Perinatal Exposure to Trace Elements: The Dubious Culprit of Autistic Spectrum Disorder in Children

Page: [18 - 28] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

There is evidence that few trace elements in the environment work as hazardous materials in terms of their exposure in the perinatal period, causing autistic spectrum disorder (ASD) in children, and avoiding these exposures in the environment can reduce the number of new cases. This perspective study provides preliminary evidence to consider a few trace elements as culprits for ASD. More studies with larger cohorts are needed, but meanwhile, as per available evidence, exposure to these hazardous materials must be warranted during pregnancy and early stages of life.

[1]
Del Barrio V. Diagnostic and Statistical Manual of Mental Disorders. Washington, DC: American Psychiatric Publishing 2004.
[2]
Elsabbagh M, Divan G, Koh YJ, et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res 2012; 5(3): 160-79.
[http://dx.doi.org/10.1002/aur.239] [PMID: 22495912]
[4]
Garí M, Grzesiak M, Krekora M, et al. Prenatal exposure to neurotoxic metals and micronutrients and neurodevelopmental outcomes in early school age children from Poland. Environ Res 2022; 204(Pt B): 112049.
[http://dx.doi.org/10.1016/j.envres.2021.112049] [PMID: 34520749]
[5]
Sharp GC, Salas LA, Monnereau C, et al. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: Findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum Mol Genet 2017; 26(20): 4067-85.
[http://dx.doi.org/10.1093/hmg/ddx290] [PMID: 29016858]
[6]
Ornoy A, Reece EA, Pavlinkova G, Kappen C, Miller RK. Effect of maternal diabetes on the embryo, fetus, and children: Congenital anomalies, genetic and epigenetic changes and developmental outcomes. Embryo Today Rev 2015; 15(1): 53-72.
[7]
Wang C, Geng H, Liu W, Zhang G. Prenatal, perinatal, and postnatal factors associated with autism. Medicine (Baltimore) 2017; 96(18): e6696.
[http://dx.doi.org/10.1097/MD.0000000000006696] [PMID: 28471964]
[8]
Raghavan R, Riley AW, Volk H, et al. Maternal Multivitamin Intake, Plasma Folate and Vitamin B 12 Levels and Autism Spectrum Disorder Risk in Offspring. Paediatr Perinat Epidemiol 2018; 32(1): 100-11.
[http://dx.doi.org/10.1111/ppe.12414] [PMID: 28984369]
[9]
Lintas C. Linking genetics to epigenetics: The role of folate and folate-related pathways in neurodevelopmental disorders. Clin Genet 2019; 95(2): 241-52.
[http://dx.doi.org/10.1111/cge.13421] [PMID: 30047142]
[10]
Alexandrov PN, Pogue AI, Lukiw WJ. of Neuroscience P, Professor of Alzheimer B. Integr Food Nutr Metab 2018; 5(3)
[PMID: 29938114]
[11]
Yokel RA, McNamara PJ. Aluminium toxicokinetics: An updated minireview. Pharmacol Toxicol 2001; 88(4): 159-67.
[http://dx.doi.org/10.1034/j.1600-0773.2001.d01-98.x] [PMID: 11322172]
[12]
Wang L. Entry and Deposit of Aluminum in the Brain. Adv Exp Med Biol 2018; 1091: 39-51.
[http://dx.doi.org/10.1007/978-981-13-1370-7_3] [PMID: 30315448]
[13]
Röllin HB, Channa K, Olutola B, Nogueira C, Odland JØ. In utero exposure to aluminium and other neurotoxic elements in urban coastal south african women at delivery: An emerging concern. Int J Environ Res Public Health 2020; 17(5): 1724.
[http://dx.doi.org/10.3390/ijerph17051724] [PMID: 32155754]
[14]
Fewtrell MS, Edmonds CJ, Isaacs E, Bishop NJ, Lucas A. Aluminium exposure from parenteral nutrition in preterm infants and later health outcomes during childhood and adolescence. Proc Nutr Soc 2011; 70(3): 299-304.
[http://dx.doi.org/10.1017/S0029665111000498] [PMID: 21781356]
[15]
Sundar S, Chakravarty J. Antimony Toxicity. Int J Environ Res Public Health 2010; 7(12): 4267-77.
[http://dx.doi.org/10.3390/ijerph7124267] [PMID: 21318007]
[16]
Iwai-Shimada M, Kameo S, Nakai K, et al. Exposure profile of mercury, lead, cadmium, arsenic, antimony, copper, selenium and zinc in maternal blood, cord blood and placenta: The Tohoku Study of Child Development in Japan. Environ Health Prev Med 2019; 24(1): 35.
[http://dx.doi.org/10.1186/s12199-019-0783-y] [PMID: 31101007]
[17]
Xia S, Zhu X, Yan Y, et al. Developmental neurotoxicity of antimony (Sb) in the early life stages of zebrafish. Ecotoxicol Environ Saf 2021; 218: 112308.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112308] [PMID: 33975224]
[18]
Adams JB, Baral M, Geis E, Mitchell J, Ingram J, Hensley A. The Severity of Autism Is Associated with Toxic Metal Body Burden and Red Blood Cell Glutathione Levels. J Toxicol 2009; 2009: 1-7.
[19]
Bjørklund G, Skalny AV, Rahman MM, et al. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. Environ Res 2018; 166: 234-50.
[http://dx.doi.org/10.1016/j.envres.2018.05.020] [PMID: 29902778]
[20]
Dickerson AS, Rahbar MH, Bakian AV, et al. Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic. Environ Monit Assess 2016; 188(7): 407.
[http://dx.doi.org/10.1007/s10661-016-5405-1] [PMID: 27301968]
[21]
Luan S, Zhang S, Pan L, Hu W, Cui H, Wei X, et al. Salivary microbiota analysis of patients with membranous nephropathy. Mol Med Rep 2022; 25(5): 190.
[http://dx.doi.org/10.3892/mmr.2022.12706]
[22]
Li H, Li H, Li Y, Liu Y, Zhao Z. Blood Mercury, Arsenic, Cadmium, and Lead in Children with Autism Spectrum Disorder. Biol Trace Elem Res 2018; 181(1): 31-7.
[http://dx.doi.org/10.1007/s12011-017-1002-6] [PMID: 28480499]
[23]
BLAUROCK-BUSCH E. Blood Mercury, Arsenic, Cadmium, and Lead in Children with Autism Spectrum Disorder. Maedica (Bucur) 2011; 6(4): 247-57.
[24]
Blaurock-busch E, Amin OR, Dessoki HH. Toxic Metals and Essential Elements in Hair and Severity of Symptoms among Children with Autism. Maedica (Bucur) 2012; 26(7): 38.
[25]
Zhai Q, Cen S, Jiang J, Zhao J, Zhang H, Chen W. Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: A pilot study of Chinese children. Environ Res 2019; 171: 501-9.
[http://dx.doi.org/10.1016/j.envres.2019.01.060] [PMID: 30743242]
[26]
Skalny AV, Simashkova NV, Klyushnik TP, et al. Analysis of Hair Trace Elements in Children with Autism Spectrum Disorders and Communication Disorders. Biol Trace Elem Res 2017; 177(2): 215-23.
[http://dx.doi.org/10.1007/s12011-016-0878-x] [PMID: 27785740]
[27]
Wang M, Hossain F, Sulaiman R, Ren X. Exposure to Inorganic Arsenic and Lead and Autism Spectrum Disorder in Children: A Systematic Review and Meta-Analysis. Chem Res Toxicol 2019; 32(10): 1904-19.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00134] [PMID: 31549506]
[28]
Rossignol DA, Genuis SJ, Frye RE. Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry 2014; 4(2): 1-23.
[29]
Joanna Kałużna-Czaplińska WGJR. Neurotoxic factors in the child&acutes environment as a reason for developmental disorders in autism. Nowa Pediatr 2008.
[30]
Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum 2012; 100(Pt C): 11-465.
[PMID: 23189751]
[31]
Kulik-Kupka K, Koszowska A, Brończyk-Puzoń A, Nowak J, Gwizdek K, Zubelewicz-Szkodzińska B. ARSEN-TRUCIZNA CZY LEK? ARSENIC-POISON OR MEDICINE? 2016. Available From: http://medpr.imp.lodz.xn--plpracapogldowa-e0b
[32]
Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, et al. Toxicological Status of Children with Autism vs. Neurotypical Children and the Association with Autism Severity. Bio Trace Element Res 2013; 151: 171-80.
[33]
Zhou H, Zhao W, Ye L, Chen Z, Cui Y. Postnatal low-concentration arsenic exposure induces autism-like behavior and affects frontal cortex neurogenesis in rats. Environ Toxicol Pharmacol 2018; 62: 188-98.
[http://dx.doi.org/10.1016/j.etap.2018.07.012] [PMID: 30064059]
[34]
Skogheim TS, Weyde KVF, Engel SM, et al. Metal and essential element concentrations during pregnancy and associations with autism spectrum disorder and attention-deficit/hyperactivity disorder in children. Environ Int 2021; 152: 106468.
[http://dx.doi.org/10.1016/j.envint.2021.106468] [PMID: 33765546]
[35]
Kille WJ, Tesh JM, McAnulty PA, Ross FW. Sucralose: Assessment of teratogenic potential in the rat and the rabbit. Food Chem Toxicol 2000; 38(Suppl 2): S43-52.
[36]
Adams JB, Baral M, Geis E, et al. Safety and efficacy of oral DMSA therapy for children with autism spectrum disorders: Part B - Behavioral results. BMC Clin Pharmacol 2009; 9(1): 17.
[http://dx.doi.org/10.1186/1472-6904-9-17] [PMID: 19852790]
[37]
Adams JB, Baral M, Geis E, Mitchell J, Ingram J, Hensley A, et al. Safety and efficacy of oral DMSA therapy for children with autism spectrum disorders: Part A - Medical results. BMC Clin Pharmacol 2009; 9(16)
[38]
Heindel JJ, Price CJ, Schwetz BA. The developmental toxicity of boric acid in mice, rats, and rabbits. Environ Health Perspect 1994; 102(Suppl 7): 107-12.
[http://dx.doi.org/10.1289/ehp.94102s7107] [PMID: 7889869] [PMCID: PMC1566650]
[39]
WONG LC. Boric Acid Poisoning: Report of 11 Cases. Can Med Assoc J 1964; 90(17): 1018.
[40]
Gordon AS, Prichard JS, Freedman MH. Seizure disorders and anemia associated with chronic borax intoxication. Can Med Assoc J 1973; 108(6): 719.
[41]
Cadmium. 2023. Available From: https://www.osha.gov/cadmium
[42]
Dharmadasa P, Kim N, Thunders M. Maternal cadmium exposure and impact on foetal gene expression through methylation changes. Food Chem Toxicol 2017; 109(Pt 1): 714-20.
[http://dx.doi.org/10.1016/j.fct.2017.09.002] [PMID: 28887092]
[43]
Al omairi NE, Radwan OK, Alzahrani YA, Kassab RB. Neuroprotective efficiency of Mangifera indica leaves extract on cadmium-induced cortical damage in rats. Metab Brain Dis 2018; 33(4): 1121-30.
[http://dx.doi.org/10.1007/s11011-018-0222-6] [PMID: 29557530]
[44]
Lin CM, Doyle P, Wang D, Hwang YH, Chen PC. Does prenatal cadmium exposure affect fetal and child growth? Occup Environ Med 2011; 68(9): 641-6.
[http://dx.doi.org/10.1136/oem.2010.059758] [PMID: 21186202]
[45]
Ciesielski T, Weuve J, Bellinger DC, Schwartz J, Lanphear B, Wright RO. Cadmium exposure and neurodevelopmental outcomes in U.S. children. Environ Health Perspect 2012; 120(5): 758-63.
[http://dx.doi.org/10.1289/ehp.1104152] [PMID: 22289429]
[46]
Zhou T, Guo J, Zhang J, et al. Sex-Specific Differences in Cognitive Abilities Associated with Childhood Cadmium and Manganese Exposures in School-Age Children: A Prospective Cohort Study. Biol Trace Elem Res 2020; 193(1): 89-99.
[http://dx.doi.org/10.1007/s12011-019-01703-9] [PMID: 30977088]
[47]
Kippler M, Bottai M, Georgiou V, et al. Impact of prenatal exposure to cadmium on cognitive development at preschool age and the importance of selenium and iodine. Eur J Epidemiol 2016; 31(11): 1123-34.
[http://dx.doi.org/10.1007/s10654-016-0151-9] [PMID: 27147065]
[48]
Osman K, Åkesson A, Berglund M, et al. Toxic and essential elements in placentas of swedish women. Clin Biochem 2000; 33(2): 131-8.
[http://dx.doi.org/10.1016/S0009-9120(00)00052-7] [PMID: 10751591]
[49]
Jeong KS, Park H, Ha E, et al. Performance IQ in children is associated with blood cadmium concentration in early pregnancy. J Trace Elem Med Biol 2015; 30: 107-11.
[http://dx.doi.org/10.1016/j.jtemb.2014.11.007] [PMID: 25511909]
[50]
Gustin K, Tofail F, Vahter M, Kippler M. Cadmium exposure and cognitive abilities and behavior at 10 years of age: A prospective cohort study. Environ Int 2018; 113: 259-68.
[http://dx.doi.org/10.1016/j.envint.2018.02.020] [PMID: 29459184]
[51]
Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: Nickel, arsenic, and chromium. Chem Res Toxicol 2008; 21(1): 28-44.
[http://dx.doi.org/10.1021/tx700198a] [PMID: 17970581]
[52]
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160(1): 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[53]
Speer RM, Wise JP. Current Status on Chromium Research and Its Implications for Health and Risk Assessment.Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Amsterdam: Elsevier 2018.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.14283-0]
[54]
Wise JP Jr, Young JL, Cai J, Cai L. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives. Environ Int 2022; 158: 106877.
[http://dx.doi.org/10.1016/j.envint.2021.106877] [PMID: 34547640]
[55]
Shrivastava R, Upreti RK, Seth PK, Chaturvedi UC. Effects of chromium on the immune system. FEMS Immunol Med Microbiol 2002; 34(1): 1-7.
[http://dx.doi.org/10.1111/j.1574-695X.2002.tb00596.x] [PMID: 12208600]
[56]
Iijima S, Matsumoto N, Lu CC. Transfer of chromic chloride to embryonic mice and changes in the embryonic mouse neuroepithelium. Toxicology 1983; 26(3-4): 257-65.
[http://dx.doi.org/10.1016/0300-483X(83)90086-0] [PMID: 6857698]
[57]
Talbott EO, Marshall LP, Rager JR, Arena VC, Sharma RK, Stacy SL. Air toxics and the risk of autism spectrum disorder: The results of a population based case–control study in southwestern Pennsylvania. Environ Health 2015; 14: 80.
[http://dx.doi.org/10.1186/s12940-015-0064-1]
[58]
Barceloux DG, Barceloux D. Cobalt. J Toxicol Clin Toxicol 1999; 37(2): 201-16.
[http://dx.doi.org/10.1081/CLT-100102420] [PMID: 10382556]
[59]
Lauwerys R, Lison D. Health risks associated with cobalt exposure — an overview. Sci Total Environ 1994; 150(1-3): 1-6.
[http://dx.doi.org/10.1016/0048-9697(94)90125-2] [PMID: 7939580]
[60]
Kubrak OI, Husak VV, Rovenko BM, Storey JM, Storey KB, Lushchak VI. Cobalt-induced oxidative stress in brain, liver and kidney of goldfish Carassius auratus. Chemosphere 2011; 85(6): 983-9.
[http://dx.doi.org/10.1016/j.chemosphere.2011.06.078] [PMID: 21777937]
[61]
Calderón-Garcidueñas L, Serrano-Sierra A, Torres-Jardón R, et al. The impact of environmental metals in young urbanites’ brains. Exp Toxicol Pathol 2013; 65(5): 503-11.
[http://dx.doi.org/10.1016/j.etp.2012.02.006] [PMID: 22436577]
[62]
Leonard S, Gannett PM, Rojanasakul Y, et al. Cobalt-mediated generation of reactive oxygen species and its possible mechanism. J Inorg Biochem 1998; 70(3-4): 239-44.
[http://dx.doi.org/10.1016/S0162-0134(98)10022-3] [PMID: 9720310]
[63]
Hengstler JG, Bolm-Audorff U, Faldum A, et al. Occupational exposure to heavy metals: DNA damage induction and DNA repair inhibition prove co-exposures to cadmium, cobalt and lead as more dangerous than hitherto expected. Carcinogenesis 2003; 24(1): 63-73.
[http://dx.doi.org/10.1093/carcin/24.1.63] [PMID: 12538350]
[64]
Cai G, Zhu J, Shen C, Cui Y, Du J, Chen X. The effects of cobalt on the development, oxidative stress, and apoptosis in zebrafish embryos. Biol Trace Elem Res 2012; 150(1-3): 200-7.
[http://dx.doi.org/10.1007/s12011-012-9506-6] [PMID: 22983774]
[65]
Mendola P, Selevan SG, Gutter S, Rice D. Environmental factors associated with a spectrum of neurodevelopmental deficits. Ment Retard Dev Disabil Res Rev 2002; 8(3): 188-97.
[http://dx.doi.org/10.1002/mrdd.10033] [PMID: 12216063]
[66]
Forns J, Fort M, Casas M, et al. Exposure to metals during pregnancy and neuropsychological development at the age of 4 years. Neurotoxicology 2014; 40: 16-22.
[http://dx.doi.org/10.1016/j.neuro.2013.10.006] [PMID: 24211492]
[67]
Yasuda H, Yasuda Y, Tsutsui T, Tsutsui T. Estimation of autistic children by metallomics analysis. Sci Rep 2013; 3(1): 1199.
[http://dx.doi.org/10.1038/srep01199] [PMID: 23383369]
[68]
Ellingsen DG, Møller LB, Aaseth J. Handbook on the Toxicology of Metals. Amsterdam: Elsevier 2013.
[69]
Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. The essential metals for humans: A brief overview. J Inorg Biochem 2019; 195: 120-9.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.03.013] [PMID: 30939379]
[70]
Uriu-Adams JY, Scherr RE, Lanoue L, Keen CL. Influence of copper on early development: Prenatal and postnatal considerations. Biofactors 2010; 36(2): 136-52.
[http://dx.doi.org/10.1002/biof.85] [PMID: 20232410]
[71]
Madsen E, Gitlin JD. Copper and iron disorders of the brain. Annu Rev Neurosci 2007; 30(1): 317-37.
[http://dx.doi.org/10.1146/annurev.neuro.30.051606.094232] [PMID: 17367269]
[72]
Salvador A. Edinburgh Research Explorer Maternal copper status and neuropsychological development in infants and preschool children Citation for published version. Int J Hyg Environ Health 2019; 222(3): 503-12.
[http://dx.doi.org/10.1016/j.ijheh.2019.01.007]
[73]
Nuttall JR. The plausibility of maternal toxicant exposure and nutritional status as contributing factors to the risk of autism spectrum disorders. Nutri Neurosci 2017; 2(4)
[74]
ATSDR. Toxicological Profile for Fluorides, Hydrogen Fluoride, and Fluorine 2003. Available From: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=212&tid=38
[75]
Chioca LR, Raupp IM, Da Cunha C, Losso EM, Andreatini R. Subchronic fluoride intake induces impairment in habituation and active avoidance tasks in rats. Eur J Pharmacol 2008; 579(1-3): 196-201.
[http://dx.doi.org/10.1016/j.ejphar.2007.10.019] [PMID: 18001709]
[76]
Mullenix PJ, Denbesten PK, Schunior A, Kernan WJ. Neurotoxicity of sodium fluoride in rats. Neurotoxicol Teratol 1995; 17(2): 169-77.
[http://dx.doi.org/10.1016/0892-0362(94)00070-T] [PMID: 7760776]
[77]
Ron M, Singer L, Menczel J, Kidroni G. Fluoride concentration in amniotic fluid and fetal cord and maternal plasma. Eur J Obstet Gynecol Reprod Biol 1986; 21(4): 213-8.
[http://dx.doi.org/10.1016/0028-2243(86)90018-3] [PMID: 3709921]
[78]
Abduweli Uyghurturk D, Goin DE, Martinez-Mier EA, Woodruff TJ, Denbesten PK. Maternal and fetal exposures to fluoride during mid-gestation among pregnant women in northern California. Environ Health 2020; 19(1): 38.
[http://dx.doi.org/10.1186/s12940-020-00581-2]
[79]
Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol 2014; 13(3): 330-8.
[http://dx.doi.org/10.1016/S1474-4422(13)70278-3] [PMID: 24556010]
[80]
Choi AL, Sun G, Zhang Y, Grandjean P. Developmental Fluoride Neurotoxicity: A Systematic Review and Meta-Analysis. Environ Health Perspect 2012; 120(10): 1362-8.
[http://dx.doi.org/10.1289/ehp.1104912]
[81]
Green R, Lanphear B, Hornung R, et al. Association Between Maternal Fluoride Exposure During Pregnancy and IQ Scores in Offspring in Canada. JAMA Pediatr 2019; 173(10): 940-8.
[http://dx.doi.org/10.1001/jamapediatrics.2019.1729] [PMID: 31424532]
[82]
Zhang X, Lu E, Stone SL, Diop H. Dental Cleaning, Community Water Fluoridation and Preterm Birth, Massachusetts: 2009–2016. Matern Child Health J 2019; 23(4): 451-8.
[http://dx.doi.org/10.1007/s10995-018-2659-y] [PMID: 30542985]
[83]
Hwang YS, Weng SF, Cho CY, Tsai WH. Higher prevalence of autism in Taiwanese children born prematurely: A nationwide population-based study. Res Dev Disabil 2013; 34(9): 2462-8.
[http://dx.doi.org/10.1016/j.ridd.2013.05.019] [PMID: 23747937]
[84]
Singh GK, Kenney MK, Ghandour RM, Kogan MD, Lu MC. Mental Health Outcomes in US Children and Adolescents Born Prematurely or with Low Birthweight. Depression Res Treat 2013; 2013(8): 570743.
[http://dx.doi.org/10.1155/2013/570743]
[85]
MacArthur JD. Pregnancy and fluoride do not mix : Prenatal fluoride and premature birth, preeclampsia, autism. Victoria, British Columbia: AbeBooks 2016.
[86]
What's New on Regulations.gov. 2023. Available From: www.regulations.gov
[87]
Lavado-Autric R, Ausó E, García-Velasco JV, et al. Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of the progeny. J Clin Invest 2003; 111(7): 1073-82.
[http://dx.doi.org/10.1172/JCI200316262] [PMID: 12671057]
[88]
SACN Statement on Iodine and Health - 2014 . 2014. Available From: https://www.gov.uk/government/publications/sacn-statement-on-iodine-and-health-2014
[89]
Błażewicz A, Makarewicz A, Korona-Glowniak I, Dolliver W, Kocjan R. Iodine in autism spectrum disorders. J Trace Elem Med Biol 2016; 34: 32-7.
[http://dx.doi.org/10.1016/j.jtemb.2015.12.002] [PMID: 26854242]
[90]
Diagnostic and statistical manual for mental disorders. 1987. Available From: https://ci.nii.ac.jp/naid/10004884779/
[91]
Levie D, Bath S, Guxens M. TK-TJ of, 2020 undefined. Maternal iodine status during pregnancy is not consistently associated with attention-deficit hyperactivity disorder or autistic traits in children. academic.oup.com [Internet]. [cited 2022 Aug 31]; https://academic.oup.com/jn/article-abstract/150/6/1516/5805456
[92]
Cromie KJ, Threapleton DE, Snart CJP, et al. Maternal iodine status in a multi-ethnic UK birth cohort: Associations with autism spectrum disorder. BMC Pediatr 2020; 20(1): 544.
[http://dx.doi.org/10.1186/s12887-020-02440-y] [PMID: 33276760]
[93]
Kamble RK, Thakare MG, Ingle AB. Iron in the environment. Indian J Environ Prot 2013; 33(11): 881-8.
[94]
Beard JL. Why iron deficiency is important in infant development. J Nutr 2008; 138(12): 2534-6.
[http://dx.doi.org/10.1093/jn/138.12.2534] [PMID: 19022985]
[95]
Sachdev HPS, Gera T, Nestel P. Effect of iron supplementation on mental and motor development in children: Systematic review of randomised controlled trials. Public Health Nutr 2005; 8(2): 117-32.
[http://dx.doi.org/10.1079/PHN2004677] [PMID: 15877905]
[96]
Black MM, Baqui AH, Zaman K, et al. Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants. Am J Clin Nutr 2004; 80(4): 903-10.
[http://dx.doi.org/10.1093/ajcn/80.4.903] [PMID: 15447897]
[97]
Siddappa AM, Georgieff MK, Wewerka S, Worwa C, Nelson CA, Deregnier RA. Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Pediatr Res 2004; 55(6): 1034-41.
[http://dx.doi.org/10.1203/01.pdr.0000127021.38207.62] [PMID: 15155871]
[98]
Stoltzfus RJ. Iron-deficiency anemia: Reexamining the nature and magnitude of the public health problem. Summary: Implications for research and programs. J Nutr 2001; 131(2): 697S-701S.
[http://dx.doi.org/10.1093/jn/131.2.697S] [PMID: 11160600]
[99]
Lozoff B, Jimenez E, Wolf AW. Long-term developmental outcome of infants with iron deficiency. N Engl J Med 1991; 325(10): 687-94.
[http://dx.doi.org/10.1056/NEJM199109053251004] [PMID: 1870641]
[100]
Schmidt RJ, Tancredi DJ, Krakowiak P, Hansen RL, Ozonoff S. Maternal Intake of Supplemental Iron and Risk of Autism Spectrum Disorder. Am J Epidemiol 2014; 180(9): 890-900.
[http://dx.doi.org/10.1093/aje/kwu208]
[101]
Osman AM, Kamel HM, Abdel-Naem EA, Higazi AM, Abdullah NM. Association between maternal iron and vitamin d with risky development of autistic children. Indian J Public Health Res Dev 2019; 10(10)
[http://dx.doi.org/10.5958/0976-5506.2019.02500.2]
[102]
Bashash M, Thomas D, Hu H, et al. Prenatal Fluoride Exposure and Cognitive Outcomes in Children at 4 and 6–12 Years of Age in Mexico. Environ Health Perspect 2017; 125(9): 097017.
[http://dx.doi.org/10.1289/EHP655] [PMID: 28937959]
[103]
Lidsky TI, Schneider JS. Lead neurotoxicity in children: Basic mechanisms and clinical correlates. Brain 2003; 126(1): 5-19.
[http://dx.doi.org/10.1093/brain/awg014] [PMID: 12477693]
[104]
Cohen DJ, Johnson WT, Caparulo BK. Pica and elevated blood lead level in autistic and atypical children. Am J Dis Child 1976; 130(1): 47-8.
[PMID: 813517]
[105]
Shannon M, Graef JW. Lead intoxication in children with pervasive developmental disorders. J Toxicol Clin Toxicol 1996; 34(2): 177-81.
[http://dx.doi.org/10.3109/15563659609013767] [PMID: 8618251]
[106]
Lidsky T, Res JS-JA. Lead intoxication in children with pervasive developmental disorders. J Appl Res 2005; 5(1): 1-8.
[107]
Clark B, Vandermeer B, Simonetti A, Buka I. Is lead a concern in Canadian autistic children? Paediatr Child Health 2010; 15(1): 17-22.
[http://dx.doi.org/10.1093/pch/15.1.17] [PMID: 21197164]
[108]
Arora M, Reichenberg A, Willfors C. Fetal and postnatal metal dysregulation in autism. Nat Commun 2017; 8(15493)
[109]
Guilarte TR, Mcglothan JL, Degaonkar M, Chen M-K, Barker PB, Syversen T, et al. Evidence for Cortical Dysfunction and Widespread Manganese Accumulation in the Nonhuman Primate Brain following Chronic Manganese Exposure: A 1H-MRS and MRI Study. Toxicol Sci 2006; 94(2): 351-8.
[http://dx.doi.org/10.1093/toxsci/kfl106]
[110]
Clark JB. N-acetyl aspartate: A marker for neuronal loss or mitochondrial dysfunction. Dev Neurosci 1998; 20(4-5): 271-6.
[http://dx.doi.org/10.1159/000017321] [PMID: 9778562]
[111]
Block W, Träber F, Flacke S, Jessen F, Pohl C, Schild H. in-vivo proton MR-spectroscopy of the human brain: Assessment of N-acetylaspartate (NAA) reduction as a marker for neurodegeneration. Amino Acids 2002; 23(1-3): 317-23.
[http://dx.doi.org/10.1007/s00726-001-0144-0] [PMID: 12373553]
[112]
Chang Y, Woo ST, Lee JJ, et al. Neurochemical changes in welders revealed by proton magnetic resonance spectroscopy. Neurotoxicology 2009; 30(6): 950-7.
[http://dx.doi.org/10.1016/j.neuro.2009.07.008] [PMID: 19631686]
[113]
Dydak U, Jiang YM, Long LL, et al. in vivo measurement of brain GABA concentrations by magnetic resonance spectroscopy in smelters occupationally exposed to manganese. Environ Health Perspect 2011; 119(2): 219-24.
[http://dx.doi.org/10.1289/ehp.1002192] [PMID: 20876035]
[114]
Mora AM, Arora M, Harley KG, et al. Prenatal and postnatal manganese teeth levels and neurodevelopment at 7, 9, and 10.5years in the CHAMACOS cohort. Environ Int 2015; 84: 39-54.
[http://dx.doi.org/10.1016/j.envint.2015.07.009] [PMID: 26209874]
[115]
Tung PW, Burt A, Karagas M, et al. Association between placental toxic metal exposure and NICU Network Neurobehavioral Scales (NNNS) profiles in the Rhode Island Child Health Study (RICHS). Environ Res 2022; 204(Pt A): 111939.
[http://dx.doi.org/10.1016/j.envres.2021.111939] [PMID: 34461121]
[116]
Kaya Akyuzlu D, Kayaalti Z, Soylemez E, Soylemezoglu T. Association between Autism and Arsenic, Lead, Cadmium, Manganese Levels in Hair and Urine. J Pharm Pharmacol 2014; 2: 140-4.
[117]
Rahbar MH, Samms-Vaughan M, Dickerson AS, Loveland KA, Ardjomand-Hessabi M, Bressler J. Blood manganese concentrations in Jamaican children with and without autism spectrum disorders. Environmental Health 2014; 13: 69.
[http://dx.doi.org/10.1186/1476-069X-13-69]
[118]
Hawari I, Eskandar MB, Alzeer S. The Role of Lead, Manganese, and Zinc in Autism Spectrum Disorders (ASDs) and Attention-Deficient Hyperactivity Disorder (ADHD): A Case-Control Study on Syrian Children Affected by the Syrian Crisis Biological Trace Element Res 2020; 197: 107-14.
[119]
Andiarena A, Irizar A, Molinuevo A, Urbieta N, Babarro I, Subiza-Pérez M. Prenatal Manganese Exposure and Long-Term Neuropsychological Development at 4 Years of Age in a Population-Based Birth Cohort. Int J Environ Res Public Health 2020; 17(5): 1665.
[120]
Sanders AP, Claus Henn B, Wright RO. Perinatal and Childhood Exposure to Cadmium, Manganese, and Metal Mixtures and Effects on Cognition and Behavior: A Review of Recent Literature. Curr Environ Health Rep 2015; 2(3): 284-94.
[http://dx.doi.org/10.1007/s40572-015-0058-8] [PMID: 26231505]
[121]
Landrigan PJ, Lambertini L, Birnbaum LS. A research strategy to discover the environmental causes of autism and neurodevelopmental disabilities. Environ Health Perspect 2012; 120(7): a258-60.
[http://dx.doi.org/10.1289/ehp.1104285] [PMID: 22543002]
[122]
Mostafa GA. The Possible Association between Elevated Levels of Blood Mercury and the Increased Frequency of Serum Anti-myelin Basic Protein Auto-antibodies in Autistic Children. J Clin Cell Immunol 2015; 6(2)
[http://dx.doi.org/10.4172/2155-9899.1000310]
[123]
Mostafa GA, Refai TM. Antineuronal antibodies in autistic children: Relation to blood mercury. Egypt J Pediatr Allergy Immunol 2007; 5(1): 21-30.
[124]
Elamin NE, Al-Ayadhi LY. Brain autoantibodies in autism spectrum disorder. Biomarkers Med 2014; 8(3): 345-52.
[http://dx.doi.org/10.2217/bmm.14.1] [PMID: 24712424]
[125]
Piras IS, Haapanen L, Napolioni V, Sacco R, Van de Water J, Persico AM. Anti-brain antibodies are associated with more severe cognitive and behavioral profiles in Italian children with Autism Spectrum Disorder. Brain Behav Immun 2014; 38: 91-9.
[http://dx.doi.org/10.1016/j.bbi.2013.12.020] [PMID: 24389156]
[126]
Golding J, Rai D, Gregory S, Ellis G, Emond A, Iles-Caven Y. Prenatal mercury exposure and features of autism: A prospective population study. Mol Autism 2018; 9: 30.
[http://dx.doi.org/10.1186/s13229-018-0215-7]
[127]
Geier DA, Kern JK, Geier MR. A prospective study of prenatal mercury exposure from maternal dental amalgams and autism severity. Acta Neurobiol Exp (Warsz) 2009; 69(2): 189-97.
[PMID: 19593333]
[128]
Shi L, Cao H, Luo J, et al. Effects of molybdenum and cadmium on the oxidative damage and kidney apoptosis in Duck. Ecotoxicol Environ Saf 2017; 145: 24-31.
[http://dx.doi.org/10.1016/j.ecoenv.2017.07.006] [PMID: 28692912]
[129]
Spears JW. Nickel as a “newer trace element” in the nutrition of domestic animals. J Anim Sci 1984; 59(3): 823-35.
[http://dx.doi.org/10.2527/jas1984.593823x] [PMID: 6386782]
[130]
Marzec Z. Alimentary chromium, nickel, and selenium intake of adults in Poland estimated by analysis and calculations using the duplicate portion technique. Nahrung 2004; 48(1): 47-52.
[http://dx.doi.org/10.1002/food.200300355] [PMID: 15053351]
[131]
Xu SC, He MD, Zhong M, et al. Melatonin protects against Nickel-induced neurotoxicity in vitro by reducing oxidative stress and maintaining mitochondrial function. J Pineal Res 2010; 49(1): no.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00770.x] [PMID: 20536687]
[132]
Fatehyab S, Hasan M, Hasan MZ, Anwar J. Effect of nickel on the levels of dopamine, noradrenaline and serotonin in different regions of the rat brain. Acta Pharmacol Toxicol (Copenh) 1980; 47(4): 318-20.
[PMID: 7468231]
[133]
Nation JR, Hare MF, Baker DM, Clark DE, Bourgeois AE. Dietary administration of nickel: Effects on behavior and metallothionein levels. Physiol Behav 1985; 34(3): 349-53.
[http://dx.doi.org/10.1016/0031-9384(85)90194-5] [PMID: 4011715]
[134]
David A, Lobner D. in vitro cytotoxicity of orthodontic archwires in cortical cell cultures. Eur J Orthod 2004; 26(4): 421-6.
[http://dx.doi.org/10.1093/ejo/26.4.421] [PMID: 15366387]
[135]
Jia C, Roman C, Hegg CC. Nickel sulfate induces location-dependent atrophy of mouse olfactory epithelium: Protective and proliferative role of purinergic receptor activation. Toxicol Sci 2010; 115(2): 547-56.
[http://dx.doi.org/10.1093/toxsci/kfq071] [PMID: 20200219]
[136]
Roberts AL, Lyall K, Hart JE, et al. Perinatal air pollutant exposures and autism spectrum disorder in the children of Nurses’ Health Study II participants. Environ Health Perspect 2013; 121(8): 978-84.
[http://dx.doi.org/10.1289/ehp.1206187] [PMID: 23816781]
[137]
Lee ASE, Ji Y, Raghavan R, et al. Maternal prenatal selenium levels and child risk of neurodevelopmental disorders: A prospective birth cohort study. Autism Res 2021; 14(12): 2533-43.
[http://dx.doi.org/10.1002/aur.2617] [PMID: 34558795]
[138]
Lenntech. Chemical properties of silicon - Health effects of silicon - Environmental effects of silicon. 2023. Available From: https://www.lenntech.com/periodic/elements/si.htm
[139]
You R, Ho YS, Hung CHL, Liu Y, Huang CX, Chan HN. Silica nanoparticles induce neurodegeneration-like changes in behavior, neuropathology, and affect synapse through MAPK activation. Part Fibre Toxicol 2018; 15(1): 28.
[http://dx.doi.org/10.1186/s12989-018-0263-3]
[140]
Lenntech. Chemical properties of tin - Health effects of tin - Environmental effects of tin. 2023. Available From: https://www.lenntech.com/periodic/elements/sn.htm
[141]
Frye RE, Cakir J, Rose S, et al. Early life metal exposure dysregulates cellular bioenergetics in children with regressive autism spectrum disorder. Transl Psychiatry 2020; 10(1): 223.
[http://dx.doi.org/10.1038/s41398-020-00905-3] [PMID: 32636364]
[142]
Adams J, Howsmon DP, Kruger U, et al. Significant Association of Urinary Toxic Metals and Autism-Related Symptoms—A Nonlinear Statistical Analysis with Cross Validation. PLoS One 2017; 12(1): e0169526.
[http://dx.doi.org/10.1371/journal.pone.0169526] [PMID: 28068407]
[143]
Rehder D. Vanadium. Its role for humans. Met Ions Life Sci 2013; 13: 139-69.
[http://dx.doi.org/10.1007/978-94-007-7500-8_5] [PMID: 24470091]
[144]
Milner J, Green R. Sustainable diets are context specific but are they realistic? Lancet Planet Health 2018; 2(10): e425-6.
[http://dx.doi.org/10.1016/S2542-5196(18)30207-9] [PMID: 30318099]
[145]
Jiang M, Li Y, Zhang B, et al. A nested case–control study of prenatal vanadium exposure and low birthweight. Hum Reprod 2016; 31(9): 2135-41.
[http://dx.doi.org/10.1093/humrep/dew176] [PMID: 27381766]
[146]
Stanton JE, Malijauskaite S, McGourty K, Grabrucker AM. The Metallome as a Link Between the “Omes” in Autism Spectrum Disorders. Front Mol Neurosci 2021; 14: 695873.
[http://dx.doi.org/10.3389/fnmol.2021.695873] [PMID: 34290588]
[147]
Vyas Y, Lee K, Jung Y, Montgomery JM. Influence of maternal zinc supplementation on the development of autism-associated behavioural and synaptic deficits in offspring Shank3-knockout mice. Mol Brain 2020; 13(1): 110.
[http://dx.doi.org/10.1186/s13041-020-00650-0]