Exploring the Therapeutic Potential of Chalcones in Oncology: A Comprehensive Review

Article ID: e031123223102 Pages: 36

  • * (Excluding Mailing and Handling)

Abstract

Chalcone is a bioactive flavonoid found in various plants, such as Angelica archangelica, Pueraria lobata, and Glycyrrhiza glabra. It has been studied extensively in the field of pharmaceutical sciences due to its significant role in therapeutic potential including antibacterial, antiinflammatory, analgesic, cytotoxic, and antitumor properties. A plenty of study indicated numerous chalcone derivatives exhibit enhanced potency and reduced toxicity as compared to natural analogues. In this review, we have introduced chalcone and its various derivatives including 1- naphthylacetophenone, 2-benzimidazolyl, 2-furoyloxy, 3-(furan-2-yl)pyrazol-4-yl, 4'-alkoxy, 4- anilinoquinolinyl, 4-aryloxyquinazolines, acridine, benzamide, benzenesulfonamide, bischalcone, cinnamoylthiazoles, D-glucosyl azides, dialkylamino, dihydropyrimidinone, indole, isoquinoline, ligustrazine, morpholinothiazole, naphthalene, quinoline, sulphonamide, thiazoleimidazopyridine, thienyl, thiophene, triazines, triazole-benzimidazole, tri-methoxyphenyl, and α- trifluoromethyl hybrids which display activity against various cancer cell lines, such as breast cancer, prostate cancer, colon cancer, lung cancer, cervical cancer, and liver cancer.

Graphical Abstract

[1]
Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev., 2017, 117(12), 7762-7810.
[http://dx.doi.org/10.1021/acs.chemrev.7b00020] [PMID: 28488435]
[2]
Zhou, K.; Yang, S.; Li, S.M. Naturally occurring prenylated chalcones from plants: structural diversity, distribution, activities and biosynthesis. Nat. Prod. Rep., 2021, 38(12), 2236-2260.
[http://dx.doi.org/10.1039/D0NP00083C] [PMID: 33972962]
[3]
Maliyakkal, N.; Eom, B.H.; Heo, J.H.; Abdullah Almoyad, M.A.; Thomas Parambi, D.G.; Gambacorta, N.; Nicolotti, O.; Beeran, A.A.; Kim, H.; Mathew, B. A new potent and selective monoamine oxidase‐b inhibitor with extended conjugation in a chalcone framework: 1‐[4‐(Morpholin‐4‐yl)phenyl]‐5‐phenylpenta‐2,4‐dien‐1‐one. ChemMedChem, 2020, 15(17), 1629-1633.
[http://dx.doi.org/10.1002/cmdc.202000305] [PMID: 32583952]
[4]
Goyal, K.; Kaur, R.; Goyal, A.; Awasthi, R. Chalcones: A review on synthesis and pharmacological activities. J. Applied Pharm. Sci, 2021, 11, 001-014.
[http://dx.doi.org/10.7324/JAPS.2021.11s101]
[5]
Elkanzi, N.A.A.; Hrichi, H.; Alolayan, R.A.; Derafa, W.; Zahou, F.M.; Bakr, R.B. Synthesis of chalcones derivatives and their biological activities: A review. ACS Omega, 2022, 7(32), 27769-27786.
[http://dx.doi.org/10.1021/acsomega.2c01779] [PMID: 35990442]
[6]
Basic, J.; Kalinic, M.; Eric, S.; Milenkovic, M.; Vladimirov, S.; Vujic, Z. Synthesis, QSAR analysis and mechanism of antybacterial activity of simple 2′-hydroxy chalcones. Dig. J. Nanomater. Biostruct., 2014, 9, 1537-1546.
[7]
Naresh, P.; Pramodh, B.; Naveen, S.; Ganguly, S.; Panda, J.; Sunitha, K.; Maniukiewicz, W.; Lokanath, N.K. Cis and trans isomers of 1-(5-bromothiophen-2-yl)-3-(10-chloroanthracen-9-yl)prop-2-en-1-one: Synthesis and characterization. J. Mol. Struct., 2021, 1236, 130228.
[http://dx.doi.org/10.1016/j.molstruc.2021.130228]
[8]
Rudrapal, M.; Khan, J.; Dukhyil, A.A.B.; Alarousy, R.M.I.I.; Attah, E.I.; Sharma, T.; Khairnar, S.J.; Bendale, A.R. Chalcone scaffolds, bioprecursors of flavonoids: Chemistry, bioactivities, and pharmacokinetics. Molecules, 2021, 26(23), 7177.
[http://dx.doi.org/10.3390/molecules26237177] [PMID: 34885754]
[9]
Kabir, E.; Uzzaman, M. A review on biological and medicinal impact of heterocyclic compounds. Results in Chemistry, 2022, 4, 100606.
[http://dx.doi.org/10.1016/j.rechem.2022.100606]
[10]
Wahab, S.; Annadurai, S.; Abullais, S.S.; Das, G.; Ahmad, W.; Ahmad, M.F.; Kandasamy, G.; Vasudevan, R.; Ali, M.S.; Amir, M. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. Plants, 2021, 10(12), 2751.
[http://dx.doi.org/10.3390/plants10122751] [PMID: 34961221]
[11]
Sato, Y.; He, J.X.; Nagai, H.; Tani, T.; Akao, T. Isoliquiritigenin, one of the antispasmodic principles of Glycyrrhiza ularensis roots, acts in the lower part of intestine. Biol. Pharm. Bull., 2007, 30(1), 145-149.
[http://dx.doi.org/10.1248/bpb.30.145] [PMID: 17202675]
[12]
Wang, K.L.; Yu, Y.C.; Hsia, S.M. Perspectives on the role of isoliquiritigenin in cancer. Cancers (Basel), 2021, 13(1), 115.
[http://dx.doi.org/10.3390/cancers13010115] [PMID: 33401375]
[13]
Muthuswamy, R.; Senthamarai, R. Anatomical investigation of flower of Butea monosperma Lam. Anc. Sci. Life, 2014, 34(2), 73-79.
[http://dx.doi.org/10.4103/0257-7941.153461] [PMID: 25861140]
[14]
Rasheed, Z.; Akhtar, N.; Khan, A.; Khan, K.A.; Haqqi, T.M. Butrin, isobutrin, and butein from medicinal plant Butea monosperma selectively inhibit nuclear factor-kappaB in activated human mast cells: suppression of tumor necrosis factor-α, interleukin (IL)-6, and IL-8. J. Pharmacol. Exp. Ther., 2010, 333(2), 354-363.
[http://dx.doi.org/10.1124/jpet.109.165209] [PMID: 20164300]
[15]
Sulaiman, S.; Arafat, K.; Al-Azawi, A.M.; AlMarzooqi, N.A.; Lootah, S.N.A.H.; Attoub, S. Butein and frondoside-a combination exhibits additive anti-cancer effects on tumor cell viability, colony growth, and invasion and synergism on endothelial cell migration. Int. J. Mol. Sci., 2021, 23(1), 431.
[http://dx.doi.org/10.3390/ijms23010431] [PMID: 35008855]
[16]
Jiang, C.H.; Sun, T.L.; Xiang, D.X.; Wei, S.S.; Li, W.Q. Anticancer activity and mechanism of xanthohumol: A prenylated flavonoid from hops (Humulus lupulus L.). Front. Pharmacol., 2018, 9, 530.
[http://dx.doi.org/10.3389/fphar.2018.00530] [PMID: 29872398]
[17]
Liu, M.; Hansen, P.; Wang, G.; Qiu, L.; Dong, J.; Yin, H.; Qian, Z.; Yang, M.; Miao, J. Pharmacological profile of xanthohumol, a prenylated flavonoid from hops (Humulus lupulus). Molecules, 2015, 20(1), 754-779.
[http://dx.doi.org/10.3390/molecules20010754] [PMID: 25574819]
[18]
Li, Y.Y.; Huang, S.S.; Lee, M.M.; Deng, J.S.; Huang, G.J. Anti-inflammatory activities of cardamonin from Alpinia katsumadai through heme oxygenase-1 induction and inhibition of NF-κB and MAPK signaling pathway in the carrageenan-induced paw edema. Int. Immunopharmacol., 2015, 25(2), 332-339.
[http://dx.doi.org/10.1016/j.intimp.2015.02.002] [PMID: 25681284]
[19]
Ramchandani, S.; Naz, I.; Dhudha, N.; Garg, M. An overview of the potential anticancer properties of cardamonin. Exploration of Targeted Anti-tumor Therapy, 2020, 1(6), 413-426.
[http://dx.doi.org/10.37349/etat.2020.00026] [PMID: 36046386]
[20]
Deng, N.; Qiao, M.; Li, Y.; Liang, F.; Li, J.; Liu, Y. Anticancer effects of licochalcones: A review of the mechanisms. Front. Pharmacol., 2023, 14, 1074506.
[http://dx.doi.org/10.3389/fphar.2023.1074506] [PMID: 36755942]
[21]
Cho, J.J.; Chae, J.; Yoon, G.; Kim, K.H.; Cho, J.H.; Cho, S.S.; Cho, Y.S.; Shim, J.H.; Licochalcone, A. Licochalcone A, a natural chalconoid isolated from Glycyrrhiza inflata root, induces apoptosis via Sp1 and Sp1 regulatory proteins in oral squamous cell carcinoma. Int. J. Oncol., 2014, 45(2), 667-674.
[http://dx.doi.org/10.3892/ijo.2014.2461] [PMID: 24858379]
[22]
Furusawa, J.; Funakoshi-Tago, M.; Mashino, T.; Tago, K.; Inoue, H.; Sonoda, Y.; Kasahara, T. Glycyrrhiza inflata-derived chalcones, Licochalcone A, Licochalcone B and Licochalcone D, inhibit phosphorylation of NF-κB p65 in LPS signaling pathway. Int. Immunopharmacol., 2009, 9(4), 499-507.
[http://dx.doi.org/10.1016/j.intimp.2009.01.031] [PMID: 19291859]
[23]
Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagumpi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem., 2015, 89, 207-251.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.059] [PMID: 25462241]
[24]
Rupala, R.; Kundariya, K.; Patel, P. Synthesis, characterization and biological evaluation of some novel chalcone derivatives containing imidazo pyridine moiety. J. Chem. Envir. Sci. Applic., 2014, 1, 23-32.
[25]
Salehi, B.; Quispe, C.; Chamkhi, I.; El Omari, N.; Balahbib, A.; Sharifi-Rad, J.; Bouyahya, A.; Akram, M.; Iqbal, M.; Docea, A.O.; Caruntu, C.; Leyva-Gómez, G.; Dey, A.; Martorell, M.; Calina, D.; López, V.; Les, F. Pharmacological properties of chalcones: a review of preclinical including molecular mechanisms and clinical evidence. Front. Pharmacol., 2021, 11, 592654.
[http://dx.doi.org/10.3389/fphar.2020.592654] [PMID: 33536909]
[26]
Okolo, E.N.; Ugwu, D.I.; Ezema, B.E.; Ndefo, J.C.; Eze, F.U.; Ezema, C.G.; Ezugwu, J.A.; Ujam, O.T. New chalcone derivatives as potential antimicrobial and antioxidant agent. Sci. Reports., 2021, 11, 1-13.
[http://dx.doi.org/10.1038/s41598-021-01292-5]
[27]
Rozmer, Z.; Perjési, P. Naturally occurring chalcones and their biological activities. Phytochem. Rev., 2014, 15, 87-120.
[http://dx.doi.org/10.1007/s11101-014-9387-8]
[28]
Jung, J.C.; Lee, Y.; Min, D.; Jung, M.; Oh, S. Practical synthesis of chalcone derivatives and their biological activities. Molecules, 2017, 22(11), 1872.
[http://dx.doi.org/10.3390/molecules22111872]
[29]
Constantinescu, T.; Lungu, C.N. Anticancer activity of natural and synthetic chalcones. Int. J. Mol. Sci., 2021, 22(21), 11306.
[http://dx.doi.org/10.3390/ijms222111306] [PMID: 34768736]
[30]
Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone derivatives. Biomolecules, 2021, 11(6), 894.
[http://dx.doi.org/10.3390/biom11060894] [PMID: 34208562]
[31]
Ahn, S.; Truong, V.N.P.; Kim, B.; Yoo, M.; Lim, Y.; Cho, S.K.; Koh, D. Design, synthesis, and biological evaluation of chalcones for anticancer properties targeting glycogen synthase kinase 3 beta. Applied Biological Chemistry, 2022, 65(1), 17.
[http://dx.doi.org/10.1186/s13765-022-00686-x]
[32]
Narwal, S.; Kumar, S.; Verma, P.K. Synthesis and biological activity of new chalcone scaffolds as prospective antimicrobial agents. Res. Chem. Intermed., 2021, 47(4), 1625-1641.
[http://dx.doi.org/10.1007/s11164-020-04359-6]
[33]
Yan, W.; Xiangyu, C.; Ya, L.; Yu, W.; Feng, X. An orally antitumor chalcone hybrid inhibited HepG2 cells growth and migration as the tubulin binding agent. Invest. New Drugs, 2019, 37(4), 784-790.
[http://dx.doi.org/10.1007/s10637-019-00737-z] [PMID: 30740631]
[34]
Jasim, H.A.; Nahar, L.; Jasim, M.A.; Moore, S.A.; Ritchie, K.J.; Sarker, S.D. Chalcones: Synthetic chemistry follows where nature leads. Biomolecules, 2021, 11(8), 1203.
[http://dx.doi.org/10.3390/biom11081203] [PMID: 34439870]
[35]
Yang, J.L.; Ma, Y.H.; Li, Y.H.; Zhang, Y.P.; Tian, H.C.; Huang, Y.C.; Li, Y.; Chen, W.; Yang, L.J. Design, synthesis, and anticancer activity of novel trimethoxyphenyl-derived chalcone-benzimidazolium salts. ACS Omega, 2019, 4(23), 20381-20393.
[http://dx.doi.org/10.1021/acsomega.9b03077] [PMID: 31815242]
[36]
Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem., 2014, 85, 758-777.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.033] [PMID: 25137491]
[37]
Al Zahrani, N.A.; El-Shishtawy, R.M.; Elaasser, M.M.; Asiri, A.M. Synthesis of novel chalcone-based phenothiazine derivatives as anti-oxidant and anticancer agents. Molecules, 2020, 25, 4566.
[http://dx.doi.org/10.3390/molecules25194566]
[38]
Jackson, P.A.; Widen, J.C.; Harki, D.A.; Brummond, K.M. Covalent modifiers: A chemical perspective on the reactivity of α,β-unsaturated carbonyls with thiols via hetero-michael addition reactions. J. Med. Chem., 2017, 60(3), 839-885.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00788] [PMID: 27996267]
[39]
Ahamed, A.; Sihabudeen, M. Synthesis and biological evaluation of some heterocyclic derivatives of chalcones. Int. J. Chemtech Res., 2009, 1, 27-34.
[40]
Dhaliwal, J.S.; Moshawih, S.; Goh, K.W.; Loy, M.J.; Hossain, M.S.; Hermansyah, A.; Kotra, V.; Kifli, N.; Goh, H.P.; Dhaliwal, S.K.S.; Yassin, H.; Ming, L.C. Pharmacotherapeutics applications and chemistry of chalcone derivatives. Molecules, 2022, 27(20), 7062.
[http://dx.doi.org/10.3390/molecules27207062] [PMID: 36296655]
[41]
Chaker, H.; Ferouani, G.; Chikhi, I.; Djennas, M.; Fourmentin, S. A novel statistical approach for the synthesis of Chalcones via Claisen-Schmidt condensation catalyzed by Pd nanoparticles modified mesoporous TiO2 as an efficient heterogeneous catalyst. Colloid Interface Sci. Commun., 2021, 43, 100461.
[http://dx.doi.org/10.1016/j.colcom.2021.100461]
[42]
Yerragunta, V.; Swamy, T.K.; Suman, D.; Anusha, V.; Prathima Patil, T. Samhitha, a review on chalcones and its importance. PharmaTutor, 2013, 1, 54-59.
[43]
Wang, Y.; Xue, S.; Li, R.; Zheng, Z.; Yi, H.; Li, Z. Synthesis and biological evaluation of novel synthetic chalcone derivatives as anti-tumor agents targeting Cat L and Cat K. Bioorg. Med. Chem., 2018, 26(1), 8-16.
[http://dx.doi.org/10.1016/j.bmc.2017.09.019] [PMID: 29223717]
[44]
Marquina, S.; Maldonado-Santiago, M.; Sánchez-Carranza, J.N.; Antúnez-Mojica, M.; González-Maya, L.; Razo-Hernández, R.S.; Alvarez, L. Design, synthesis and QSAR study of 2′-hydroxy-4′-alkoxy chalcone derivatives that exert cytotoxic activity by the mitochondrial apoptotic pathway. Bioorg. Med. Chem., 2019, 27(1), 43-54.
[http://dx.doi.org/10.1016/j.bmc.2018.10.045] [PMID: 30482548]
[45]
Li, K.; Zhao, S.; Long, J.; Su, J.; Wu, L.; Tao, J.; Zhou, J.; Zhang, J.; Chen, X.; Peng, C.; Wu, L.; Wu, L.; Wu, L.; Tao, J.; Zhou, J.; Zhang, J.; Zhang, J.; Zhang, J.; Chen, X.; Chen, X.; Chen, X.; Peng, C.; Peng, C.; Peng, C. A novel chalcone derivative has antitumor activity in melanoma by inducing DNA damage through the upregulation of ROS products. Cancer Cell Int., 2020, 20(1), 36.
[http://dx.doi.org/10.1186/s12935-020-1114-5] [PMID: 32021565]
[46]
Khanusiya, M.; Gadhawala, Z. Chalcones-sulphonamide hybrids: synthesis, characterization and anticancer evaluation. J. Korean Chem. Soc., 2019, 63, 85-93.
[http://dx.doi.org/10.5012/JKCS.2019.63.2.85]
[47]
Malhotra, A.; Kaur, T.; Bansal, R. Synthesis and pharmacological evaluation of 4‐aryloxyquinazoline derivatives as potential cytotoxic agents. J. Heterocycl. Chem., 2019, 56(10), 2902-2911.
[http://dx.doi.org/10.1002/jhet.3683]
[48]
Zhao, T.Q.; Zhao, Y.D.; Liu, X.Y.; Li, Z.H.; Wang, B.; Zhang, X.H.; Cao, Y.Q.; Ma, L.Y.; Liu, H.M. Novel 3-(2,6,9-trisubstituted-9H-purine)-8-chalcone derivatives as potent anti-gastric cancer agents: Design, synthesis and structural optimization. Eur. J. Med. Chem., 2019, 161, 493-505.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.058] [PMID: 30388465]
[49]
Suma, V.R.; Sreenivasulu, R.; Rao, M.V.B.; Subramanyam, M.; Ahsan, M.J.; Alluri, R.; Rao, K.R.M. Design, synthesis, and biological evaluation of chalcone-linked thiazole-imidazopyridine derivatives as anticancer agents. Med. Chem. Res., 2020, 29(9), 1643-1654.
[http://dx.doi.org/10.1007/s00044-020-02590-9]
[50]
Djemoui, A.; Naouri, A.; Ouahrani, M.R.; Djemoui, D.; Lahcene, S.; Lahrech, M.B.; Boukenna, L.; Albuquerque, H.M.T.; Saher, L.; Rocha, D.H.A.; Monteiro, F.L.; Helguero, L.A.; Bachari, K.; Talhi, O.; Silva, A.M.S. A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells+. J. Mol. Struct., 2020, 1204, 127487.
[http://dx.doi.org/10.1016/j.molstruc.2019.127487]
[51]
Burmaoglu, S.; Ozcan, S.; Balcioglu, S.; Gencel, M.; Noma, S.A.A.; Essiz, S.; Ates, B.; Algul, O. Synthesis, biological evaluation and molecular docking studies of bis-chalcone derivatives as xanthine oxidase inhibitors and anticancer agents. Bioorg. Chem., 2019, 91, 103149.
[http://dx.doi.org/10.1016/j.bioorg.2019.103149] [PMID: 31382060]
[52]
Fathi, E.M.; Sroor, F.M.; Mahrous, K.F.; Mohamed, M.F.; Mahmoud, K.; Emara, M.; Elwahy, A.H.M.; Abdelhamid, I.A. Design, synthesis, in silico and in vitro anticancer activity of novel bis‐furanyl‐chalcone derivatives linked through alkyl spacers. ChemistrySelect, 2021, 6(24), 6202-6211.
[http://dx.doi.org/10.1002/slct.202100884]
[53]
Burmaoglu, S.; Gobek, A.; Aydin, B.O.; Yurtoglu, E.; Aydin, B.N.; Ozkat, G.Y.; Hepokur, C.; Ozek, N.S.; Aysin, F.; Altundas, R.; Algul, O. Design, synthesis and biological evaluation of novel bischalcone derivatives as potential anticancer agents. Bioorg. Chem., 2021, 111, 104882.
[http://dx.doi.org/10.1016/j.bioorg.2021.104882] [PMID: 33839582]
[54]
Li, Z.; Tian, M.; Ma, J.; Xia, S.; Lv, X.; Xia, P.; Xu, X.; Jiang, Y.; Wang, J.; Li, Z. Synthesis and biological evaluation of bis-chalcone conjugates containing lysine linker as potential anticancer agents. J. Mol. Struct., 2023, 1288, 135785.
[http://dx.doi.org/10.1016/j.molstruc.2023.135785]
[55]
Jacques, A.V.; Stefanes, N.M.; Walter, L.O.; Perondi, D.M.; Efe, F.L.; de Souza, L.F.S.; Sens, L.; Syracuse, S.M.; de Moraes, A.C.R.; de Oliveira, A.S.; Martins, C.T.; Magalhaes, L.G.; Andricopulo, A.D.; Silva, L.O.; Nunes, R.J.; Santos-Silva, M.C. Synthesis of chalcones derived from 1-naphthylacetophenone and evaluation of their cytotoxic and apoptotic effects in acute leukemia cell lines. Bioorg. Chem., 2021, 116, 105315.
[http://dx.doi.org/10.1016/j.bioorg.2021.105315] [PMID: 34496319]
[56]
Luo, Y.; Wu, W.; Zha, D.; Zhou, W.; Wang, C.; Huang, J.; Chen, S.; Yu, L.; Li, Y.; Huang, Q.; Zhang, J.; Zhang, C. Synthesis and biological evaluation of novel ligustrazine-chalcone derivatives as potential anti-triple negative breast cancer agents. Bioorg. Med. Chem. Lett., 2021, 47, 128230.
[http://dx.doi.org/10.1016/j.bmcl.2021.128230] [PMID: 34186178]
[57]
Len, J.M.; Hussein, N.; Malla, S.; McIntosh, K.; Patidar, R.; Elangovan, M.; Chandrabose, K.; Hari Narayana Moorthy, N.S.; Pandey, M.; Raman, D.; Trivedi, P.; Tiwari, A.K. A novel dialkylamino-functionalized chalcone, dml6, inhibits cervical cancer cell proliferation, in vitro, via induction of oxidative stress, intrinsic apoptosis and mitotic catastrophe. Molecules, 2021, 26, 4214.
[http://dx.doi.org/10.3390/molecules26144214]
[58]
Saito, Y.; Mizokami, A.; Izumi, K.; Naito, R.; Goto, M.; Nakagawa-Goto, K. α-Trifluoromethyl chalcones as potent anticancer agents for androgen receptor-independent prostate cancer. Molecules, 2021, 26, 2812.
[http://dx.doi.org/10.3390/molecules26092812]
[59]
Srilaxmi, D.; Sreenivasulu, R.; Mak, K.K.; Pichika, M.R.; Jadav, S.S.; Ahsan, M.J.; Rao, M.V.B. Design, synthesis, anticancer evaluation and molecular docking studies of chalcone linked pyrido[4,3-b]pyrazin-5(6H)-one derivatives. J. Mol. Struct., 2021, 1229, 129851.
[http://dx.doi.org/10.1016/j.molstruc.2020.129851]
[60]
Alidmat, M.M.; Khairuddean, M.; Nur, N.; Nik, S.; Kamal, M.; Muhammad, M.; Wahab, H.A.; Althiabat, M.G.; Alhawarri, M.B. Synthesis, characterization, molecular docking and cytotoxicity evaluation of new thienyl chalcone derivatives against breast cancer cells. Sys. Rev. Pharm., 2022, 13, 1-11.
[http://dx.doi.org/10.31858/0975-8453.13.1.1-11]
[61]
Li, W.; Xu, F.; Shuai, W.; Sun, H.; Yao, H.; Ma, C.; Xu, S.; Yao, H.; Zhu, Z.; Yang, D.H.; Chen, Z.S.; Xu, J. Discovery of novel quinoline–chalcone derivatives as potent antitumor agents with microtubule polymerization inhibitory activity. J. Med. Chem., 2019, 62(2), 993-1013.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01755] [PMID: 30525584]
[62]
Darwish, M.I.M.; Moustafa, A.M.; Youssef, A.M.; Mansour, M.; Yousef, A.I.; El Omri, A.; Shawki, H.H.; Mohamed, M.F.; Hassaneen, H.M.; Abdelhamid, I.A.; Oishi, H. Novel tetrahydro-[1,2,4]triazolo[3,4-a]isoquinoline chalcones suppress breast carcinoma through cell cycle arrests and apoptosis. Molecules, 2023, 28, 3338.
[http://dx.doi.org/10.3390/molecules28083338]
[63]
Ayati, A.; Esmaeili, R.; Moghimi, S.; Oghabi Bakhshaiesh, T.; Eslami-S, Z.; Majidzadeh-A, K.; Safavi, M.; Emami, S.; Foroumadi, A. Synthesis and biological evaluation of 4-amino-5-cinnamoylthiazoles as chalcone-like anticancer agents. Eur. J. Med. Chem., 2018, 145, 404-412.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.015] [PMID: 29335206]
[64]
Ramya, P.V.S.; Guntuku, L.; Angapelly, S.; Digwal, C.S.; Lakshmi, U.J.; Sigalapalli, D.K.; Babu, B.N.; Naidu, V.G.M.; Kamal, A. Synthesis and biological evaluation of curcumin inspired imidazo[1,2-a]pyridine analogues as tubulin polymerization inhibitors. Eur. J. Med. Chem., 2018, 143, 216-231.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.010] [PMID: 29174816]
[65]
Mohamed, M.F.; Ibrahim, N.S.; Saddiq, A.A.; Almaghrabi, O.A.; Al-Hazemi, M.E.; Hassaneen, H.M.; Abdelhamid, I.A. Theoretical and molecular mechanistic investigations of novel (3-(furan-2-yl)pyrazol-4-yl) chalcones against lung carcinoma cell line (A549). Naunyn Schmiedebergs Arch. Pharmacol., 2023, 396(4), 719-736.
[http://dx.doi.org/10.1007/s00210-022-02344-x] [PMID: 36469109]
[66]
Vilková, M.; Michalková, R.; Kello, M.; Sabolová, D.; Takáč, P.; Kudličková, Z.; Garberová, M.; Tvrdoňová, M.; Béres, T.; Mojžiš, J. Discovery of novel acridine-chalcone hybrids with potent DNA binding and antiproliferative activity against MDA-MB-231 and MCF-7 cells. Med. Chem. Res., 2022, 31(8), 1323-1338.
[http://dx.doi.org/10.1007/s00044-022-02911-0]
[67]
Eynde, V.; Mass, E.B.; De Lima, C.A.; D’oca, M.G.M.; Sciani, J.M.; Longato, G.B.; Russowsky, D. Synthesis, selective cytotoxic activity against human breast cancer mcf7 cell line and molecular docking of some chalcone-dihydropyrimidone hybrids. Drugs Drug Candidates, 2022, 1, 3-21.
[http://dx.doi.org/10.3390/ddc1010002]
[68]
Mansour, M.A.; Oraby, M.A.; Muhammad, Z.A.; Lasheen, D.S.; Gaber, H.M.; Abouzid, K.A.M. Identification of novel furo[2,3- d]pyrimidine based chalcones as potent anti-breast cancer agents: synthesis, in vitro and in vivo biological evaluation. RSC Advances, 2022, 12(13), 8193-8201.
[http://dx.doi.org/10.1039/D2RA00889K] [PMID: 35424720]
[69]
Yan, J.; Xu, Y.; Jin, X.; Zhang, Q.; Ouyang, F.; Han, L.; Zhan, M.; Li, X.; Liang, B.; Huang, X. Structure modification and biological evaluation of indole-chalcone derivatives as anti-tumor agents through dual targeting tubulin and TrxR. Eur. J. Med. Chem., 2022, 227, 113897.
[http://dx.doi.org/10.1016/j.ejmech.2021.113897] [PMID: 34649064]
[70]
del Rosario, H.; Saavedra, E.; Brouard, I.; González-Santana, D.; García, C.; Spínola-Lasso, E.; Tabraue, C.; Quintana, J.; Estévez, F. Structure-activity relationships reveal a 2-furoyloxychalcone as a potent cytotoxic and apoptosis inducer for human U-937 and HL-60 leukaemia cells. Bioorg. Chem., 2022, 127, 105926.
[http://dx.doi.org/10.1016/j.bioorg.2022.105926] [PMID: 35717804]
[71]
Kone, A.; Ouattara, M.; Zon, D.; Chany, A.C.; Collet, S.; Sissouma, D.; Adjou, A. Synthesis and cytotoxic activity of 3-benzimidazolyl-chalcones derivatives. World J. Pharm. Res., 2018, 7, 1589-1601.
[72]
El-Wakil, M.H.; Khattab, S.N.; El-Yazbi, A.F.; El-Nikhely, N.; Soffar, A.; Khalil, H.H. New chalcone-tethered 1,3,5-triazines potentiate the anticancer effect of cisplatin against human lung adenocarcinoma A549 cells by enhancing DNA damage and cell apoptosis. Bioorg. Chem., 2020, 105, 104393.
[http://dx.doi.org/10.1016/j.bioorg.2020.104393] [PMID: 33120322]
[73]
Manna, T.; Pal, K.; Jana, K.; Misra, A.K. Anti-cancer potential of novel glycosylated 1,4-substituted triazolylchalcone derivatives. Bioorg. Med. Chem. Lett., 2019, 29(19), 126615.
[http://dx.doi.org/10.1016/j.bmcl.2019.08.019] [PMID: 31447083]
[74]
Duddukuri, N.K.; Thatikonda, S.; Godugu, C.; Rathod, A.K.; Doijad, N. Synthesis of novel thiophene-chalcone derivatives as anticancer-and apoptosis-inducing agents. ChemistrySelect, 2018, 3, 6859-6864.
[http://dx.doi.org/10.1002/slct.201800613]
[75]
Rachala, M.R.; Maringanti, T.C.; Eppakayala, L. Design, synthesis and anticancer evaluation of chalcone derivatives of oxazol-4-yl)-2-morpholinothiazole as anticancer agents. Results in Chemistry, 2023, 5, 100977.
[http://dx.doi.org/10.1016/j.rechem.2023.100977]
[76]
Osmaniye, D.; Sağlık, B.N.; Khalilova, N.; Levent, S.; Bayazıt, G.; Gül, Ü.D.; Özkay, Y.; Kaplancıklı, Z.A. Design, synthesis, and biological evaluation studies of novel naphthalene-chalcone hybrids as antimicrobial, anticandidal, anticancer, and VEGFR-2 inhibitors. ACS Omega, 2023, 8(7), 6669-6678.
[http://dx.doi.org/10.1021/acsomega.2c07256] [PMID: 36844559]
[77]
Yang, C.Y.; Lee, M.Y.; Chen, Y.L.; Shiau, J.P.; Tsai, Y.H.; Yang, C.N.; Chang, H.W.; Tseng, C.H. Synthesis and anticancer evaluation of 4-anilinoquinolinylchalcone derivatives. Int. J. Mol. Sci., 2023, 24(7), 6034.
[http://dx.doi.org/10.3390/ijms24076034] [PMID: 37047007]
[78]
Susanti Vh, E.; Eko Setyowati, W.A. A green synthesis of chalcones as an antioxidant and anticancer. IOP Conf. Ser. Mater. Sci. Eng., 2018, 299, p. 012077.
[http://dx.doi.org/10.1088/1757-899X/299/1/012077]
[79]
Devi, D.L.; Aswini, R.; Kothai, S. Synthesis and characterisation of chalcone based copolyesters and their anticancer activity. IJPSR, 2018, 9, 1589-1593.
[80]
Dong, N.; Liu, X.; Zhao, T.; Wang, L.; Li, H.; Zhang, S.; Li, X.; Bai, X.; Zhang, Y.; Yang, B. Apoptosis-inducing effects and growth inhibitory of a novel chalcone, in human hepatic cancer cells and lung cancer cells. Biomed. Pharmacother., 2018, 105, 195-203.
[http://dx.doi.org/10.1016/j.biopha.2018.05.126] [PMID: 29857299]
[81]
Abosalim, H.M.; Nael, M.A.; El-Moselhy, T.F. Design, synthesis and molecular docking of chalcone derivatives as potential anticancer agents. ChemistrySelect, 2021, 6(4), 888-895.
[http://dx.doi.org/10.1002/slct.202004088]
[82]
Baek, S.; Nah, S.; Park, J.Y.; Lee, S.J.; Kang, Y.G.; Kwon, S.H.; Oh, S.J.; Lee, K.P.; Moon, B.S. A novel chalcone derivative exerts anti-cancer effects by promoting apoptotic cell death of human pancreatic cancer cells. Bioorg. Med. Chem., 2023, 93, 117458.
[http://dx.doi.org/10.1016/j.bmc.2023.117458] [PMID: 37634418]
[83]
Horta, B.; Freitas-Silva, J.; Silva, J.; Dias, F.; Teixeira, A.L.; Medeiros, R.; Cidade, H.; Pinto, M.; Cerqueira, F. Antitumor effect of chalcone derivatives against human prostate (LNCaP and PC-3), Cervix HPV-positive (HeLa) and lymphocyte (Jurkat) cell lines and their ef-fect on macrophage functions. Molecules, 2023, 28(5), 2159.
[http://dx.doi.org/10.3390/molecules28052159] [PMID: 36903405]