Synthesis, DPPH Radical Scavenging, Cytotoxic Activity, and Apoptosis Induction Efficacy of Novel Thiazoles and Bis-thiazoles

Page: [1081 - 1090] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Heterocyclic materials-containing thiazoles exhibited incredible importance in pharmaceutical chemistry and drug design due to their extensive biological properties.

Methods: Synthesis of thiazoles and bis-thiazoles from the reaction of 2-((6-Nitrobenzo[ d][1,3]dioxol-5-yl)methylene)hydrazine-1-carbothioamide with hydrazonoyl chlorides in dioxane and in the existence of triethylamine as basic catalyst. The antioxidant, in vitro antiproliferative, and cytotoxicity efficacy of thiazoles and bis-thiazoles were measured.

Results: In this work, novel series of 5-methyl-2-(2-(-(6-nitrobenzo[d][1,3]dioxol-5-yl)methylene) hydrazinyl)-4-(aryldiazenyl)thiazoles (4a-f) were prepared via the reaction of hydrazonoyl chlorides 2a-f with 2-((6-nitrobenzo[d][1,3]dioxol-5-yl)methylene)hydrazine-1-carbothioamide (1) in dioxane and employing triethylamine as basic catalyst. Following the same procedure, bisthiazoles (6, 8, and 10) have been synthesized by utilizing bis-hydrazonoyl chlorides (5, 7, and 9) and carbothioamide 1 in a molar ratio (1:2), respectively. The distinctive features in the structure of isolated products were elucidated by spectroscopic tools and elemental analyses. The antioxidant, in vitro anti-proliferative, cytotoxicity, and anti-cancer efficacy of thiazoles and bis-thiazoles were evaluated. Compounds 4d and 4f were the most potent antioxidant agents. Gene expression of apoptosis markers and fragmentation assay of DNA were assessed to explore the biochemical mechanism of synthesized products. Thiazoles significantly inhibited cell growth and proliferation more than bis-thiazoles. They induced apoptosis through induction of apoptotic gene expression P53 and downregulation of antiapoptotic gene expression Bcl-2. Moreover, they induced fragmentation of DNA in cancer cells, indicating that they could be employed as anticancer agents by inhibiting tumor growth and progression and can be considered effective compounds in the strategy of anti-cancer agents’ discovery.

Conclusion: Synthesis, DPPH Radical Scavenging, Cytotoxic activity, and Apoptosis Induction Efficacy based on Novel Thiazoles and Bis-thiazoles.

Graphical Abstract

[1]
Rather, R.A.; Bhagat, M. Cancer chemoprevention and piperine: Molecular mechanisms and therapeutic opportunities. Front. Cell Dev. Biol., 2018, 6, 10.
[http://dx.doi.org/10.3389/fcell.2018.00010] [PMID: 29497610]
[2]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[3]
Chen, Y.H.; Yang, S.F.; Yang, C.K.; Tsai, H.D.; Chen, T.H.; Chou, M.C.; Hsiao, Y.H. Metformin induces apoptosis and inhibits migration by activating the AMPK/p53 axis and suppressing PI3K/AKT signaling in human cervical cancer cells. Mol. Med. Rep., 2020, 23(1), 88.
[http://dx.doi.org/10.3892/mmr.2020.11725] [PMID: 33236135]
[4]
Kathawala, R.J.; Gupta, P.; Ashby, C.R., Jr; Chen, Z.S. The modulation of ABC transporter-mediated multidrug resistance in cancer: A review of the past decade. Drug Resist. Updat., 2015, 18, 1-17.
[http://dx.doi.org/10.1016/j.drup.2014.11.002]
[5]
Pawar, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Synthetic and medicinal perspective of fused-thiazoles as anticancer agents. Anticancer. Agents Med. Chem., 2020, 21(11), 1379-1402.
[http://dx.doi.org/10.2174/1871520620666200728133017]
[6]
de Santana, T.I.; Barbosa, M.O.; Gomes, P.A.T.M.; da Cruz, A.C.N.; da Silva, T.G.; Leite, A.C.L. Synthesis, anticancer activity and mechanism of action of new thiazole derivatives. Eur. J. Med. Chem., 2018, 144, 874-886.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.040] [PMID: 29329071]
[7]
Jain, S.; Pattnaik, S.; Pathak, K.; Kumar, S.; Pathak, D.; Jain, S.; Vaidya, A. Anticancer potential of thiazole derivatives: A retrospective review. Mini Rev. Med. Chem., 2018, 18(8), 640-655.
[http://dx.doi.org/10.2174/1389557517666171123211321 ] [PMID: 29173166]
[8]
Gadekar, P.K.; Urunkar, G.; Roychowdhury, A.; Sharma, R.; Bose, J.; Khanna, S.; Damre, A.; Sarveswari, S. Design, synthesis and biological evaluation of 2,3-dihydroimidazo[2,1-b]thiazoles as dual EGFR and IGF1R inhibitors. Bioorg. Chem., 2021, 115, 105151.
[http://dx.doi.org/10.1016/j.bioorg.2021.105151] [PMID: 34333424]
[9]
Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, 97, 699-718.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.015]
[10]
de Oliveira, V.V.G.; Aranda de Souza, M.A.; Cavalcanti, R.R.M.; de Oliveira Cardoso, M.V.; Leite, A.C.L.; da Silva Junior, V.A.; de Figueiredo, R.C.B.Q. Study of in vitro biological activity of thiazoles on Leishmania (Leishmania) infantum. J. Glob. Antimicrob. Resist., 2020, 22, 414-421.
[http://dx.doi.org/10.1016/j.jgar.2020.02.028] [PMID: 32165288]
[11]
Sharma, P.C.; Bansal, K.K.; Sharma, A.; Sharma, D.; Deep, A. Thiazole-containing compounds as therapeutic targets for cancer therapy. Eur. J. Med. Chem., 2020, 188, 112016.
[http://dx.doi.org/10.1016/j.ejmech.2019.112016 ] [PMID: 31926469]
[12]
Majidi, Z.; Hosseinkhani, S.; Amiri-Dashatan, N.; Emamgholipour, S.; Tutunchi, S.; Hashemi, J.; Ghorbani, F.; Koushki, M. Effect of rosiglitazone on circulating malondialdehyde (MDA) level in diabetes based on a systematic review and meta-analysis of eight clinical trials. J. Investig. Med., 2021, 69(3), 697-703.
[http://dx.doi.org/10.1136/jim-2020-001588 ] [PMID: 33408159]
[13]
Mahmoud, H.K.; Sayed, A.R.; Abdel-Aziz, M.M.; Gomha, S.M. Synthesis of new thiazole clubbed imidazo[2,1-b]thiazole hybrid as antimycobacterial agents. Med. Chem., 2022, 10(9), 1100-1108.
[http://dx.doi.org/10.2174/1573406418666220413095854]
[14]
Sayed, A.R.; Gomha, S.M.; Abdelrazek, F.M.; Farghaly, M.S.; Hassan, S.A.; Metz, P. Design, efficient synthesis and molecular docking of some novel thiazolyl-pyrazole derivatives as anticancer agents. BMC Chem., 2019, 13(1), 116.
[http://dx.doi.org/10.1186/s13065-019-0632-5 ] [PMID: 31572983]
[15]
Al-Omair, M.A.; Sayed, A.R.; Youssef, M.M. Synthesis and biological evaluation of bisthiazoles and polythiazoles. Molecules, 2018, 23, 23051133.
[http://dx.doi.org/10.3390/molecules23051133]
[16]
Aly, A.A.; Brase, S.; Hassan, A.A.; Mohamed, N.K.; El-Haleem, L.E.A.; Nieger, M.; Morsy, N.M.; Alshammari, M.B.; Ibrahim, M.A.A.; Abdelhafez, E.M.N. Design, synthesis, and molecular docking of paracyclophanyl-thiazole hybrids as novel CDK1 inhibitors and apoptosis inducing anti-melanoma agents. Molecules, 2020, 25, 25235569.
[http://dx.doi.org/10.3390/molecules25235569]
[17]
Dawoud, N.T.A.; El-Fakharany, E.M.; Abdallah, A.E.; El-Gendi, H.; Lotfy, D.R. Synthesis, and docking studies of novel heterocycles incorporating the indazolylthiazole moiety as antimicrobial and anticancer agents. Sci. Rep., 2022, 12(1), 3424.
[http://dx.doi.org/10.1038/s41598-022-07456-1] [PMID: 35236889]
[18]
Rashdan, H.R.M.; Abdelmonsef, A.H.; Shehadi, I.A.; Gomha, S.M.; Soliman, A.M.M.; Mahmoud, H.K. Synthesis, molecular docking screening and anti-proliferative potency evaluation of some new imidazo[2,1-b]thiazole linked thiadiazole conjugates. Molecules, 2020, 25, 25214997.
[http://dx.doi.org/10.3390/molecules25214997]
[19]
Mahmoud, H.K.; Kassab, R.M.; Gomha, S.M. Synthesis and characterization of some novel bis‐thiazoles. J. Heterocycl. Chem., 2019, 56(11), 3157-3163.
[http://dx.doi.org/10.1002/jhet.3717]
[20]
Salem, M.E.; Hosny, M.; Darweesh, A.F.; Elwahy, A.H.M. Synthesis of novel bis- and poly(aryldiazenylthiazoles). Synth. Commun., 2019, 49(18), 2319-2329.
[http://dx.doi.org/10.1080/00397911.2019.1620283]
[21]
Althagafi, I.I.; Abouzied, A.S.; Farghaly, T.A.; Al-Qurashi, N.T.; Alfaifi, M.Y.; Shaaban, M.R.; Abdel Aziz, M.R. Novel nano-sized bis -indoline derivatives as antitumor agents. J. Heterocycl. Chem., 2019, 56(2), 391-399.
[http://dx.doi.org/10.1002/jhet.3410]
[22]
Farghaly, T.A.; Abo Alnaja, A.M.; El-Ghamry, H.A.; Shaaban, M.R. Synthesis and DNA binding of novel bioactive thiazole derivatives pendent to N-phenylmorpholine moiety. Bioorg. Chem., 2020, 102, 104103.
[http://dx.doi.org/10.1016/j.bioorg.2020.104103] [PMID: 32717695]
[23]
Meriane, D.; Genta-Jouve, G.; Kaabeche, M.; Michel, S.; Boutefnouchet, S. Rapid identification of antioxidant compounds of Genista saharae Coss. & Dur. by combination of DPPH scavenging assay and HPTLC-MS. Molecules, 2014, 19(4), 4369-4379.
[http://dx.doi.org/10.3390/molecules19044369] [PMID: 24722590]
[24]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3 ] [PMID: 10381194]
[25]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65, 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4]
[26]
Kim, T.; Jung, U.; Cho, D.Y.; Chung, A.S. Se-Methylselenocysteine induces apoptosis through caspase activation in HL-60 cells. Carcinogenesis, 2001, 22(4), 559-565.
[http://dx.doi.org/10.1093/carcin/22.4.559] [PMID: 11285189]
[27]
Zuo, Y.; Shields, S.K.; Chakraborty, C. Enhanced intrinsic migration of aggressive breast cancer cells by inhibition of Rac1 GTPase. Biochem. Biophys. Res. Commun., 2006, 351, 361-367.
[http://dx.doi.org/10.1016/j.bbrc.2006.10.043]
[28]
Li, H. Sanguinarine inhibits osteoclast formation and bone resorption via suppressing RANKL-induced activation of NF-؛خB and ERK signaling pathways. Biochem. Biophys. Res. Commun., 2013, 430, 951-956.
[http://dx.doi.org/10.1016/j.bbrc.2012.12.051] [PMID: 23261473]
[29]
Porichi, O.; Nikolaidou, M.E.; Apostolaki, A.; Tserkezoglou, A.; Arnogiannaki, N.; Kassanos, D.; Margaritis, L.; Panotopoulou, E. BCL-2, BAX and P53 expression profiles in endometrial carcinoma as studied by real-time PCR and immunohistochemistry. Anticancer Res., 2009, 29(10), 3977-3982.
[http://dx.doi.org/29/10/3977] [PMID: 19846939]
[30]
Sayed, A.R.; Al-Faiyz, Y.S.; Elsawy, H.; Shaaban, S.; Mohamed, M.A. Synthesis and biochemical studies of novel mon-azothiazoles and bis-azothiazoles based on 2-(4-(Dimethylamino)Benzylidene)hydrazine-1-carbothioamide. Polycycl. Aromat. Compd., 2022, 12, 2049326.
[http://dx.doi.org/10.1080/10406638.2022.2049326]
[31]
dos Santos, T.; Varela, J.; Lynch, I.; Salvati, A.; Dawson, K.A. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One, 2011, 6(9), e24438.
[http://dx.doi.org/10.1371/journal.pone.0024438] [PMID: 21949717]
[32]
Andricopulo, A.D.; Akoachere, M.B.; Krogh, R.; Nickel, C.; McLeish, M.J.; Kenyon, G.L.; Arscott, L.D.; Williams, C.H., Jr; Davioud-Charvet, E.; Becker, K. Specific inhibitors of Plasmodium falciparum thioredoxin reductase as potential antimalarial agents. Bioorg. Med. Chem. Lett., 2006, 16(8), 2283-2292.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.027] [PMID: 16458512]
[33]
Bangade, V.M.; Mali, P.R.; Meshram, H.M. Synthesis of potent anticancer substituted 5-benzimidazol-2-amino thiazoles controlled by bifunctional hydrogen bonding under microwave irradiations. J. Org. Chem., 2021, 86(9), 6056-6065.
[http://dx.doi.org/10.1021/acs.joc.0c02542] [PMID: 33872008]
[34]
Sridhar, R.; Perumal, P.T.; Etti, S.; Shanmugam, G.; Ponnuswamy, M.N.; Prabavathy, V.R.; Mathivanan, N. Design, synthesis and anti-microbial activity of 1H-pyrazole carboxylates. Bioorg. Med. Chem. Lett., 2004, 14(24), 6035-6040.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.066] [PMID: 15546724]
[35]
Dawood, K.M.; Eldebss, T.M.; El-Zahabi, H.S.; Yousef, M.H.; Metz, P. Synthesis of some new pyrazole-based 1,3-thiazoles and 1,3,4-thiadiazoles as anticancer agents. Eur. J. Med. Chem., 2013, 70, 740-779.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.042]
[36]
Grigalius, I.; Petrikaite, V. Relationship between antioxidant and anticancer activity of trihydroxyflavones. Molecules, 2017, 22(12), 2169.
[http://dx.doi.org/10.3390/molecules22122169] [PMID: 29215574]
[37]
Volarevic, V.; Djokovic, B.; Jankovic, M.G.; Harrell, C.R.; Fellabaum, C.; Djonov, V.; Arsenijevic, N. Molecular mechanisms of cisplatin-induced nephrotoxicity: A balance on the knife edge between renoprotection and tumor toxicity. J. Biomed. Sci., 2019, 26(1), 25.
[http://dx.doi.org/10.1186/s12929-019-0518-9] [PMID: 30866950]
[38]
Arora, S.; Tandon, S. DNA fragmentation and cell cycle arrest: A hallmark of apoptosis induced by Ruta graveolens in human colon cancer cells. Homeopathy, 2015, 104, 36-47.
[http://dx.doi.org/10.1016/j.homp.2014.10.001]
[39]
Li, Q.X.; Yu, D.H.; Liu, G.; Ke, N.; McKelvy, J.; Wong-Staal, F. Selective anticancer strategies via intervention of the death pathways relevant to cell transformation. Cell Death Differ., 2008, 15, 1197-1210.
[http://dx.doi.org/10.1038/cdd.2008.48]
[40]
Bauer, J.H.; Helfand, S.L. New tricks of an old molecule: Lifespan regulation by p53. Aging Cell, 2006, 5, 437-440.
[http://dx.doi.org/10.1111/j.1474-9726.2006.00228.x]
[41]
Hientz, K.; Mohr, A.; Bhakta-Guha, D.; Efferth, T. The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget, 2017, 8(5), 8921-8946.
[http://dx.doi.org/10.18632/oncotarget.13475] [PMID: 27888811]
[42]
Hardwick, J.M.; Soane, L. Multiple functions of BCL-2 family proteins. Cold Spring Harb. Perspect. Biol., 2013, 5(2), a008722.
[http://dx.doi.org/10.1101/cshperspect.a008722] [PMID: 23378584]
[43]
Reed, J.C. Bcl-2-family proteins and hematologic malignancies: History and future prospects. Blood, 2008, 111(7), 3322-3330.
[http://dx.doi.org/10.1182/blood-2007-09-078162] [PMID: 18362212]