Current Nanomaterials

Author(s): Anuj Kumar Gond, Atendra Kumar, Himanshu Shekher*, Anees A. Ansari, K.D. Mandal, Youngil Lee and Laxman Singh*

DOI: 10.2174/0124054615255537230920051037

DownloadDownload PDF Flyer Cite As
Fabrication and Physiochemical Characterization of Zinc Oxide Nanoparticles via Citric Assisted Auto Combustion Synthesis

Page: [86 - 91] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Background: There are various synthetic routes to synthesize the ZnO particle. However, none of the routes is best suited for the synthesis of ZnO nanoparticles. Moreover, ZnO nanoparticles have potential industrial applications.

Aims: In this research article, ZnO nanoparticles were synthesized by auto combustion route using the low-cost reagents zinc nitrate hexahydrate and citric acid as a precursor at 90-120°C.

Objective: Herein, we have synthesized ZnO nanoparticles via auto combustion route using the low-cost reagents zinc nitrate hexahydrate and citric acid. The current route is very simple as well as energy-saving with the requirement of using low-cost precursor as compared to the traditional solid-state method and multi-step sol-gel route.

Method: Citric-assisted auto-combustion synthesis was employed to fabricate the ZnO nanoparticles.

Result: The formed precursor powder was calcinated at 500°C for 5 hours in an electrical furnace. It was found that these particles were in a single phase, and the crystallite size of the nanoparticles was found to be in the range of 10 to 15 nm.

Conclusion: We synthesized ZnO nanoparticles at a lower temperature via the citric acid-assisted combustion method. The thermal properties of ZnO nanoparticles were studied by TGA spectra, representing the total weight loss of around 47.71% and their thermal stability after 900°C.

Keywords: ZnO NPs, XRD, SEM, auto-combustion synthesis, biosensor, photocatalytic.

Graphical Abstract

[1]
Medina Cruz D, Mostafavi E, Vernet-Crua A, et al. Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: A review. JPhys Mater 2020; 3(3): 034005.
[http://dx.doi.org/10.1088/2515-7639/ab8186]
[2]
Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Adaikala Raj G. Bio-approach: Plant mediated synthesis of ZnO nanoparticles and their catalytic reduction of methylene blue and antimicrobial activity. Adv Powder Technol 2015; 26(6): 1639-51.
[http://dx.doi.org/10.1016/j.apt.2015.09.008]
[3]
Sahoo S, Kar S, Ganguly A, Maiti M, Bhowmick AK. Synthetic zinc oxide nanoparticles as curing agent for polychloroprene. Polym Polymer Compos 2008; 16(3): 193-8.
[http://dx.doi.org/10.1177/096739110801600304]
[4]
Tripathi N, Rath S. Facile synthesis of ZnO nanostructures and investigation of structural and optical properties. Mater Charact 2013; 86: 263-9.
[http://dx.doi.org/10.1016/j.matchar.2013.10.008]
[5]
Roy B, Chakrabarty S, Mondal O, Pal M, Dutta A. Effect of neodymium doping on structure, electrical and optical properties of nanocrystalline ZnO. Mater Charact 2012; 70: 1-7.
[http://dx.doi.org/10.1016/j.matchar.2012.04.015]
[6]
Goswami SK, Lee BW, Oh E, Islam MS. Effect of precursors on optical and structural properties of ZnO nanorods synthesized by sonochemical method. J Korean Phys Soc 2011; 59(3): 2313-7.
[http://dx.doi.org/10.3938/jkps.59.2313]
[7]
Yang LL, Zhao QX, Willander M, Yang JH, Ivanov I. Annealing effects on optical properties of low temperature grown ZnO nanorod arrays. J Appl Phys 2009; 105(5): 053503.
[http://dx.doi.org/10.1063/1.3073993]
[8]
Garcia MA, Merino JM, Fernández Pinel E, et al. Magnetic properties of ZnO nanoparticles. Nano Lett 2007; 7(6): 1489-94.
[http://dx.doi.org/10.1021/nl070198m] [PMID: 17521211]
[9]
Rajalakshmi M, Arora AK, Bendre BS, Mahamuni S. Optical phonon confinement in zinc oxide nanoparticles. J Appl Phys 2000; 87(5): 2445-8.
[http://dx.doi.org/10.1063/1.372199]
[10]
Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. J Anim Sci Biotechnol 2019; 10(1): 57.
[http://dx.doi.org/10.1186/s40104-019-0368-z] [PMID: 31321032]
[11]
Getie AM, Belay A, Reddy ARC, Belay Z. Synthesis and characterization of zinc oxide nanoparticles for antibacterial applications. J Nanomed Nanotechnol 2017; 8(9): 2157-524.
[12]
Happy Agarwal , Soumya Menon , Venkat Kumar S Rajeshkumar S. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route. Chem Biol Interact 2018; 286: 60-70.
[http://dx.doi.org/10.1016/j.cbi.2018.03.008] [PMID: 29551637]
[13]
Sahay PP, Tewari S, Nath RK, Jha S, Shamsuddin M. Studies on ac response of zinc oxide pellets. J Mater Sci 2008; 43(13): 4534-40.
[http://dx.doi.org/10.1007/s10853-008-2642-x]
[14]
Look DC. Recent advances in ZnO materials and devices. Mater Sci Eng B 2001; 80(1-3): 383-7.
[http://dx.doi.org/10.1016/S0921-5107(00)00604-8]
[15]
Kareem MA, Bello IT, Shittu HA, Sivaprakash P, Adedokun O, Arumugam S. Synthesis, characterization, and photocatalytic application of silver doped zinc oxide nanoparticles. Cleaner Mater 2022; 3: 100041.
[http://dx.doi.org/10.1016/j.clema.2022.100041]
[16]
Jiang S, Lin K, Cai M. ZnO nanomaterials: Current advancements in antibacterial mechanisms and applications. Front Chem 2020; 8: 580.
[http://dx.doi.org/10.3389/fchem.2020.00580] [PMID: 32793554]
[17]
Tripathy N, Kim DH. Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Converg 2018; 5(1): 27.
[http://dx.doi.org/10.1186/s40580-018-0159-9] [PMID: 30467757]
[18]
Chang SP, Chang SJ, Lu CY, et al. A ZnO nanowire-based humidity sensor. Superlattices Microstruct 2010; 47(6): 772-8.
[http://dx.doi.org/10.1016/j.spmi.2010.03.006]
[19]
Dash KK, Deka P, Bangar SP, Chaudhary V, Trif M, Rusu A. Applications of inorganic nanoparticles in food packaging: A comprehensive review. Polymers 2022; 14(3): 521.
[http://dx.doi.org/10.3390/polym14030521] [PMID: 35160510]
[20]
Raha S, Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives. Nanoscale Adv 2022; 4(8): 1868-925.
[http://dx.doi.org/10.1039/D1NA00880C] [PMID: 36133407]
[21]
Saadi H, Benzarti Z, Rhouma FIH, et al. Enhancing the electrical and dielectric properties of ZnO nanoparticles through Fe doping for electric storage applications. J Mater Sci Mater Electron 2021; 32(2): 1536-56.
[http://dx.doi.org/10.1007/s10854-020-04923-1]
[22]
Pati R, Mehta RK, Mohanty S, et al. Topical application of zinc oxide nanoparticles reduces bacterial skin 2 infection in mice and exhibits antibacterial activity by inducing oxidative 3 stress response and cell membrane disintegration in macrophage. Nanomedicine 2014; 10(6): 1195-208.
[http://dx.doi.org/10.1016/j.nano.2014.02.012]
[23]
Zhang W. Morphology and optical property of zno nanostructures grown by solvothermal method: effect of the solution pretreatment. J Nanomater 2013; 2013: 1-4.
[http://dx.doi.org/10.1155/2013/381682]
[24]
Wang ZL. Zinc oxide nanostructures: Growth, properties and applications. J Phys Condens Matter 2004; 16(25): R829-58.
[http://dx.doi.org/10.1088/0953-8984/16/25/R01]
[25]
Combe N, Chassaing PM, Demangeot F. Surface effects in zinc oxidenanoparticles. Phys Rev B 2009; 79: 045408.
[http://dx.doi.org/10.1103/PhysRevB.79.045408]
[26]
Ashkarran AA. ZnO nanoparticles prepared by electrical arc discharge method in water. Mater Chem Phys 2009; 118(1): 6-8.
[http://dx.doi.org/10.1016/j.matchemphys.2009.07.002]
[27]
Lu J, Ng KM, Yang S. Fengone step, paste- state mechanochemical process for the synthesis of zinc oxide nanoparticles U.S Patent 20100034730, , 2010.
[28]
Lu J, Ng KM, Yang S. Efficient, one-step mechanochemical process for the synthesis of ZnO nanoparticles. Ind Eng Chem Res 2008; 47(4): 1095-101.
[http://dx.doi.org/10.1021/ie071034j]
[29]
Kakiuchi K, Hosono E, Kimura T, Imai H, Fujihara S. Fabrication of mesoporous ZnO nanosheets from precursor templates grown in aqueous solutions. J Sol-Gel Sci Technol 2006; 39(1): 63-72.
[http://dx.doi.org/10.1007/s10971-006-6321-6]
[30]
Yu W, Pan C. Low temperature thermal oxidation synthesis of ZnO nanoneedles and the growth mechanism. Mater Chem Phys 2009; 115(1): 74-9.
[http://dx.doi.org/10.1016/j.matchemphys.2008.11.022]
[31]
Klingshirn C. ZnO: Material, physics and applications. ChemPhysChem 2007; 8(6): 782-803.
[http://dx.doi.org/10.1002/cphc.200700002] [PMID: 17429819]
[32]
Klingshirn C. ZnO: From basics towards applications. Phys Stat Sol 2007; 244(9): 3027-73.
[http://dx.doi.org/10.1002/pssb.200743072]
[33]
Tang E, Cheng G, Pang X, Ma X, Xing F. Synthesis of nano-ZnO/poly(methyl methacrylate) composite microsphere through emulsion polymerization and its UV-shielding property. Colloid Polym Sci 2006; 284(4): 422-8.
[http://dx.doi.org/10.1007/s00396-005-1389-z]
[34]
Winston AE, Domke TW, Joseph AL. Dentifrices containingzinc oxideParticles U.S Patent 5330748,, 1994.
[35]
Djurišić AB, Chen X, Leung YH, Man Ching Ng A. ZnO nanostructures: Growth, properties and applications. J Mater Chem 2012; 22(14): 6526.
[http://dx.doi.org/10.1039/c2jm15548f]
[36]
Wu ZY, Cai JH, Ni G. ZnO films fabricated by chemical bath deposition from zinc nitrate and ammonium citrate tribasic solution. Thin Solid Films 2008; 516(21): 7318-22.
[http://dx.doi.org/10.1016/j.tsf.2008.01.014]
[37]
Hwang C, Wu T. Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method. Mater Sci Eng B 2004; 111(2-3): 197-206.
[http://dx.doi.org/10.1016/S0921-5107(04)00203-X]
[38]
Hwang CC, Wu TY. Combustion synthesis of nanocrystalline ZnO powders using zinc nitrate and glycine as reactants-influence of reactant composition. J Mater Sci 2004; 39(19): 6111-5.
[http://dx.doi.org/10.1023/B:JMSC.0000041713.37366.c2]
[39]
Meulenkamp EA. Synthesis and growth of ZnO nanoparticles. J Phys Chem B 1998; 102(29): 5566-72.
[http://dx.doi.org/10.1021/jp980730h]
[40]
Lim SC, Oh JY, Koo JB, et al. Electrical properties of solution-deposited ZnO thin-film transistors by low-temperature annealing. J Nanosci Nanotechnol 2014; 14(11): 8665-70.
[http://dx.doi.org/10.1166/jnn.2014.10002] [PMID: 25958581]
[41]
Thilagavathi T, Geetha D. Low-temperature hydrothermal synthesis and characterization of ZnO nanoparticles. Indian J Phys Proc Indian Assoc Cultiv Sci 2013; 87(8): 747-50.
[http://dx.doi.org/10.1007/s12648-013-0290-8]
[42]
Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T. RETRACTED: Recent progress in processing and properties of ZnO. Prog Mater Sci 2005; 50(3): 293-340.
[http://dx.doi.org/10.1016/j.pmatsci.2004.04.001]
[43]
Mller J, Weienrieder SW. ZnO-thin film chemical sensors. Fresenius J Anal Chem 1994; 349(5): 380-4.
[http://dx.doi.org/10.1007/BF00326603]
[44]
Ashfold MNR, Doherty RP, Ndifor-Angwafor NG, Riley DJ, Sun Y. The kinetics of the hydrothermal growth of ZnO nanostructures. Thin Solid Films 2007; 515(24): 8679-83.
[http://dx.doi.org/10.1016/j.tsf.2007.03.122]
[45]
Muhammad W, Ullah N, Haroon M, Abbasi BH. Optical, morphological and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC Advances 2019; 9(51): 29541-8.
[http://dx.doi.org/10.1039/C9RA04424H] [PMID: 35531532]
[46]
Chauhan J, Shrivastav N, Dugaya A, et al. Synthesis and characterization of Ni and CuDopedZnO. MOJ Poly Sci 2017; 1(1): 26-34.
[47]
Klink MJ, Laloo N, Leudjo Taka A, Pakade VE, Monapathi ME, Modise JS. Synthesis, characterization and antimicrobial activity of zinc oxide nanoparticles against selected waterborne bacterial and yeast pathogens. Molecules 2022; 27(11): 3532.
[http://dx.doi.org/10.3390/molecules27113532] [PMID: 35684468]