controls and various patient populations: In vitro drug effects. Am. J. Ther., 2000, 7(3), 185-194.
[http://dx.doi.org/10.1097/00045391-200007030-00006] [PMID: 11317167]
[55]
Mosnaim, A.D.; Nguyen, T.D.; Tse, R.; Puente, J.; Couceyro, P.; Wolf, M.E. in vitro methionine5-enkephalin degradation kinetics by human brain preparations. Neurochem. Res., 2008, 33(1), 81-86.
[http://dx.doi.org/10.1007/s11064-007-9418-6] [PMID: 17676390]
[56]
Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol., 2009, 62(10), e1-e34.
[http://dx.doi.org/10.1016/j.jclinepi.2009.06.006] [PMID: 19631507]
[57]
Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; Chou, R.; Glanville, J.; Grimshaw, J.M.; Hróbjartsson, A.; Lalu, M.M.; Li, T.; Loder, E.W.; Mayo-Wilson, E.; McDonald, S.; McGuinness, L.A.; Stewart, L.A.; Thomas, J.; Tricco, A.C.; Welch, V.A.; Whiting, P.; Moher, D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 2021, 372(71), n71.
[http://dx.doi.org/10.1136/bmj.n71] [PMID: 33782057]
[58]
Sitbon, P.; Van Elstraete, A.; Hamdi, L.; Juarez-Perez, V.; Mazoit, J.X.; Benhamou, D.; Rougeot, C. STR-324, a stable analog of opiorphin, causes analgesia in postoperative pain by activating endogenous opioid receptor-dependent pathways. Anesthesiology, 2016, 125(5), 1017-1029.
[http://dx.doi.org/10.1097/ALN.0000000000001320] [PMID: 27571257]
[59]
Van Elstraete, A; Sitbon, P; Hamdi, L; Juarez-Perez, V; Mazoit, JX; Benhamou, D The opiorphin analog STR-324 decreases sensory hypersensitivity in a rat model of neuropathic pain. Anesthesia. Analgesia, 2018, 126(6), 2102-2111.
[http://dx.doi.org/10.1213/ANE.0000000000002413]
[60]
Moss, L.M.; Berends, C.L.; van Brummelen, E.M.; Kamerling, I.M.; Klaassen, E.S.; Bergmann, K. First-in-human trial to assess safety, tolerability, pharmacokinetics and pharmacodynamics of STR-324, a dual enkephalinase inhibitor for pain management Br. J. Clin. Pharmacol., 2021.
[PMID: 34046921]
[61]
Rosa, M.; Arsequell, G.; Rougeot, C.; Calle, L.P.; Marcelo, F.; Pinto, M.; Centeno, N.B.; Jiménez-Barbero, J.; Valencia, G. Structure-activity relationship study of opiorphin, a human dual ectopeptidase inhibitor with antinociceptive properties. J. Med. Chem., 2012, 55(3), 1181-1188.
[http://dx.doi.org/10.1021/jm2012112] [PMID: 22224710]
[62]
Kaur, A; Mehra, M. Internet based drug design of new opioid analgesics. Int. J. Recent Adv. Sci. Technol., 2018, 5(3), 1-4.
[http://dx.doi.org/10.30750/ijarst.531]
[63]
Stoichev, S.; Taneva, S.; Danailova, A.; Toca-Herrera, J.L.; Andreeva, T. Encapsulation of opiorphin in polymer-coated alginate beads for controlled delivery and painkilling. Int. J. Bioautomation, 2021, 25(1), 101-111.
[http://dx.doi.org/10.7546/ijba.2021.25.1.000746]
[64]
Mura, P.; Mennini, N.; Nativi, C.; Richichi, B. In situ mucoadhesive-thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin. Eur. J. Pharm. Biopharm., 2018, 122, 54-61.
[http://dx.doi.org/10.1016/j.ejpb.2017.10.008] [PMID: 29032194]
[65]
Rosa, M.; Marcelo, F.; Calle, L.P.; Rougeot, C.; Jiménez-Barbero, J.; Arsequell, G.; Valencia, G. Influence of polar side chains modifications on the dual enkephalinase inhibitory activity and conformation of human opiorphin, a pain perception related peptide. Bioorg. Med. Chem. Lett., 2015, 25(22), 5190-5193.
[http://dx.doi.org/10.1016/j.bmcl.2015.09.071] [PMID: 26463133]
[66]
Dufour, E.; Saussine, S.; Mellon, V.; Leandri, R.; Jouannet, P.; Ungeheuer, M-N. Opiorphin secretion pattern in healthy volunteers: Gender difference and organ specificity. Biochem. Anal. Biochem., 2013, 2.
[67]
Naksuriya, O.; Okonogi, S.; Schiffelers, R.M.; Hennink, W.E. Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials, 2014, 35(10), 3365-3383.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.090] [PMID: 24439402]
[68]
Hua, S.; Wu, SY The use of lipid-based nanocarriers for targeted pain therapies. Front. Pharmacol., 2013, 4, 143.
[http://dx.doi.org/10.3389/fphar.2013.00143]
[69]
Mishra, B.; Patel, B.B.; Tiwari, S. Colloidal nanocarriers: A review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine, 2010, 6(1), 9-24.
[http://dx.doi.org/10.1016/j.nano.2009.04.008] [PMID: 19447208]
[70]
Patel, M.; Souto, E.B.; Singh, K.K. Advances in brain drug targeting and delivery: Limitations and challenges of solid lipid nanoparticles. Expert Opin. Drug Deliv., 2013, 10(7), 889-905.
[http://dx.doi.org/10.1517/17425247.2013.784742] [PMID: 23550609]
[71]
Martin-Banderas, L.; Holgado, M.A.; Venero, J.L.; Alvarez-Fuentes, J.; Fernández-Arévalo, M. Nanostructures for drug delivery to the brain. Curr. Med. Chem., 2011, 18(34), 5303-5321.
[http://dx.doi.org/10.2174/092986711798184262] [PMID: 22087827]
[72]
Shah, L; Kulkarni, P; Ferris, C; Amiji, MM Analgesic efficacy and safety of DALDA peptide analog delivery to the brain using oil-in-water nanoemulsion formulation. Pharm. Res., 2014, 31(10), 2724-2734.
[http://dx.doi.org/10.1007/s11095-014-1370-y]
[73]
Lai, F.; Fadda, A.M.; Sinico, C. Liposomes for brain delivery. Expert Opin. Drug Deliv., 2013, 10(7), 1003-1022.
[http://dx.doi.org/10.1517/17425247.2013.766714] [PMID: 23373728]
[74]
Kim, J.Y.; Choi, W.I.; Kim, Y.H.; Tae, G. Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials, 2013, 34(4), 1170-1178.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.047] [PMID: 23122677]
[75]
Law, S.L.; Huang, K.J.; Chou, V.H.Y.; Cherng, J.Y. Enhancement of nasal absorption of calcitonin loaded in liposomes. J. Liposome Res., 2001, 11(2-3), 165-174.
[http://dx.doi.org/10.1081/LPR-100108460] [PMID: 19530931]
[76]
Jain, A.K.; Chalasani, K.B.; Khar, R.K.; Ahmed, F.J.; Diwan, P.V. Muco-adhesive multivesicular liposomes as an effective carrier for transmucosal insulin delivery. J. Drug Target., 2007, 15(6), 417-427.
[http://dx.doi.org/10.1080/10611860701453653] [PMID: 17613660]
[77]
Kato, Y.; Hosokawa, T.; Hayakawa, E.; Ito, K. Influence of liposomes on tryptic digestion of insulin. Biol. Pharm. Bull., 1993, 16(5), 457-461.
[http://dx.doi.org/10.1248/bpb.16.457] [PMID: 8364491]
[78]
Maurer, N.; Fenske, D.B.; Cullis, P.R. Developments in liposomal drug delivery systems. Expert Opin. Biol. Ther., 2001, 1(6), 923-947.
[http://dx.doi.org/10.1517/14712598.1.6.923] [PMID: 11728226]
[79]
Samad, A.; Sultana, Y.; Aqil, M. Liposomal drug delivery systems: An update review. Curr. Drug Deliv., 2007, 4(4), 297-305.
[http://dx.doi.org/10.2174/156720107782151269] [PMID: 17979650]
[80]
Fenske, D.B.; Chonn, A.; Cullis, P.R. Liposomal nanomedicines: An emerging field. Toxicol. Pathol., 2008, 36(1), 21-29.
[http://dx.doi.org/10.1177/0192623307310960] [PMID: 18337218]
[81]
Laouini, A.; Jaafar-Maalej, C.; Limayem-Blouza, I.; Sfar, S.; Charcosset, C.; Fessi, H. Preparation, characterization and applications of liposomes: State of the art. J. Coll. Sci. Biotechnol., 2012, 1(2), 147-168.
[http://dx.doi.org/10.1166/jcsb.2012.1020]
[82]
Bavarsad, N; Kouchak, M; Mohamadipour, P; Sadeghi-Nejad, B Preparation and physicochemical characterization of topical chitosan-based film containing griseofulvin-loaded liposomes. J. Adv. Pharm. Technol. Res., 2016, 7(3), 91-98.
[http://dx.doi.org/10.4103/2231-4040.184591]
[83]
Mishra, H.; Chauhan, V.; Kumar, K.; Teotia, D. A comprehensive review on Liposomes: A novel drug delivery system. J. Drug Deliv. Ther., 2018, 8(6), 400-404.
[http://dx.doi.org/10.22270/jddt.v8i6.2071]
[84]
Swami, H.; Kataria, M.; Bilandi, A.; Kour, P.; Bala, S. Liposome: An art for drug delivery. Int. J. Pharmaceut. Sci. Lett., 2015, 5, 523-530.
[85]
Akbarzadeh, A; Rezaei-Sadabady, R; Davaran, S; Joo, SW; Zarghami, N; Hanifehpour, Y Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102]
[86]
Immordino, ML; Dosio, F; Cattel, L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine., 2006, 1(3), 297-315.
[87]
Lee, K.Y.; Mooney, D.J. Alginate: Properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003]
[88]
Gombotz, W.; Gombotz, W.R. Protein release from alginate matrices. Adv. Drug Deliv. Rev., 1998, 31(3), 267-285.
[http://dx.doi.org/10.1016/S0169-409X(97)00124-5] [PMID: 10837629]
[89]
Council of E. European Pharmacopoeia C. European Directorate for the Quality of M, Healthcare In: European pharmacopoeia; 7th ed.; Council Of Europe : European Directorate for the Quality of Medicines and Healthcare Strasbourg: Strasbourg,, 2010.
[90]
United States Pharmacopeial C. The United States Pharmacopeia 2011 : USP 34 ; The national formulary : NF 29. Rockville; MD: United States Pharmacopeial Convention Rockville, MD, 2010.
[91]
Illum, L. Nasal drug delivery-possibilities, problems and solutions. J. Control. Release, 2003, 87(1-3), 187-198.
[http://dx.doi.org/10.1016/S0168-3659(02)00363-2] [PMID: 12618035]
[92]
Campbell, C.; Morimoto, B.H.; Nenciu, D.; Fox, A.W. Drug development of intranasally delivered peptides. Ther. Deliv., 2012, 3(4), 557-568.
[http://dx.doi.org/10.4155/tde.12.12] [PMID: 22834082]
[93]
Ghori, M.; Mahdi Aljeboury, M.; Smith, A.; Conway, B. Nasal drug delivery systems: An overview. Am. J. Pharmacol. Sci., 2015, 3.
[94]
Ugwoke, M.; Agu, R.; Verbeke, N.; Kinget, R. Nasal mucoadhesive drug delivery: Background, applications, trends and future perspectives. Adv. Drug Deliv. Rev., 2005, 57(11), 1640-1665.
[http://dx.doi.org/10.1016/j.addr.2005.07.009] [PMID: 16182408]
[95]
Jiang, L.; Gao, L.; Wang, X.; Tang, L.; Ma, J. The application of mucoadhesive polymers in nasal drug delivery. Drug Dev. Ind. Pharm., 2010, 36(3), 323-336.
[http://dx.doi.org/10.3109/03639040903170750] [PMID: 19735210]
[96]
Callens, C.; Remon, J.P. Evaluation of starch=maltodextrin=Carbopol® 974 P mixtures for the nasal delivery of insulin in rabbits. J. Control. Release, 2000, 66(2-3), 215-220.
[http://dx.doi.org/10.1016/S0168-3659(99)00271-0] [PMID: 10742581]
[97]
Tas, C.; Ozkan, C.; Savaser, A.; Ozkan, Y.; Tasdemir, U.; Altunay, H. Nasal absorption of metoclopramide from different Carbopol 981 based formulations: In vitro, ex vivo and in vivo evaluation. Eur. J. Pharm. Biopharm., 2006, 64(2), 246-254.
[http://dx.doi.org/10.1016/j.ejpb.2006.05.017] [PMID: 16870409]
[98]
Nicholas, A.R.; Scott, M.J.; Kennedy, N.I.; Jones, M.N. Effect of grafted polyethylene glycol (PEG) on the size, encapsulation efficiency and permeability of vesicles. Biochim. Biophys. Acta Biomembr., 2000, 1463(1), 167-178.
[http://dx.doi.org/10.1016/S0005-2736(99)00192-3] [PMID: 10631306]
[99]
Bai, S.; Ahsan, F. Inhalable liposomes of low molecular weight heparin for the treatment of venous thromboembolism. J. Pharm. Sci., 2010, 99(11), 4554-4564.
[http://dx.doi.org/10.1002/jps.22160] [PMID: 20845454]
[100]
Panwar, P; Pandey, B; Lakhera, PC; Singh, KP Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. Int. J. Nanomedicine., 2010, 5, 101-108.
[http://dx.doi.org/10.2147/IJN.S8030]
[101]
Yang, T.; Cui, F.D.; Choi, M.K.; Cho, J.W.; Chung, S.J.; Shim, C.K.; Kim, D.D. Enhanced solubility and stability of PEGylated liposomal paclitaxel: In vitro and in vivo evaluation. Int. J. Pharm., 2007, 338(1-2), 317-326.
[http://dx.doi.org/10.1016/j.ijpharm.2007.02.011] [PMID: 17368984]
[102]
Nie, Y; Ji, L; Ding, H; Xie, L; Li, L; He, B Cholesterol derivatives based charged liposomes for doxorubicin delivery: Preparation, in vitro and in vivo characterization. Theranostics, 2012, 2(11), 1092-1103.
[http://dx.doi.org/10.7150/thno.4949]