Review on Molecular Mechanism of Hypertensive Nephropathy

Page: [2568 - 2578] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Hypertension, a prevalent chronic ailment, has the potential to impair kidney function, and thereby resulting in hypertensive nephropathy. The escalating incidence of hypertensive nephropathy attributed to the aging population in urban areas, has emerged as a prominent cause of end-stage renal disease. Nevertheless, the intricate pathogenesis of hypertensive nephropathy poses considerable obstacles in terms of precise clinical diagnosis and treatment. This paper aims to consolidate the research findings on the pathogenesis of hypertensive nephropathy by focusing on the perspective of molecular biology.

[1]
Carey RM, Moran AE, Whelton PK. Treatment of hypertension. JAMA 2022; 328(18): 1849-61.
[http://dx.doi.org/10.1001/jama.2022.19590] [PMID: 36346411]
[2]
Ahmad FB, Anderson RN. The leading causes of death in the US for 2020. JAMA 2021; 325(18): 1829-30.
[http://dx.doi.org/10.1001/jama.2021.5469] [PMID: 33787821]
[3]
Martín Giménez VM, Mocayar Marón FJ, García S, et al. Central nervous system, peripheral and hemodynamic effects of nanoformulated anandamide in hypertension. Adv Med Sci 2021; 66(1): 72-80.
[http://dx.doi.org/10.1016/j.advms.2020.12.003] [PMID: 33388673]
[4]
Lu X, Crowley SD. Inflammation in salt-sensitive hypertension and renal damage. Curr Hypertens Rep 2018; 20(12): 103.
[http://dx.doi.org/10.1007/s11906-018-0903-x] [PMID: 30377822]
[5]
Ku E, Lee BJ, Wei J, Weir MR. Hypertension in CKD: Core curriculum 2019. Am J Kidney Dis 2019; 74(1): 120-31.
[http://dx.doi.org/10.1053/j.ajkd.2018.12.044] [PMID: 30898362]
[6]
Zhang C, Booz GW, Yu Q, He X, Wang S, Fan F. Conflicting roles of 20-HETE in hypertension and renal end organ damage. Eur J Pharmacol 2018; 833: 190-200.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.010] [PMID: 29886242]
[7]
Son M, Oh S, Choi J, Jang JT, Son KH, Byun K. Attenuating effects of dieckol on hypertensive nephropathy in spontaneously hypertensive rats. Int J Mol Sci 2021; 22(8): 4230.
[http://dx.doi.org/10.3390/ijms22084230] [PMID: 33921823]
[8]
Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2018; 71(19): e127-248.
[http://dx.doi.org/10.1016/j.jacc.2017.11.006] [PMID: 29146535]
[9]
Chen WC, Wu SFV, Sun JH, Tai CY, Lee MC, Chu CH. The mediating role of psychological well-being in the relationship between self-care knowledge and disease self-management in patients with hypertensive nephropathy. Int J Environ Res Public Health 2022; 19(14): 8488.
[http://dx.doi.org/10.3390/ijerph19148488] [PMID: 35886340]
[10]
Nagase M, Shibata S, Yoshida S, Nagase T, Gotoda T, Fujita T. Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension 2006; 47(6): 1084-93.
[http://dx.doi.org/10.1161/01.HYP.0000222003.28517.99] [PMID: 16636193]
[11]
Shankland SJ. The podocyte’s response to injury: Role in proteinuria and glomerulosclerosis. Kidney Int 2006; 69(12): 2131-47.
[http://dx.doi.org/10.1038/sj.ki.5000410] [PMID: 16688120]
[12]
Chen HH, Zhang YX, Lv JL, et al. Role of sirtuins in metabolic disease-related renal injury. Biomed Pharmacother 2023; 161: 114417.
[http://dx.doi.org/10.1016/j.biopha.2023.114417] [PMID: 36812714]
[13]
Ramchandra R, Xing DT, Matear M, Lambert G, Allen AM, May CN. Neurohumoral interactions contributing to renal vasoconstriction and decreased renal blood flow in heart failure. Am J Physiol Regul Integr Comp Physiol 2019; 317(3): R386-96.
[http://dx.doi.org/10.1152/ajpregu.00026.2019] [PMID: 31241978]
[14]
Su C, Xue J, Ye C, Chen A. Role of the central renin angiotensin system in hypertension. (review) Int J Mol Med 2021; 47(6): 95.
[http://dx.doi.org/10.3892/ijmm.2021.4928] [PMID: 33846799]
[15]
Remuzzi A, Sangalli F, Macconi D, et al. Regression of renal disease by Angiotensin II antagonism is caused by regeneration of kidney vasculature. J Am Soc Nephrol 2016; 27(3): 699-705.
[http://dx.doi.org/10.1681/ASN.2014100971] [PMID: 26116358]
[16]
Ko GJ, Obi Y, Tortorici AR, Kalantar-Zadeh K. Dietary protein intake and chronic kidney disease. Curr Opin Clin Nutr Metab Care 2017; 20(1): 77-85.
[http://dx.doi.org/10.1097/MCO.0000000000000342] [PMID: 27801685]
[17]
Dhande IS, Doris PA. Pulling the hood off genetic susceptibility to hypertensive renal disease. J Am Soc Nephrol 2020; 31(4): 667-8.
[http://dx.doi.org/10.1681/ASN.2020020139] [PMID: 32123053]
[18]
Liu L, Wang C, Mi Y, et al. Association of MYH9 polymorphisms with hypertension in patients with chronic kidney disease in China. Kidney Blood Press Res 2016; 41(6): 956-65.
[http://dx.doi.org/10.1159/000452597] [PMID: 27924804]
[19]
Bostrom MA, Lu L, Chou J, et al. Candidate genes for non-diabetic ESRD in African Americans: A genome-wide association study using pooled DNA. Hum Genet 2010; 128(2): 195-204.
[http://dx.doi.org/10.1007/s00439-010-0842-3] [PMID: 20532800]
[20]
Friedman DJ, Pollak MR. APOL1 nephropathy: From genetics to clinical applications. Clin J Am Soc Nephrol 2021; 16(2): 294-303.
[http://dx.doi.org/10.2215/CJN.15161219] [PMID: 32616495]
[21]
Foster MC, Coresh J, Fornage M, et al. APOL1 variants associate with increased risk of CKD among African Americans. J Am Soc Nephrol 2013; 24(9): 1484-91.
[http://dx.doi.org/10.1681/ASN.2013010113] [PMID: 23766536]
[22]
Parsa A, Kao WHL, Xie D, et al. APOL1 risk variants, race, and progression of chronic kidney disease. N Engl J Med 2013; 369(23): 2183-96.
[http://dx.doi.org/10.1056/NEJMoa1310345] [PMID: 24206458]
[23]
Kai JD, Cheng LH, Li BF, et al. MYH9 is a novel cancer stem cell marker and prognostic indicator in esophageal cancer that promotes oncogenesis through the PI3K/AKT/mTOR axis. Cell Biol Int 2022; 46(12): 2085-94.
[http://dx.doi.org/10.1002/cbin.11894] [PMID: 36030536]
[24]
Genovese G, Friedman DJ, Ross MD, et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 2010; 329(5993): 841-5.
[http://dx.doi.org/10.1126/science.1193032] [PMID: 20647424]
[25]
Rigo D, Orias M. Hypertension and kidney disease progression. Clin Nephrol 2020; 93(1): 103-7.
[http://dx.doi.org/10.5414/CNP92S118] [PMID: 31549630]
[26]
Mota-Zamorano S, González LM, Robles NR, et al. A custom target next-generation sequencing 70-Gene panel and replication study to identify genetic markers of diabetic kidney disease. Genes 2021; 12(12): 1992.
[http://dx.doi.org/10.3390/genes12121992] [PMID: 34946941]
[27]
Hayek SS, Koh KH, Grams ME, et al. A tripartite complex of suPAR, APOL1 risk variants and αvβ3 integrin on podocytes mediates chronic kidney disease. Nat Med 2017; 23(8): 945-53.
[http://dx.doi.org/10.1038/nm.4362] [PMID: 28650456]
[28]
Zhang C, Fang X, Zhang H, et al. Genetic susceptibility of hypertension-induced kidney disease. Physiol Rep 2021; 9(1): e14688.
[http://dx.doi.org/10.14814/phy2.14688] [PMID: 33377622]
[29]
Owiredu WKBA, Appiah M, Obirikorang C, et al. Association of MYH9-rs3752462 polymorphisms with chronic kidney disease among clinically diagnosed hypertensive patients: A case-control study in a Ghanaian population. Clin Hypertens 2020; 26(1): 15.
[http://dx.doi.org/10.1186/s40885-020-00148-w] [PMID: 32765897]
[30]
Cyrus C, Al-Mueilo S, Vatte C, et al. Assessing known chronic kidney disease associated genetic variants in Saudi Arabian populations. BMC Nephrol 2018; 19(1): 88.
[http://dx.doi.org/10.1186/s12882-018-0890-9] [PMID: 29665793]
[31]
Bourebaba Y, Mularczyk M, Marycz K, Bourebaba L. Catestatin peptide of chromogranin A as a potential new target for several risk factors management in the course of metabolic syndrome. Biomed Pharmacother 2021; 134: 111113.
[http://dx.doi.org/10.1016/j.biopha.2020.111113] [PMID: 33341043]
[32]
Pasqua T, Rocca C, Spena A, Angelone T, Cerra MC. Modulation of the coronary tone in the expanding scenario of Chromogranin-A and its derived peptides. Future Med Chem 2019; 11(12): 1501-11.
[http://dx.doi.org/10.4155/fmc-2018-0585] [PMID: 31298577]
[33]
Muntjewerff EM, Dunkel G, Nicolasen MJT, Mahata SK, van den Bogaart G. Catestatin as a target for treatment of inflammatory diseases. Front Immunol 2018; 9: 2199.
[http://dx.doi.org/10.3389/fimmu.2018.02199] [PMID: 30337922]
[34]
Garg R, Agarwal A, Katekar R, Dadge S, Yadav S, Gayen JR. Chromogranin A-derived peptides pancreastatin and catestatin: emerging therapeutic target for diabetes. Amino Acids 2023; 55(5): 549-61.
[http://dx.doi.org/10.1007/s00726-023-03252-x] [PMID: 36914766]
[35]
Zhang K, Mir SA, Hightower CM, et al. Molecular mechanism for hypertensive renal disease: Differential regulation of chromogranin a expression at 3′-untranslated region polymorphism C+87T by MicroRNA-107. J Am Soc Nephrol 2015; 26(8): 1816-25.
[http://dx.doi.org/10.1681/ASN.2014060537] [PMID: 25392232]
[36]
Melincovici CS, Boşca AB, Şuşman S, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol 2018; 59(2): 455-67.
[PMID: 30173249]
[37]
Guise E, Chade AR. VEGF therapy for the kidney: Emerging strategies. Am J Physiol Renal Physiol 2018; 315(4): F747-51.
[http://dx.doi.org/10.1152/ajprenal.00617.2017] [PMID: 29442546]
[38]
Estrada CC, Maldonado A, Mallipattu SK. Therapeutic inhibition of VEGF signaling and associated nephrotoxicities. J Am Soc Nephrol 2019; 30(2): 187-200.
[http://dx.doi.org/10.1681/ASN.2018080853] [PMID: 30642877]
[39]
Yang JW, Hutchinson IV, Shah T, Fang J, Min DI. Gene polymorphism of vascular endothelial growth factor −1154 G>A is associated with hypertensive nephropathy in a Hispanic population. Mol Biol Rep 2011; 38(4): 2417-25.
[http://dx.doi.org/10.1007/s11033-010-0376-8] [PMID: 21080079]
[40]
Nakatani S, Ishimura E, Murase T, et al. Plasma xanthine oxidoreductase activity associated with glycemic control in patients with pre-dialysis chronic kidney disease. Kidney Blood Press Res 2021; 46(4): 475-83.
[http://dx.doi.org/10.1159/000516610] [PMID: 34082427]
[41]
Db A, Mlgr A, Rag B, et al. Uric acid and salt intake as predictors of incident hypertension in a primary care setting - ScienceDirect. Rev Colomb Cardiol 2020; 27(5): 394-9.
[42]
Camargo LL, Montezano AC, Hussain M, et al. Central role of c-Src in NOX5-mediated redox signalling in vascular smooth muscle cells in human hypertension. Cardiovasc Res 2022; 118(5): 1359-73.
[http://dx.doi.org/10.1093/cvr/cvab171] [PMID: 34320175]
[43]
Yang J, Kamide K, Kokubo Y, et al. Associations of hypertension and its complications with variations in the xanthine dehydrogenase gene. Hypertens Res 2008; 31(5): 931-40.
[http://dx.doi.org/10.1291/hypres.31.931] [PMID: 18712049]
[44]
Dalman J, Coleman DM. Nonatherosclerotic renovascular hypertension. Surg Clin North Am 2023; 103(4): 733-43.
[http://dx.doi.org/10.1016/j.suc.2023.05.007] [PMID: 37455034]
[45]
Mashmoushi A, Wolf MTF. A narrative review of Hyporeninemic hypertension-an indicator for monogenic forms of hypertension. Pediatr Med 2022; 5: 21.
[http://dx.doi.org/10.21037/pm-21-48] [PMID: 36325202]
[46]
Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 2017; 94: 317-25.
[http://dx.doi.org/10.1016/j.biopha.2017.07.091] [PMID: 28772209]
[47]
Abouleka Y, Mohammedi K, Carpentier C, et al. ACE I/D polymorphism, plasma ACE levels, and long-term kidney outcomes or all-cause death in patients with Type 1 diabetes. Diabetes Care 2021; 44(6): 1377-84.
[http://dx.doi.org/10.2337/dc20-3036] [PMID: 33827803]
[48]
Sasongko TH, Nagalla S. Angiotensin-converting enzyme (ACE) inhibitors for proteinuria and microalbuminuria in people with sickle cell disease. Cochrane Database Syst Rev 2021; 12(12): CD009191.
[PMID: 34932828]
[49]
Susilo H, Pikir BS, Thaha M, et al. The Effect of Angiotensin Converting Enzyme (ACE) I/D polymorphism on atherosclerotic cardiovascular disease and cardiovascular mortality risk in non-hemodialyzed chronic kidney disease: The mediating role of plasma ACE level. Genes 2022; 13(7): 1121.
[http://dx.doi.org/10.3390/genes13071121] [PMID: 35885904]
[50]
Costantino VV, Gil Lorenzo AF, Bocanegra V, Vallés PG. Molecular mechanisms of hypertensive nephropathy: Renoprotective effect of losartan through Hsp70. Cells 2021; 10(11): 3146.
[http://dx.doi.org/10.3390/cells10113146] [PMID: 34831368]
[51]
Souček M. Perindopril: A long-term certainty in treating hypertension. Vnitr Lek 2021; 67(2): 119-24.
[http://dx.doi.org/10.36290/vnl.2021.025] [PMID: 34074111]
[52]
Bekassy Z, Lopatko Fagerström I, Bader M, Karpman D. Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol 2022; 22(7): 411-28.
[http://dx.doi.org/10.1038/s41577-021-00634-8] [PMID: 34759348]
[53]
Girolami JP, Bouby N, Richer-Giudicelli C, Alhenc-Gelas F. Kinins and kinin receptors in cardiovascular and renal diseases. Pharmaceuticals 2021; 14(3): 240.
[http://dx.doi.org/10.3390/ph14030240] [PMID: 33800422]
[54]
Cao X, Wang M, Li J, et al. Fine particulate matter increases airway hyperresponsiveness through kallikrein-bradykinin pathway. Ecotoxicol Environ Saf 2020; 195: 110491.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110491] [PMID: 32213367]
[55]
Jozwiak L, Drop A, Buraczynska K, Ksiazek P, Mierzicki P, Buraczynska M. Association of the human bradykinin B2 receptor gene with chronic renal failure. Mol Diagn 2004; 8(3): 157-61.
[http://dx.doi.org/10.1007/BF03260059] [PMID: 15771553]
[56]
Xu H, Jia J. Single-Cell RNA sequencing of peripheral blood reveals immune cell signatures in Alzheimer’s disease. Front Immunol 2021; 12: 645666.
[http://dx.doi.org/10.3389/fimmu.2021.645666] [PMID: 34447367]
[57]
Long L, Sun Q. Association of end-stage renal disease with HLA phenotypes and panel reactive antibodies in patients awaiting renal transplantation in Hunan province. J Clin Lab Anal 2022; 36(3): e24251.
[http://dx.doi.org/10.1002/jcla.24251] [PMID: 35083784]
[58]
Noureen N, Shah FA, Lisec J, et al. Revisiting the association between human leukocyte antigen and end-stage renal disease. PLoS One 2020; 15(9): e0238878.
[http://dx.doi.org/10.1371/journal.pone.0238878] [PMID: 32915858]
[59]
Noureen N, Zaidi N. Association between human leukocyte antigen (HLA) and end-stage renal disease (ESRD): A meta-analysis. PeerJ 2023; 11: e14792.
[http://dx.doi.org/10.7717/peerj.14792] [PMID: 36815988]
[60]
Xu S, Yang X, Wang Q, et al. Association between HLB-DRB1 gene polymorphisms and hypertension nephropathy. J Jilin Univ 2012; 38(4): 725-9.
[61]
Mastroianni N, Bettinelli A, Bianchetti M, et al. Novel molecular variants of the Na-Cl cotransporter gene are responsible for Gitelman syndrome. Am J Hum Genet 1996; 59(5): 1019-26.
[PMID: 8900229]
[62]
Lin SH, Cheng NL, Hsu YJ, Halperin ML. Intrafamilial phenotype variability in patients with Gitelman syndrome having the same mutations in their thiazide-sensitive sodium/chloride cotransporter. Am J Kidney Dis 2004; 43(2): 304-12.
[http://dx.doi.org/10.1053/j.ajkd.2003.10.018] [PMID: 14750096]
[63]
Fulchiero R, Seo-Mayer P. Bartter syndrome and Gitelman syndrome. Pediatr Clin North Am 2019; 66(1): 121-34.
[http://dx.doi.org/10.1016/j.pcl.2018.08.010] [PMID: 30454738]
[64]
Huang CC, Chung CM, Yang CY, et al. SLC12A3 variation and renal function in Chinese patients with hypertension. Front Med 2022; 9: 863275.
[http://dx.doi.org/10.3389/fmed.2022.863275] [PMID: 35801212]
[65]
Goldsmith EJ, Rodan AR. Intracellular ion control of WNK signaling. Annu Rev Physiol 2023; 85(1): 383-406.
[http://dx.doi.org/10.1146/annurev-physiol-031522-080651] [PMID: 36228173]
[66]
Veríssimo F, Jordan P. WNK kinases, a novel protein kinase subfamily in multi-cellular organisms. Oncogene 2001; 20(39): 5562-9.
[http://dx.doi.org/10.1038/sj.onc.1204726] [PMID: 11571656]
[67]
Chiga M, Rai T, Yang SS, et al. Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int 2008; 74(11): 1403-9.
[http://dx.doi.org/10.1038/ki.2008.451] [PMID: 18800028]
[68]
Castañeda-Bueno M, Cervantes-Pérez LG, Vázquez N, et al. Activation of the renal Na+: Cl− cotransporter by angiotensin II is a WNK4-dependent process. Proc Natl Acad Sci USA 2012; 109(20): 7929-34.
[http://dx.doi.org/10.1073/pnas.1200947109] [PMID: 22550170]
[69]
van der Lubbe N, Lim CH, Fenton RA, et al. Angiotensin II induces phosphorylation of the thiazide-sensitive sodium chloride cotransporter independent of aldosterone. Kidney Int 2011; 79(1): 66-76.
[http://dx.doi.org/10.1038/ki.2010.290] [PMID: 20720527]
[70]
Furusho T, Sohara E, Mandai S, et al. Renal TNFα activates the WNK phosphorylation cascade and contributes to salt-sensitive hypertension in chronic kidney disease. Kidney Int 2020; 97(4): 713-27.
[http://dx.doi.org/10.1016/j.kint.2019.11.021] [PMID: 32059997]
[71]
Mutchler SM, Kirabo A, Kleyman TR. Epithelial sodium channel and salt-sensitive hypertension. Hypertension 2021; 77(3): 759-67.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.14481] [PMID: 33486988]
[72]
Hamm LL, Feng Z, Hering-Smith KS. Regulation of sodium transport by ENaC in the kidney. Curr Opin Nephrol Hypertens 2010; 19(1): 98-105.
[http://dx.doi.org/10.1097/MNH.0b013e328332bda4] [PMID: 19996890]
[73]
Frindt G, Meyerson JR, Satty A, Scandura JM, Palmer LG. Expression of ENaC subunits in epithelia. J Gen Physiol 2022; 154(10): e202213124.
[http://dx.doi.org/10.1085/jgp.202213124] [PMID: 35939271]
[74]
Ji HL, Nie HG, Chang Y, Lian Q, Liu SL. CPT-cGMP is a new ligand of epithelial sodium channels. Int J Biol Sci 2016; 12(4): 359-66.
[http://dx.doi.org/10.7150/ijbs.13764] [PMID: 27019621]
[75]
Furman D, Chang J, Lartigue L, et al. Expression of specific inflammasome gene modules stratifies older individuals into two extreme clinical and immunological states. Nat Med 2017; 23(2): 174-84.
[http://dx.doi.org/10.1038/nm.4267] [PMID: 28092664]
[76]
Fearon WF, Fearon DT. Inflammation and cardiovascular disease: role of the interleukin-1 receptor antagonist. Circulation 2008; 117(20): 2577-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.772491] [PMID: 18490534]
[77]
Omi T, Kumada M, Kamesaki T, et al. An intronic variable number of tandem repeat polymorphisms of the cold-induced autoinflammatory syndrome 1 (CIAS1) gene modifies gene expression and is associated with essential hypertension. Eur J Hum Genet 2006; 14(12): 1295-305.
[http://dx.doi.org/10.1038/sj.ejhg.5201698] [PMID: 16868559]
[78]
Scambler T, Jarosz-Griffiths HH, Lara-Reyna S, et al. ENaC-mediated sodium influx exacerbates NLRP3-dependent inflammation in cystic fibrosis. eLife 2019; 8: e49248.
[http://dx.doi.org/10.7554/eLife.49248] [PMID: 31532390]
[79]
Banaszak-Ziemska M, Niedziela M. PAPP-A2 a new key regulator of growth. Endokrynol Pol 2017; 68(6): 682-91.
[http://dx.doi.org/10.5603/EP.a2017.0060] [PMID: 29238946]
[80]
Conover CA, Boldt HB, Bale LK, et al. Pregnancy-associated plasma protein-A2 (PAPP-A2): Tissue expression and biological consequences of gene knockout in mice. Endocrinology 2011; 152(7): 2837-44.
[http://dx.doi.org/10.1210/en.2011-0036] [PMID: 21586553]
[81]
Hochane M, van den Berg PR, Fan X, et al. Single-cell transcriptomics reveals gene expression dynamics of human fetal kidney development. PLoS Biol 2019; 17(2): e3000152.
[http://dx.doi.org/10.1371/journal.pbio.3000152] [PMID: 30789893]
[82]
Wang Y, Jia H, Gao WH, et al. Associations of plasma PAPP-A2 and genetic variations with salt sensitivity, blood pressure changes and hypertension incidence in Chinese adults. J Hypertens 2021; 39(9): 1817-25.
[http://dx.doi.org/10.1097/HJH.0000000000002846] [PMID: 33783375]
[83]
Yu L, Lv JC, Zhou X, Zhu L, Hou P, Zhang H. Abnormal expression and dysfunction of novel SGLT2 mutations identified in familial renal glucosuria patients. Hum Genet 2011; 129(3): 335-44.
[http://dx.doi.org/10.1007/s00439-010-0927-z] [PMID: 21165652]
[84]
Yu L, Hou P, Lv JC, Liu GP, Zhang H. A novel sodium–glucose co-transporter 2 gene (SGLT2) mutation contributes to the abnormal expression of SGLT2 in renal tissues in familial renal glucosuria. Int Urol Nephrol 2014; 46(11): 2237-8.
[http://dx.doi.org/10.1007/s11255-014-0755-5] [PMID: 24908283]
[85]
Kim S, Jo CH, Kim GH. Effects of empagliflozin on nondiabetic salt-sensitive hypertension in uninephrectomized rats. Hypertens Res 2019; 42(12): 1905-15.
[http://dx.doi.org/10.1038/s41440-019-0326-3] [PMID: 31537914]
[86]
Kario K, Hoshide S, Okawara Y, et al. Effect of canagliflozin on nocturnal home blood pressure in Japanese patients with type 2 diabetes mellitus: The SHIFT-J study. J Clin Hypertens 2018; 20(10): 1527-35.
[http://dx.doi.org/10.1111/jch.13367] [PMID: 30246286]
[87]
Jia H, Bao P, Yao S, et al. Associations of SGLT2 genetic polymorphisms with salt sensitivity, blood pressure changes and hypertension incidence in Chinese adults. Hypertens Res 2023; 46(7): 1795-803.
[http://dx.doi.org/10.1038/s41440-023-01301-2] [PMID: 37160967]
[88]
Gu X, Gu D, He J, et al. Resequencing epithelial sodium channel genes identifies rare variants associated with blood pressure salt-sensitivity: The GenSalt study. Am J Hypertens 2018; 31(2): 205-11.
[http://dx.doi.org/10.1093/ajh/hpx169] [PMID: 29036630]
[89]
Carey RM, Schoeffel CD, Gildea JJ, et al. Salt sensitivity of blood pressure is associated with polymorphisms in the sodium-bicarbonate cotransporter. Hypertension 2012; 60(5): 1359-66.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.112.196071] [PMID: 22987918]
[90]
Barlassina C, Dal Fiume C, Lanzani C, et al. Common genetic variants and haplotypes in renal CLCNKA gene are associated to salt-sensitive hypertension. Hum Mol Genet 2007; 16(13): 1630-8.
[http://dx.doi.org/10.1093/hmg/ddm112] [PMID: 17510212]
[91]
Chen Z, Wu H, Wang G, Feng Y. Identification of potential candidate genes for hypertensive nephropathy based on gene expression profile. BMC Nephrol 2016; 17(1): 149.
[http://dx.doi.org/10.1186/s12882-016-0366-8] [PMID: 27756246]
[92]
Kondža M. Bojić M, Tomić I, Maleš Ž, Rezić V, Ćavar I. Characterization of the CYP3A4 enzyme inhibition potential of selected flavonoids. Molecules 2021; 26(10): 3018.
[http://dx.doi.org/10.3390/molecules26103018] [PMID: 34069400]
[93]
Jia S, Gao K, Huang P, et al. Interactive effects of glucocorticoids and cytochrome P450 polymorphisms on the plasma trough concentrations of voriconazole. Front Pharmacol 2021; 12: 666296.
[http://dx.doi.org/10.3389/fphar.2021.666296] [PMID: 34113252]
[94]
Bhatnagar V, Garcia EP, O’Connor DT, et al. CYP3A4 and CYP3A5 polymorphisms and blood pressure response to amlodipine among African-American men and women with early hypertensive renal disease. Am J Nephrol 2010; 31(2): 95-103.
[http://dx.doi.org/10.1159/000258688] [PMID: 19907160]
[95]
Déri MT, Kiss ÁF, Tóth K, et al. End-stage renal disease reduces the expression of drug-metabolizing cytochrome P450s. Pharmacol Rep 2020; 72(6): 1695-705.
[http://dx.doi.org/10.1007/s43440-020-00127-w] [PMID: 32638224]
[96]
Mota-Zamorano S, Robles NR, González LM, et al. Genetics variants in the epoxygenase pathway of arachidonic metabolism are associated with eicosanoids levels and the risk of diabetic nephropathy. J Clin Med 2021; 10(17): 3980.
[http://dx.doi.org/10.3390/jcm10173980] [PMID: 34501433]
[97]
Chen X, Cao Y, Wang Z, Zhang D, Tang W. Bioinformatic analysis reveals novel hub genes and pathways associated with hypertensive nephropathy. Nephrology 2019; 24(11): 1103-14.
[http://dx.doi.org/10.1111/nep.13508] [PMID: 30298691]
[98]
Cong C, Yuan X, Hu Y, Chen W, Wang Y, Tao L. Sinigrin attenuates angiotensin II induced kidney injury by inactivating nuclear factor κB and extracellular signal regulated kinase signaling in vivo and in vitro. Int J Mol Med 2021; 48(2): 161.
[http://dx.doi.org/10.3892/ijmm.2021.4994] [PMID: 34278443]
[99]
Grynberg K, Ma FY, Nikolic-Paterson DJ. The JNK signaling pathway in renal fifibrosis. Front Physiol 2017; 8: 829.
[http://dx.doi.org/10.3389/fphys.2017.00829] [PMID: 29114233]
[100]
Liu H, Li X, Xie J, et al. Gypenoside L and Gypenoside LI inhibit proliferation in renal cell carcinoma via regulation of the MAPK and arachidonic acid metabolism pathways. Front Pharmacol 2022; 13: 820639.
[http://dx.doi.org/10.3389/fphar.2022.820639] [PMID: 35370678]
[101]
Kabei K, Tateishi Y, Nozaki M, et al. Role of hypoxia-inducible factor-1 in the development of renal fibrosis in mouse obstructed kidney: Special references to HIF-1 dependent gene expression of profibrogenic molecules. J Pharmacol Sci 2018; 136(1): 31-8.
[http://dx.doi.org/10.1016/j.jphs.2017.12.004] [PMID: 29352658]
[102]
Hasan AU, Kittikulsuth W, Yamaguchi F, et al. IBMX protects human proximal tubular epithelial cells from hypoxic stress through suppressing hypoxia-inducible factor-1α expression. Exp Cell Res 2017; 358(2): 343-51.
[http://dx.doi.org/10.1016/j.yexcr.2017.07.007] [PMID: 28689812]
[103]
You S, Xu J, Wu B, et al. Comprehensive bioinformatics analysis identifies POLR2I as a key gene in the pathogenesis of hypertensive nephropathy. Front Genet 2021; 12: 698570.
[http://dx.doi.org/10.3389/fgene.2021.698570] [PMID: 34422001]
[104]
Berkyurek AC, Furlan G, Lampersberger L, et al. The RNA polymerase II subunit RPB-9 recruits the integrator complex to terminate Caenorhabditis elegans piRNA transcription. EMBO J 2021; 40(5): e105565.
[http://dx.doi.org/10.15252/embj.2020105565] [PMID: 33533030]
[105]
Vishnoi A, Rani S. miRNA biogenesis and regulation of diseases: An updated overview. Methods Mol Biol 2023; 2595: 1-12.
[http://dx.doi.org/10.1007/978-1-0716-2823-2_1] [PMID: 36441451]
[106]
Lu Y, Thavarajah T, Gu W, Cai J, Xu Q. Impact of miRNA in atherosclerosis. Arterioscler Thromb Vasc Biol 2018; 38(9): e159-70.
[http://dx.doi.org/10.1161/ATVBAHA.118.310227] [PMID: 30354259]
[107]
Henning RJ. Cardiovascular exosomes and microRNAs in cardiovascular physiology and pathophysiology. J Cardiovasc Transl Res 2021; 14(2): 195-212.
[http://dx.doi.org/10.1007/s12265-020-10040-5] [PMID: 32588374]
[108]
Di Castro S, Scarpino S, Marchitti S, et al. Differential modulation of uncoupling protein 2 in kidneys of stroke-prone spontaneously hypertensive rats under high-salt/low-potassium diet. Hypertension 2013; 61(2): 534-41.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.00101] [PMID: 23297375]
[109]
Gregory PA, Bracken CP, Bert AG, Goodall GJ. MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 2008; 7(20): 3112-7.
[http://dx.doi.org/10.4161/cc.7.20.6851] [PMID: 18927505]
[110]
Bracken CP, Gregory PA, Kolesnikoff N, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 2008; 68(19): 7846-54.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1942] [PMID: 18829540]
[111]
Kato M, Zhang J, Wang M, et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc Natl Acad Sci USA 2007; 104(9): 3432-7.
[http://dx.doi.org/10.1073/pnas.0611192104] [PMID: 17360662]
[112]
Wang G, Kwan BCH, Lai FMM, et al. Intrarenal expression of miRNAs in patients with hypertensive nephrosclerosis. Am J Hypertens 2010; 23(1): 78-84.
[http://dx.doi.org/10.1038/ajh.2009.208] [PMID: 19910931]
[113]
Khalilian S, Abedinlou H, Hussen BM, Imani SZH, Ghafouri-Fard S. The emerging role of miR-20b in human cancer and other disorders: Pathophysiology and therapeutic implications. Front Oncol 2022; 12: 985457.
[http://dx.doi.org/10.3389/fonc.2022.985457] [PMID: 36582800]
[114]
Steglich A, Hickmann L, Linkermann A, Bornstein S, Hugo C, Todorov VT. Beyond the paradigm: Novel functions of renin-producing cells. Rev Physiol Biochem Pharmacol 2020; 177: 53-81.
[http://dx.doi.org/10.1007/112_2020_27] [PMID: 32691160]
[115]
Bhushan S, Xiao Z, Gao K, et al. Role and interaction between ACE1, ACE2 and their related genes in cardiovascular disorders. Curr Probl Cardiol 2023; 48(8): 101162.
[http://dx.doi.org/10.1016/j.cpcardiol.2022.101162] [PMID: 35245599]
[116]
Meng X, Nikolic-Paterson DJ, Lan HY. TGF-β The master regulator of fibrosis. Nat Rev Nephrol 2016; 12(6): 325-38.
[http://dx.doi.org/10.1038/nrneph.2016.48] [PMID: 27108839]
[117]
Cong C, Yuan X, Hu Y, Chen W, Wang Y, Tao L. Catalpol alleviates ang II-induced renal injury through NF-κB pathway and TGF-β1/Smads pathway. J Cardiovasc Pharmacol 2022; 79(1): e116-21.
[http://dx.doi.org/10.1097/FJC.0000000000001148] [PMID: 34654783]
[118]
Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol 2012; 13(10): 616-30.
[http://dx.doi.org/10.1038/nrm3434] [PMID: 22992590]
[119]
Zhang J, Cao L, Wang X, et al. The E3 ubiquitin ligase TRIM31 plays a critical role in hypertensive nephropathy by promoting proteasomal degradation of MAP3K7 in the TGF-β1 signaling pathway. Cell Death Differ 2022; 29(3): 556-67.
[http://dx.doi.org/10.1038/s41418-021-00874-0] [PMID: 34584221]
[120]
Higgins SP, Tang Y, Higgins CE, et al. TGF-β1/p53 signaling in renal fibrogenesis. Cell Signal 2018; 43: 1-10.
[http://dx.doi.org/10.1016/j.cellsig.2017.11.005] [PMID: 29191563]
[121]
Qin M, Huang S, Zou X, et al. Drug-containing serum of rhubarb-astragalus capsule inhibits the epithelial-mesenchymal transformation of HK-2 by downregulating TGF-β1/p38MAPK/Smad2/3 pathway. J Ethnopharmacol 2021; 280: 114414.
[http://dx.doi.org/10.1016/j.jep.2021.114414] [PMID: 34314804]
[122]
Xiao H, Li B, Yang X, Yin Q. Interference of TGF-β1/Smad7 signal pathway affects myocardial fibrosis in hypertension. Pak J Pharm Sci 2020; 33(6): 2625-31.
[PMID: 33867340]
[123]
Hu Y, He J, He L, Xu B, Wang Q. Expression and function of Smad7 in autoimmune and inflammatory diseases. J Mol Med 2021; 99(9): 1209-20.
[http://dx.doi.org/10.1007/s00109-021-02083-1] [PMID: 34059951]
[124]
Song Y, Wu Z, Zhao P. The protective effects of activating Sirt1/NF-κB pathway for neurological disorders. Rev Neurosci 2022; 33(4): 427-38.
[http://dx.doi.org/10.1515/revneuro-2021-0118] [PMID: 34757706]
[125]
Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 2010; 140(6): 805-20.
[http://dx.doi.org/10.1016/j.cell.2010.01.022] [PMID: 20303872]
[126]
Lin K, Luo W, Yang N, et al. Inhibition of MyD88 attenuates angiotensin II-induced hypertensive kidney disease via regulating renal inflammation. Int Immunopharmacol 2022; 112: 109218.
[http://dx.doi.org/10.1016/j.intimp.2022.109218] [PMID: 36116148]
[127]
Hu X. li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct Target Ther 2021; 6(1): 402.
[http://dx.doi.org/10.1038/s41392-021-00791-1] [PMID: 34824210]
[128]
Xu Z, Zou C, Yu W, et al. Inhibition of STAT3 activation mediated by toll-like receptor 4 attenuates angiotensin II-induced renal fibrosis and dysfunction. Br J Pharmacol 2019; 176(14): 2627-41.
[http://dx.doi.org/10.1111/bph.14686] [PMID: 30958891]
[129]
Santos RAS, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: New players of the renin-angiotensin system. J Endocrinol 2013; 216(2): R1-R17.
[http://dx.doi.org/10.1530/JOE-12-0341] [PMID: 23092879]
[130]
Jiang F, Yang J, Zhang Y, et al. Angiotensin-converting enzyme 2 and angiotensin 1-7: Novel therapeutic targets. Nat Rev Cardiol 2014; 11(7): 413-26.
[http://dx.doi.org/10.1038/nrcardio.2014.59] [PMID: 24776703]
[131]
Santos RAS, e Silva ACS, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 2003; 100(14): 8258-63.
[http://dx.doi.org/10.1073/pnas.1432869100] [PMID: 12829792]
[132]
Ni J, Yang F, Huang XR, et al. Dual deficiency of angiotensin-converting enzyme-2 and Mas receptor enhances angiotensin II-induced hypertension and hypertensive nephropathy. J Cell Mol Med 2020; 24(22): 13093-103.
[http://dx.doi.org/10.1111/jcmm.15914] [PMID: 32971570]
[133]
Munir M. TRIM proteins: Another class of viral victims. Sci Signal 2010; 3(118): jc2.
[http://dx.doi.org/10.1126/scisignal.3118jc2] [PMID: 20407122]
[134]
Yu C, Chen S, Guo Y, Sun C. Oncogenic TRIM31 confers gemcitabine resistance in pancreatic cancer via activating the NF-κB signaling pathway. Theranostics 2018; 8(12): 3224-36.
[http://dx.doi.org/10.7150/thno.23259] [PMID: 29930725]
[135]
Song H, Liu B, Huai W, et al. The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation by promoting proteasomal degradation of NLRP3. Nat Commun 2016; 7(1): 13727.
[http://dx.doi.org/10.1038/ncomms13727] [PMID: 27929086]
[136]
Zhang Y, Zhang N, Zou Y, et al. Deacetylation of Septin4 by SIRT2 (Silent Mating Type Information Regulation 2 Homolog-2) mitigates damaging of hypertensive nephropathy. Circ Res 2023; 132(5): 601-24.
[http://dx.doi.org/10.1161/CIRCRESAHA.122.321591] [PMID: 36786216]
[137]
Xu SB, Xu B, Ma ZH, Huang MQ, Gao ZS, Ni JL. Peptide 17 alleviates early hypertensive renal injury by regulating the Hippo/YAP signalling pathway. Nephrology 2022; 27(8): 712-23.
[http://dx.doi.org/10.1111/nep.14066] [PMID: 35608936]
[138]
Liu Z, Huang XR, Chen HY, Fung E, Liu J, Lan HY. Deletion of angiotensin-converting enzyme-2 promotes hypertensive nephropathy by targeting Smad7 for Ubiquitin degradation. Hypertension 2017; 70(4): 822-30.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.09600] [PMID: 28808068]