Current Respiratory Medicine Reviews

Author(s): Shubhrat Maheshwari* and Aditya Singh

DOI: 10.2174/011573398X264594231027110541

Lipid-Based Nanocarriers in the Management of Pulmonary Complications in Cystic Fibrosis

Page: [3 - 12] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Code 35, the cystic fibrosis transmembrane conductance regulator (CFTR) causes respiratory failure, inflammation, and decreased airway mucociliary clearance. The absence of trustworthy preclinical models that replicate the anatomical, immunological, and bioelectrical characteristics of human CF lungs restricts the discovery of new therapies for the disease. Alternative carriers to liposomes, polymeric nanoparticles, and inorganic carriers include lipid-based nanocarriers (LBCs). Delivering medicines, nucleic acids, proteins, peptides, nutraceuticals, and cosmetics via LBCs has received more and more attention in recent years. Due to their simple production, physicochemical stability, and scalability, these nanocarriers have caught the attention of the industrial sector. Because of these qualities, LBCs are well suited for industrial manufacturing. Clinical trials are already being conducted on a number of LBC-containing items and are likely to swiftly grow in popularity. For commercial applications to produce enough formulations for clinical research, a large-scale manufacturing facility is necessary. The mainstay of treatment for CF, asthma, and chronic obstructive lung disease is the inhalation of corticosteroids and topical bronchodilators. These drugs are given through a metered-dose inhaler (MDI), a dry powder inhaler (DPI), a jet, or an ultrasonic nebulizer. Although the sheer number of gadgets may be overwhelming for patients and doctors, each has unique benefits.

Graphical Abstract

[1]
Cuthbertson L, Walker AW, Oliver AE, et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome 2020; 8(1): 45.
[http://dx.doi.org/10.1186/s40168-020-00810-3] [PMID: 32238195]
[2]
Bell SC, Mall MA, Gutierrez H, et al. The future of cystic fibrosis care: A global perspective. Lancet Respir Med 2020; 8(1): 65-124.
[http://dx.doi.org/10.1016/S2213-2600(19)30337-6] [PMID: 31570318]
[3]
Morrison CB, Shaffer KM, Araba KC, et al. Treatment of cystic fibrosis airway cells with CFTR modulators reverses aberrant mucus properties via hydration. Eur Respir J 2022; 59(2): 2100185.
[http://dx.doi.org/10.1183/13993003.00185-2021] [PMID: 34172469]
[4]
Paynter A, Khan U, Heltshe SL, Goss CH, Lechtzin N, Hamblett NM. A comparison of clinic and home spirometry as longtudinal outcomes in cystic fibrosis. J Cyst Fibros 2022; 21(1): 78-83.
[http://dx.doi.org/10.1016/j.jcf.2021.08.013] [PMID: 34474987]
[5]
Guo J, Garratt A, Hill A. Worldwide rates of diagnosis and effective treatment for cystic fibrosis. J Cyst Fibros 2022; 21(3): 456-62.
[http://dx.doi.org/10.1016/j.jcf.2022.01.009] [PMID: 35125294]
[6]
Petersen MC, Begnel L, Wallendorf M, Litvin M. Effect of elexacaftor-tezacaftor-ivacaftor on body weight and metabolic parameters in adults with cystic fibrosis. J Cyst Fibros 2022; 21(2): 265-71.
[http://dx.doi.org/10.1016/j.jcf.2021.11.012] [PMID: 34862121]
[7]
De Boeck K. Cystic fibrosis in the year 2020: A disease with a new face. Acta Paediatr 2020; 109(5): 893-9.
[http://dx.doi.org/10.1111/apa.15155] [PMID: 31899933]
[8]
Scotet V, L’Hostis C, Férec C. The changing epidemiology of cystic fibrosis: Incidence, survival and impact of the CFTR gene discovery. Genes 2020; 11(6): 589.
[http://dx.doi.org/10.3390/genes11060589] [PMID: 32466381]
[9]
Allen L, Allen L, Carr SB, et al. Future therapies for cystic fibrosis. Nat Commun 2023; 14(1): 693.
[http://dx.doi.org/10.1038/s41467-023-36244-2] [PMID: 36755044]
[10]
Schwarz C, Eschenhagen P, Schmidt H, et al. Antigen specificity and cross-reactivity drive functionally diverse anti–Aspergillus fumigatus T cell responses in cystic fibrosis. J Clin Invest 2023; 133(5): e161593.
[http://dx.doi.org/10.1172/JCI161593] [PMID: 36701198]
[11]
McColley SA, Martiniano SL, Ren CL, et al. Disparities in first evaluation of infants with cystic fibrosis since implementation of newborn screening. J Cyst Fibros 2023; 22(1): 89-97.
[http://dx.doi.org/10.1016/j.jcf.2022.07.010] [PMID: 35871976]
[12]
Jia S, Taylor-Cousar JL. Cystic fibrosis modulator therapies. Annu Rev Med 2023; 74(1): 413-26.
[http://dx.doi.org/10.1146/annurev-med-042921-021447] [PMID: 35973718]
[13]
Hahn A, Burrell A, Chaney H, et al. Therapeutic beta-lactam dosages and broad-spectrum antibiotics are associated with reductions in microbial richness and diversity in persons with cystic fibrosis. Sci Rep 2023; 13(1): 1217.
[http://dx.doi.org/10.1038/s41598-023-27628-x] [PMID: 36681756]
[14]
Coriati A, Ma X, Sykes J, et al. Beyond borders: Cystic fibrosis survival between Australia, Canada, France and New Zealand. Thorax 2023; 78(3): 242-8.
[http://dx.doi.org/10.1136/thorax-2022-219086] [PMID: 36109163]
[15]
de Poel E, Spelier S, Hagemeijer MC, et al. FDA-approved drug screening in patient-derived organoids demonstrates potential of drug repurposing for rare cystic fibrosis genotypes. J Cyst Fibros 2023; 22(3): 548-59.
[http://dx.doi.org/10.1016/j.jcf.2023.03.004] [PMID: 37147251]
[16]
Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol 2023; 20(1): 33-48.
[http://dx.doi.org/10.1038/s41571-022-00699-x] [PMID: 36307534]
[17]
Ameen F, Al-Maary KS, Almansob A, AlNadhari S. Antioxidant, antibacterial and anticancer efficacy of Alternaria chlamydospora-mediated gold nanoparticles. Appl Nanosci 2023; 13(3): 2233-40.
[http://dx.doi.org/10.1007/s13204-021-02047-4]
[18]
Han H, Li S, Xu M, et al. Polymer- and lipid-based nanocarriers for ocular drug delivery: Current status and future perspectives. Adv Drug Deliv Rev 2023; 196: 114770.
[http://dx.doi.org/10.1016/j.addr.2023.114770] [PMID: 36894134]
[19]
Aziz Hazari S, Kaur H, Karwasra R, Abourehab MAS, Ali Khan A, Kesharwani P. An overview of topical lipid-based and polymer-based nanocarriers for treatment of psoriasis. Int J Pharm 2023; 638: 122938.
[http://dx.doi.org/10.1016/j.ijpharm.2023.122938] [PMID: 37031809]
[20]
Teixeira PV, Fernandes E, Soares TB, Adega F, Lopes CM, Lúcio M. Natural compounds: Co-delivery strategies with chemotherapeutic agents or nucleic acids using lipid-based nanocarriers. Pharmaceutics 2023; 15(4): 1317.
[http://dx.doi.org/10.3390/pharmaceutics15041317] [PMID: 37111802]
[21]
Akbari J, Saeedi M, Ahmadi F, et al. Solid lipid nanoparticles and nanostructured lipid carriers: A review of the methods of manufacture and routes of administration. Pharm Dev Technol 2022; 27(5): 525-44.
[http://dx.doi.org/10.1080/10837450.2022.2084554] [PMID: 35635506]
[22]
Bibi M, Din F, Anwar Y, et al. Cilostazol-loaded solid lipid nanoparticles: Bioavailability and safety evaluation in an animal model. J Drug Deliv Sci Technol 2022; 74: 103581.
[http://dx.doi.org/10.1016/j.jddst.2022.103581]
[23]
Osanlou R, Emtyazjoo M, Banaei A, Hesarinejad MA, Ashrafi F. Preparation of solid lipid nanoparticles and nanostructured lipid carriers containing zeaxanthin and evaluation of physicochemical properties. Colloids Surf A Physicochem Eng Asp 2022; 641: 128588.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128588]
[24]
Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022; 27(4): 1372.
[http://dx.doi.org/10.3390/molecules27041372] [PMID: 35209162]
[25]
Singh A, Ansari VA, Haider F, Akhtar J, Ahsan F. A review on topical preparation of herbal drugs used in liposomal delivery against ageing. Res J Pharmacol Pharmacody 2020; 12(1): 5-11.
[http://dx.doi.org/10.5958/2321-5836.2020.00002.6]
[26]
Rodríguez-Jiménez S, Song H, Lam E, et al. Self-assembled liposomes enhance electron transfer for efficient photocatalytic CO2 reduction. J Am Chem Soc 2022; 144(21): 9399-412.
[http://dx.doi.org/10.1021/jacs.2c01725] [PMID: 35594410]
[27]
Sakellari GI, Zafeiri I, Batchelor H, Spyropoulos F. Solid lipid nanoparticles and nanostructured lipid carriers of dual functionality at emulsion interfaces. Part I: Pickering stabilisation functionality. Colloids Surf A Physicochem Eng Asp 2022; 654: 130135.
[http://dx.doi.org/10.1016/j.colsurfa.2022.130135]
[28]
Varela-Fernández R, García-Otero X, Díaz-Tomé V, et al. Lactoferrin-loaded nanostructured lipid carriers (NLCs) as a new formulation for optimized ocular drug delivery. Eur J Pharm Biopharm 2022; 172: 144-56.
[http://dx.doi.org/10.1016/j.ejpb.2022.02.010] [PMID: 35183717]
[29]
Radwan IT, Baz MM, Khater H, Selim AM. Nanostructured Lipid Carriers (NLC) for Biologically active green tea and fennel natural oils delivery: Larvicidal and adulticidal activities against Culex pipiens. Molecules 2022; 27(6): 1939.
[http://dx.doi.org/10.3390/molecules27061939] [PMID: 35335302]
[30]
Li Z, Shi M, Li N, Xu R. Application of functional biocompatible nanomaterials to improve curcumin bioavailability. Front Chem 2020; 8: 589957.
[http://dx.doi.org/10.3389/fchem.2020.589957] [PMID: 33134284]
[31]
Peabody JE, Shei RJ, Bermingham BM, et al. Seeing cilia: Imaging modalities for ciliary motion and clinical connections. Am J Physiol Lung Cell Mol Physiol 2018; 314(6): L909-21.
[http://dx.doi.org/10.1152/ajplung.00556.2017] [PMID: 29493257]
[32]
Scribner MR, Santos-Lopez A, Marshall CW, Deitrick C, Cooper VS. Parallel evolution of tobramycin resistance across species and environments. MBio 2020; 11(3): e00932-20.
[http://dx.doi.org/10.1128/mBio.00932-20] [PMID: 32457248]
[33]
Pogue JM, Kaye KS, Veve MP, et al. Ceftolozane/tazobactam vs polymyxin or aminoglycoside-based regimens for the treatment of drug-resistant Pseudomonas aeruginosa. Clin Infect Dis 2020; 71(2): 304-10.
[http://dx.doi.org/10.1093/cid/ciz816] [PMID: 31545346]
[34]
de Vroom SL, van Hest RM, van Daalen FV, et al. Pharmacokinetic/pharmacodynamic target attainment of ciprofloxacin in adult patients on general wards with adequate and impaired renal function. Int J Antimicrob Agents 2020; 56(5): 106166.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106166] [PMID: 32941947]
[35]
Bakhsheshi-Rad HR, Hadisi Z, Ismail AF, et al. in vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polym Test 2020; 82: 106298.
[http://dx.doi.org/10.1016/j.polymertesting.2019.106298]
[36]
Cunha S, Costa CP, Loureiro JA, et al. Double optimization of rivastigmine-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery using the quality by design (QbD) approach: Formulation variables and instrumental parameters. Pharmaceutics 2020; 12(7): 599.
[http://dx.doi.org/10.3390/pharmaceutics12070599] [PMID: 32605177]
[37]
Rohmah M, Rahmadi A, Raharjo S. Bioaccessibility and antioxidant activity of β-carotene loaded nanostructured lipid carrier (NLC) from binary mixtures of palm stearin and palm olein. Heliyon 2022; 8(2): e08913.
[http://dx.doi.org/10.1016/j.heliyon.2022.e08913] [PMID: 35243052]
[38]
Hill C, Li J, Liu D, et al. Autophagy inhibition-mediated epithelial–mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis. Cell Death Dis 2019; 10(8): 591.
[http://dx.doi.org/10.1038/s41419-019-1820-x] [PMID: 31391462]
[39]
Neri LCL, Taminato M, Silva Filho LVRF. Systematic review of probiotics for cystic fibrosis patients: Moving forward. J Pediatr Gastroenterol Nutr 2019; 68(3): 394-9.
[http://dx.doi.org/10.1097/MPG.0000000000002185] [PMID: 30358738]
[40]
Balfour-Lynn IM, Welch K, Smith S. Inhaled corticosteroids for cystic fibrosis. Cochrane Data Sys Rev 2019; 7
[41]
Suryadevara V, Ramchandran R, Kamp DW, Natarajan V. Lipid mediators regulate pulmonary fibrosis: Potential mechanisms and signaling pathways. Int J Mol Sci 2020; 21(12): 4257.
[http://dx.doi.org/10.3390/ijms21124257] [PMID: 32549377]
[42]
Huang J, Tong X, Zhang L, et al. Hyperoside attenuates bleomycin-induced pulmonary fibrosis development in mice. Front Pharmacol 2020; 11: 550955.
[http://dx.doi.org/10.3389/fphar.2020.550955] [PMID: 33192501]
[43]
Li X, Bi Z, Liu S, et al. Antifibrotic mechanism of cinobufagin in bleomycin-induced pulmonary fibrosis in mice. Front Pharmacol 2019; 10: 1021.
[http://dx.doi.org/10.3389/fphar.2019.01021] [PMID: 31572194]
[44]
Gomez AI, Acosta MF, Muralidharan P, et al. Advanced spray dried proliposomes of amphotericin B lung surfactant-mimic phospholipid microparticles/nanoparticles as dry powder inhalers for targeted pulmonary drug delivery. Pulm Pharmacol Ther 2020; 64: 101975.
[http://dx.doi.org/10.1016/j.pupt.2020.101975] [PMID: 33137515]
[45]
Sahakijpijarn S, Moon C, Koleng JJ, Christensen DJ, Williams RO III. Development of remdesivir as a dry powder for inhalation by thin film freezing. Pharmaceutics 2020; 12(11): 1002.
[http://dx.doi.org/10.3390/pharmaceutics12111002] [PMID: 33105618]
[46]
Chaurasiya B, Zhao YY. Dry powder for pulmonary delivery: A comprehensive review. Pharmaceutics 2020; 13(1): 31.
[http://dx.doi.org/10.3390/pharmaceutics13010031] [PMID: 33379136]
[47]
Amirav I, Newhouse MT. Transmission of coronavirus by nebulizer: A serious, underappreciated risk. CMAJ 2020; 192(13): E346.
[http://dx.doi.org/10.1503/cmaj.75066] [PMID: 32392488]
[48]
Barjaktarevic IZ, Milstone AP. Nebulized therapies in COPD: Past, present, and the future. Int J Chron Obstruct Pulmon Dis 2020; 15: 1665-77.
[http://dx.doi.org/10.2147/COPD.S252435] [PMID: 32764912]
[49]
de Pablo E, O’Connell P, Fernández-García R, et al. Targeting lung macrophages for fungal and parasitic pulmonary infections with innovative amphotericin B dry powder inhalers. Int J Pharm 2023; 635: 122788.
[http://dx.doi.org/10.1016/j.ijpharm.2023.122788] [PMID: 36863544]
[50]
Pangeni R, Hassan AAM, Farkas D, et al. New air-jet dry powder insufflator for high-efficiency aerosol delivery to rats. Mol Pharm 2023; 20(4): 2207-16.
[http://dx.doi.org/10.1021/acs.molpharmaceut.3c00007] [PMID: 36938947]
[51]
Sun N, Zhang M, Zhu W, et al. Allyl isothiocyanate dry powder inhaler based on cyclodextrin-metal organic frameworks for pulmonary delivery. iScience 2023; 26(1): 105910.
[http://dx.doi.org/10.1016/j.isci.2022.105910] [PMID: 36686390]
[52]
Mehta P. Multi-dose dry powder inhaler: Advance technology for drug delivery to airways. Indian Drugs 2018; 56(11): 68-71.
[53]
Pritchard JN. The climate is changing for metered-dose inhalers and action is needed. Drug Des Devel Ther 2020; 14: 3043-55.
[http://dx.doi.org/10.2147/DDDT.S262141] [PMID: 32801643]
[54]
Nicola M, Soliman YMA, Hussein R, Saeed H, Abdelrahim M. Comparison between traditional and nontraditional add-on devices used with pressurised metered-dose inhalers. ERJ Open Res 2020; 6(4): 00073-2020.
[http://dx.doi.org/10.1183/23120541.00073-2020] [PMID: 33083443]
[55]
Jankowski K. Ultrasonic nebulizers. Analytical Nebulizers. Elsevier 2023; pp. 153-73.
[http://dx.doi.org/10.1016/B978-0-323-91181-8.00005-9]
[56]
Dong J, Liu J, Xing P, et al. High-efficiency miniaturized ultrasonic nebulization sample introduction system for elemental analysis of microvolume biological samples by inductively coupled plasma quadrupole mass spectrometry. Anal Chem 2023; 95(15): 6271-8.
[http://dx.doi.org/10.1021/acs.analchem.2c04789] [PMID: 37017609]
[57]
Volerman A, Carpenter D, Press V. What can be done to impact respiratory inhaler misuse: Exploring the problem, reasons, and solutions. Expert Rev Respir Med 2020; 14(8): 791-805.
[http://dx.doi.org/10.1080/17476348.2020.1754800] [PMID: 32306774]
[58]
Fidler L, Green S, Wintemute K. Pressurized metered-dose inhalers and their impact on climate change. CMAJ 2022; 194(12): E460.
[http://dx.doi.org/10.1503/cmaj.211747] [PMID: 35347049]
[59]
Newman SP, Weisz AW, Talaee N, Clarke SW. Improvement of drug delivery with a breath actuated pressurised aerosol for patients with poor inhaler technique. Thorax 1991; 46(10): 712-6.
[http://dx.doi.org/10.1136/thx.46.10.712] [PMID: 1750017]
[60]
Chou KJ, Cunningham SJ, Crain EF. Metered-dose inhalers with spacers vs nebulizers for pediatric asthma. Arch Pediatr Adolesc Med 1995; 149(2): 201-5.
[http://dx.doi.org/10.1001/archpedi.1995.02170140083015] [PMID: 7849885]
[61]
Boisson M, Bouglé A, Sole-Lleonart C, et al. Nebulized antibiotics for healthcare-and ventilator-associated pneumonia. Seminars in respiratory and critical care medicine. Thieme Medical Publishers, Inc. 2022.
[http://dx.doi.org/10.1055/s-0041-1740340]
[62]
Madney YM, Harb HS, Porée T, Eckes M, Boules ME, Abdelrahim MEA. Preliminary bronchodilator dose effect on aerosol-delivery through different nebulizers in noninvasively ventilated COPD patients. Exp Lung Res 2022; 48(2): 1-9.
[http://dx.doi.org/10.1080/01902148.2022.2047243] [PMID: 35234097]
[63]
Zheng J, Zhang J, Fu X, et al. comparison of extrafine beclomethasone dipropionate/formoterol fumarate (bdp/ff) dry powder inhaler (dpi) and pressurized metered-dose inhaler pmdi in chinese patients with asthma: The fortune study. ASTHMA: From Mice Men, Back Again 2023; (May): A3038-8.
[http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_MeetingAbstracts.A3038]
[64]
Janson C, Hernando Platz J, Soulard S, Langham S, Nicholson L, Hartgers-Gubbels ES. HSD2 reusable soft mist inhalers have an improved carbon footprint compared with dry powder inhalers and pressurised metered-dose inhalers. Value Health 2022; 25(12): S273.
[http://dx.doi.org/10.1016/j.jval.2022.09.1346]
[65]
Wu Y, Zhang J. Standardized inhalation capability assessment: A key to optimal inhaler selection for inhalation therapy. J Transl Int Med 2023; 7: 0073.
[http://dx.doi.org/10.2478/jtim-2022-0073]