Cellular Transdifferentiation: A Crucial Mechanism of Fibrosis in Systemic Sclerosis

Page: [388 - 404] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Systemic Sclerosis (SSc) is a systemic autoimmune disease of unknown etiology with a highly complex pathogenesis that despite extensive investigation is not completely understood. The clinical and pathologic manifestations of the disease result from three distinct processes: 1) Severe and frequently progressive tissue fibrosis causing exaggerated and deleterious accumulation of interstitial collagens and other extracellular matrix molecules in the skin and various internal organs; 2) extensive fibroproliferative vascular lesions affecting small arteries and arterioles causing tissue ischemic alterations; and 3) cellular and humoral immunity abnormalities with the production of numerous autoantibodies, some with very high specificity for SSc. The fibrotic process in SSc is one of the main causes of disability and high mortality of the disease. Owing to its essentially universal presence and the severity of its clinical effects, the mechanisms involved in the development and progression of tissue fibrosis have been extensively investigated, however, despite intensive investigation, the precise molecular mechanisms have not been fully elucidated. Several recent studies have suggested that cellular transdifferentiation resulting in the phenotypic conversion of various cell types into activated myofibroblasts may be one important mechanism. Here, we review the potential role that cellular transdifferentiation may play in the development of severe and often progressive tissue fibrosis in SSc.

[1]
Varga J, Abraham D. Systemic sclerosis: A prototypic multisystem fibrotic disorder. J Clin Invest 2007; 117(3): 557-67.
[http://dx.doi.org/10.1172/JCI31139] [PMID: 17332883]
[2]
Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med 2009; 360(19): 1989-2003.
[http://dx.doi.org/10.1056/NEJMra0806188] [PMID: 19420368]
[3]
Allanore Y, Simms R, Distler O, et al. Systemic sclerosis. Nat Rev Dis Primers 2015; 1(1): 15002.
[http://dx.doi.org/10.1038/nrdp.2015.2] [PMID: 27189141]
[4]
Denton CP, Khanna D. Systemic sclerosis. Lancet 2017; 390(10103): 1685-99.
[http://dx.doi.org/10.1016/S0140-6736(17)30933-9] [PMID: 28413064]
[5]
Jimenez SA, Derk CT. Following the molecular pathways toward an understanding of the pathogenesis of systemic sclerosis. Ann Intern Med 2004; 140(1): 37-50.
[http://dx.doi.org/10.7326/0003-4819-140-1-200401060-00010] [PMID: 14706971]
[6]
Abraham DJ, Krieg T, Distler J, Distler O. Overview of pathogenesis of systemic sclerosis. Rheumatology 2006; 48 (3): iii3-7.
[http://dx.doi.org/10.1093/rheumatology/ken481] [PMID: 19487220]
[7]
Katsumoto TR, Whitfield ML, Connolly MK. The pathogenesis of systemic sclerosis. Annu Rev Pathol 2011; 6(1): 509-37.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130312] [PMID: 21090968]
[8]
Stern EP, Denton CP. The pathogenesis of systemic sclerosis. Rheum Dis Clin North Am 2015; 41(3): 367-82.
[http://dx.doi.org/10.1016/j.rdc.2015.04.002] [PMID: 26210124]
[9]
Cutolo M, Soldano S, Smith V. Pathophysiology of systemic sclerosis: Current understanding and new insights. Expert Rev Clin Immunol 2019; 15(7): 753-64.
[http://dx.doi.org/10.1080/1744666X.2019.1614915] [PMID: 31046487]
[10]
Truchetet ME, Brembilla NC, Chizzolini C. Current concepts on the pathogenesis of systemic sclerosis. Clin Rev Allergy Immunol 2021; 64(3): 262-83.
[http://dx.doi.org/10.1007/s12016-021-08889-8] [PMID: 34487318]
[11]
Krieg T, Abraham D, Lafyatis R. Fibrosis in connective tissue disease: The role of the myofibroblast and fibroblast-epithelial cell interactions. Arthritis Res Ther 2007; 9(Suppl 2) (2): S4.
[http://dx.doi.org/10.1186/ar2188] [PMID: 17767742]
[12]
Abraham DJ, Eckes B, Rajkumar V, Krieg T. New developments in fibroblast and myofibroblast biology: Implications for fibrosis and scleroderma. Curr Rheumatol Rep 2007; 9(2): 136-43.
[http://dx.doi.org/10.1007/s11926-007-0008-z] [PMID: 17502044]
[13]
Hinz B, Phan SH, Thannickal VJ, et al. Recent developments in myofibroblast biology: Paradigms for connective tissue remodeling. Am J Pathol 2012; 180(4): 1340-55.
[http://dx.doi.org/10.1016/j.ajpath.2012.02.004] [PMID: 22387320]
[14]
van Caam A, Vonk M, van den Hoogen F, van Lent P, van der Kraan P. Unraveling SSc pathophysiology; the myofibroblast. Front Immunol 2018; 9: 2452.
[http://dx.doi.org/10.3389/fimmu.2018.02452] [PMID: 30483246]
[15]
Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. The role of pro-fibrotic myofibroblasts in systemic sclerosis: From origin to therapeutic targeting. Curr Mol Med 2022; 22(3): 209-39.
[http://dx.doi.org/10.2174/0929867328666210325102749] [PMID: 33823766]
[16]
Kirk TZ, Mark ME, Chua CC, Chua BH, Mayes MD. Myofibroblasts from scleroderma skin synthesize elevated levels of collagen and tissue inhibitor of metalloproteinase (TIMP-1) with two forms of TIMP-1. J Biol Chem 1995; 270(7): 3423-8.
[http://dx.doi.org/10.1074/jbc.270.7.3423] [PMID: 7852429]
[17]
Gabbiani G, Ryan GB, Majno G. Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 1971; 27(5): 549-50.
[http://dx.doi.org/10.1007/BF02147594] [PMID: 5132594]
[18]
Majno G, Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR. Contraction of granulation tissue in vitro : Similarity to smooth muscle. Science 1971; 173(3996): 548-50.
[http://dx.doi.org/10.1126/science.173.3996.548] [PMID: 4327529]
[19]
Majno G. The story of the myofibroblasts. Am J Surg Pathol 1979; 3(6): 535-42.
[http://dx.doi.org/10.1097/00000478-197912000-00006] [PMID: 534390]
[20]
Gabbiani G. The myofibroblast: A key cell for wound healing and fibrocontractive diseases. Prog Clin Biol Res 1981; 54: 183-94.
[PMID: 7015359]
[21]
LeRoy EC. Increased collagen synthesis by scleroderma skin fibroblasts in vitro : A possible defect in the regulation or activation of the scleroderma fibroblast. J Clin Invest 1974; 54(4): 880-9.
[http://dx.doi.org/10.1172/JCI107827] [PMID: 4430718]
[22]
Buckingham RB, Prince RK, Rodnan GP, Taylor F. Increased collagen accumulation in dermal fibroblast cultures from patients with progressive systemic sclerosis (scleroderma). J Lab Clin Med 1978; 92(1): 5-21.
[PMID: 351108]
[23]
Vuorio TK, Kähäri VM, Lehtonen A, Vuorio EI. Fibroblast activation in scleroderma. Scand J Rheumatol 1984; 13(3): 229-37.
[http://dx.doi.org/10.3109/03009748409100391] [PMID: 6484539]
[24]
Ebmeier S, Horsley V. Origin of fibrosing cells in systemic sclerosis. Curr Opin Rheumatol 2015; 27(6): 555-62.
[http://dx.doi.org/10.1097/BOR.0000000000000217] [PMID: 26352735]
[25]
Rosa I, Romano E, Fioretto BS, Manetti M. The contribution of mesenchymal transitions to the pathogenesis of systemic sclerosis. Eur J Rheumatol 2020; 7(-3): 157-64.
[http://dx.doi.org/10.5152/eurjrheum.2019.19081] [PMID: 31922472]
[26]
Tabib T, Morse C, Wang T, Chen W, Lafyatis R. SFRP2/DPP4 and FMO1/LSP1 define major fibroblast populations in human skin. J Invest Dermatol 2018; 138(4): 802-10.
[http://dx.doi.org/10.1016/j.jid.2017.09.045] [PMID: 29080679]
[27]
Tabib T, Huang M, Morse N, et al. Myofibroblast transcriptome indicates SFRP2hi fibroblast progenitors in systemic sclerosis skin. Nat Commun 2021; 12(1): 4384.
[http://dx.doi.org/10.1038/s41467-021-24607-6] [PMID: 34282151]
[28]
Hay ED. An overview of epithelio-mesenchymal transformation. Cells Tissues Organs 1995; 154(1): 8-20.
[http://dx.doi.org/10.1159/000147748] [PMID: 8714286]
[29]
Hay ED, Zuk A. Transformations between epithelium and mesenchyme: Normal, pathological, and experimentally induced. Am J Kidney Dis 1995; 26(4): 678-90.
[http://dx.doi.org/10.1016/0272-6386(95)90610-X] [PMID: 7573028]
[30]
Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871-90.
[http://dx.doi.org/10.1016/j.cell.2009.11.007] [PMID: 19945376]
[31]
Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG . Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002; 110(3): 341-50.
[http://dx.doi.org/10.1172/JCI0215518] [PMID: 12163453]
[32]
Kalluri R, Neilson EG . Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2003; 112(12): 1776-84.
[http://dx.doi.org/10.1172/JCI200320530] [PMID: 14679171]
[33]
Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119(6): 1420-8.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[34]
Guarino M, Tosoni A, Nebuloni M. Direct contribution of epithelium to organ fibrosis: Epithelial-mesenchymal transition. Hum Pathol 2009; 40(10): 1365-76.
[http://dx.doi.org/10.1016/j.humpath.2009.02.020] [PMID: 19695676]
[35]
Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol 2011; 27(1): 347-76.
[http://dx.doi.org/10.1146/annurev-cellbio-092910-154036] [PMID: 21740232]
[36]
Armstrong EJ, Bischoff J. Heart valve development: Endothelial cell signaling and differentiation. Circ Res 2004; 95(5): 459-70.
[http://dx.doi.org/10.1161/01.RES.0000141146.95728.da] [PMID: 15345668]
[37]
Arciniegas E, Neves CY, Carrillo LM, Zambrano EA, Ramírez R. Endothelial-mesenchymal transition occurs during embryonic pulmonary artery development. Endothelium 2005; 12(4): 193-200.
[http://dx.doi.org/10.1080/10623320500227283] [PMID: 16162442]
[38]
Bischoff J. Endothelial-to-mesenchymal transition. Circ Res 2019; 124(8): 1163-5.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.314813] [PMID: 30973806]
[39]
Karasek MA. Does transformation of microvascular endothelial cells into myofibroblasts play a key role in the etiology and pathology of fibrotic disease? Med Hypotheses 2007; 68(3): 650-5.
[http://dx.doi.org/10.1016/j.mehy.2006.07.053] [PMID: 17045756]
[40]
Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 2011; 179(3): 1074-80.
[http://dx.doi.org/10.1016/j.ajpath.2011.06.001] [PMID: 21763673]
[41]
Piera-Velazquez S, Jimenez SA. Endothelial to mesenchymal transition: Role in physiology and in the pathogenesis of human diseases. Physiol Rev 2019; 99(2): 1281-324.
[http://dx.doi.org/10.1152/physrev.00021.2018] [PMID: 30864875]
[42]
Sun X, Nkennor B, Mastikhina O, Soon K, Nunes SS. Endothelium-mediated contributions to fibrosis. Semin Cell Dev Biol 2020; 101: 78-86.
[http://dx.doi.org/10.1016/j.semcdb.2019.10.015] [PMID: 31791693]
[43]
Yoshimatsu Y, Watabe T. Emerging roles of inflammation-mediated endothelial–mesenchymal transition in health and disease. Inflamm Regen 2022; 42(1): 9.
[http://dx.doi.org/10.1186/s41232-021-00186-3] [PMID: 35130955]
[44]
Mostmans Y, Cutolo M, Giddelo C, et al. The role of endothelial cells in the vasculopathy of systemic sclerosis: A systematic review. Autoimmun Rev 2017; 16(8): 774-86.
[http://dx.doi.org/10.1016/j.autrev.2017.05.024] [PMID: 28572048]
[45]
Manetti M, Romano E, Rosa I, et al. Endothelial-to-mesenchymal transition contributes to endothelial dysfunction and dermal fibrosis in systemic sclerosis. Ann Rheum Dis 2017; 76(5): 924-34.
[http://dx.doi.org/10.1136/annrheumdis-2016-210229] [PMID: 28062404]
[46]
Romano E, Rosa I, Fioretto BS, Matucci-Cerinic M, Manetti M. New insights into profibrotic myofibroblast formation in systemic sclerosis: When the vascular wall becomes the enemy. Life 2021; 11(7): 610.
[http://dx.doi.org/10.3390/life11070610] [PMID: 34202703]
[47]
Di Benedetto P, Ruscitti P, Berardicurti O, et al. Endothelial- to-mesenchymal transition in systemic sclerosis. Clin Exp Immunol 2021; 205(1): 12-27.
[http://dx.doi.org/10.1111/cei.13599] [PMID: 33772754]
[48]
Cipriani P, Di Benedetto P, Ruscitti P, et al. The endothelial-mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-β and may be blocked by macitentan, a dual endothelin-1 receptor antagonist. J Rheumatol 2015; 42(10): 1808-16.
[http://dx.doi.org/10.3899/jrheum.150088] [PMID: 26276964]
[49]
Fleischmajer R, Damiano V, Nedwich A. Scleroderma and the subcutaneous tissue. Science 1971; 171(3975): 1019-21.
[http://dx.doi.org/10.1126/science.171.3975.1019] [PMID: 5100788]
[50]
Sun K, Tordjman J, Clément K, Scherer PE. Fibrosis and adipose tissue dysfunction. Cell Metab 2013; 18(4): 470-7.
[http://dx.doi.org/10.1016/j.cmet.2013.06.016] [PMID: 23954640]
[51]
Martins V, Gonzalez De Los Santos F, Wu Z, Capelozzi V, Phan SH, Liu T. FIZZ1-induced myofibroblast transdifferentiation from adipocytes and its potential role in dermal fibrosis and lipoatrophy. Am J Pathol 2015; 185(10): 2768-76.
[http://dx.doi.org/10.1016/j.ajpath.2015.06.005] [PMID: 26261086]
[52]
Manetti M, Romano E, Rosa I, et al. Systemic sclerosis serum steers the differentiation of adipose-derived stem cells toward profibrotic myofibroblasts: Pathophysiologic implications. J Clin Med 2019; 8(8): 1256.
[http://dx.doi.org/10.3390/jcm8081256] [PMID: 31430950]
[53]
Brezovec N, Burja B, Lakota K. Adipose tissue and adipose secretome in systemic sclerosis. Curr Opin Rheumatol 2021; 33(6): 505-13.
[http://dx.doi.org/10.1097/BOR.0000000000000838] [PMID: 34534166]
[54]
Marangoni RG, Korman BD, Wei J, et al. Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol 2015; 67(4): 1062-73.
[http://dx.doi.org/10.1002/art.38990] [PMID: 25504959]
[55]
McGowan SE, Torday JS. The pulmonary lipofibroblast (lipid interstitial cell) and its contributions to alveolar development. Annu Rev Physiol 1997; 59(1): 43-62.
[http://dx.doi.org/10.1146/annurev.physiol.59.1.43] [PMID: 9074756]
[56]
Torday JS, Rehan VK. The evolutionary continuum from lung development to homeostasis and repair. Am J Physiol Lung Cell Mol Physiol 2007; 292(3): L608-11.
[http://dx.doi.org/10.1152/ajplung.00379.2006] [PMID: 17085519]
[57]
Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994; 1(1): 71-81.
[http://dx.doi.org/10.1007/BF03403533] [PMID: 8790603]
[58]
Chesney J, Metz C, Stavitsky AB, Bacher M, Bucala R. Regulated production of type I collagen and inflammatory cytokines by peripheral blood fibrocytes. J Immunol 1998; 160(1): 419-25.
[http://dx.doi.org/10.4049/jimmunol.160.1.419] [PMID: 9551999]
[59]
Chesney J, Bucala R. Peripheral blood fibrocytes: Mesenchymal precursor cells and the pathogenesis of fibrosis. Curr Rheumatol Rep 2000; 2(6): 501-5.
[http://dx.doi.org/10.1007/s11926-000-0027-5] [PMID: 11123104]
[60]
Quan TE, Cowper SE, Bucala R. The role of circulating fibrocytes in fibrosis. Curr Rheumatol Rep 2006; 8(2): 145-50.
[http://dx.doi.org/10.1007/s11926-006-0055-x] [PMID: 16569374]
[61]
Reinhardt JW, Breuer CK. Fibrocytes: A critical ceview and practical guide. Front Immunol 2021; 12: 784401.
[http://dx.doi.org/10.3389/fimmu.2021.784401] [PMID: 34975874]
[62]
Ruaro B, Soldano S, Smith V, et al. Correlation between circulating fibrocytes and dermal thickness in limited cutaneous systemic sclerosis patients: A pilot study. Rheumatol Int 2019; 39(8): 1369-76.
[http://dx.doi.org/10.1007/s00296-019-04315-7] [PMID: 31056725]
[63]
Dupin I, Allard B, Ozier A, et al. Blood fibrocytes are recruited during acute exacerbations of chronic obstructive pulmonary disease through a CXCR4-dependent pathway. J Allergy Clin Immunol 2016; 137(4): 1036-1042.e7.
[http://dx.doi.org/10.1016/j.jaci.2015.08.043] [PMID: 26602164]
[64]
Cutolo M, Gotelli E, Montagna P, et al. Nintedanib downregulates the transition of cultured systemic sclerosis fibrocytes into myofibroblasts and their pro-fibrotic activity. Arthritis Res Ther 2021; 23(1): 205.
[http://dx.doi.org/10.1186/s13075-021-02555-2] [PMID: 34344444]
[65]
Binai N, O’Reilly S, Griffiths B, van Laar JM, Hügle T. Differentiation potential of CD14+ monocytes into myofibroblasts in patients with systemic sclerosis. PLoS One 2012; 7(3): e33508.
[http://dx.doi.org/10.1371/journal.pone.0033508] [PMID: 22432031]
[66]
Rajkumar VS, Howell K, Csiszar K, Denton CP, Black CM, Abraham DJ. Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis. Arthritis Res Ther 2005; 7(5): R1113-23.
[http://dx.doi.org/10.1186/ar1790] [PMID: 16207328]
[67]
Wollheim FA. Telocytes, communicators in healthy stroma and relation to inflammation and fibrosis. Joint Bone Spine 2016; 83(6): 615-8.
[http://dx.doi.org/10.1016/j.jbspin.2016.06.002] [PMID: 27452296]
[68]
Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial–mesenchymal transition: New insights in signaling, development, and disease. J Cell Biol 2006; 172(7): 973-81.
[http://dx.doi.org/10.1083/jcb.200601018] [PMID: 16567498]
[69]
Lee K, Nelson CM. New insights into the regulation of epithelial-mesenchymal transition and tissue fibrosis. Int Rev Cell Mol Biol 2012; 294: 171-221.
[http://dx.doi.org/10.1016/B978-0-12-394305-7.00004-5] [PMID: 22364874]
[70]
Serrano-Gomez SJ, Maziveyi M, Alahari SK. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer 2016; 15(1): 18.
[http://dx.doi.org/10.1186/s12943-016-0502-x] [PMID: 26905733]
[71]
Skrypek N, Goossens S, De Smedt E, Vandamme N, Berx G. Epithelial-to-mesenchymal transition: Epigenetic reprogramming driving cellular plasticity. Trends Genet 2017; 33(12): 943-59.
[http://dx.doi.org/10.1016/j.tig.2017.08.004] [PMID: 28919019]
[72]
Ihn H. The role of TGF-beta signaling in the pathogenesis of fibrosis in scleroderma. Arch Immunol Ther Exp 2002; 50(5): 325-31.
[PMID: 12455866]
[73]
Varga J. Scleroderma and smads: Dysfunctional smad family dynamics culminating in fibrosis. Arthritis Rheum 2002; 46(7): 1703-13.
[http://dx.doi.org/10.1002/art.10413] [PMID: 12124852]
[74]
Lafyatis R. Transforming growth factor β—at the centre of systemic sclerosis. Nat Rev Rheumatol 2014; 10(12): 706-19.
[http://dx.doi.org/10.1038/nrrheum.2014.137] [PMID: 25136781]
[75]
Györfi AH, Matei AE, Distler JHW. Targeting TGF-β signaling for the treatment of fibrosis. Matrix Biol 2018; 68-69: 8-27.
[http://dx.doi.org/10.1016/j.matbio.2017.12.016] [PMID: 29355590]
[76]
Frangogiannis NG. Transforming growth factor–β in tissue fibrosis. J Exp Med 2020; 217(3): e20190103.
[http://dx.doi.org/10.1084/jem.20190103] [PMID: 32997468]
[77]
Budi EH, Schaub JR, Decaris M, Turner S, Derynck R. TGF -β as a driver of fibrosis: physiological roles and therapeutic opportunities. J Pathol 2021; 254(4): 358-73.
[http://dx.doi.org/10.1002/path.5680] [PMID: 33834494]
[78]
Moustakas A, Heldin CH. Induction of epithelial–mesenchymal transition by transforming growth factor β. Semin Cancer Biol 2012; 22(5-6): 446-54.
[http://dx.doi.org/10.1016/j.semcancer.2012.04.002] [PMID: 22548724]
[79]
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15(3): 178-96.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[80]
Tan EJ, Olsson AK, Moustakas A. Reprogramming during epithelial to mesenchymal transition under the control of TGFβ. Cell Adhes Migr 2015; 9(3): 233-46.
[http://dx.doi.org/10.4161/19336918.2014.983794] [PMID: 25482613]
[81]
Zhang J, Tian XJ, Zhang H, et al. TGF-β–induced epithelial- to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci Signal 2014; 7(345): ra91.
[http://dx.doi.org/10.1126/scisignal.2005304] [PMID: 25270257]
[82]
Zavadil J, Böttinger EP. TGF-β and epithelial-to-mesenchymal transitions. Oncogene 2005; 24(37): 5764-74.
[http://dx.doi.org/10.1038/sj.onc.1208927] [PMID: 16123809]
[83]
Nieto MA, Cano A. The epithelial–mesenchymal transition under control: Global programs to regulate epithelial plasticity. Semin Cancer Biol 2012; 22(5-6): 361-8.
[http://dx.doi.org/10.1016/j.semcancer.2012.05.003] [PMID: 22613485]
[84]
Siemens H, Jackstadt R, Hünten S, et al. miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 2011; 10(24): 4256-71.
[http://dx.doi.org/10.4161/cc.10.24.18552] [PMID: 22134354]
[85]
Bracken CP, Gregory PA, Kolesnikoff N, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 2008; 68(19): 7846-54.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1942] [PMID: 18829540]
[86]
Gregory PA, Bracken CP, Smith E, et al. An autocrine TGF-β/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition. Mol Biol Cell 2011; 22(10): 1686-98.
[http://dx.doi.org/10.1091/mbc.e11-02-0103] [PMID: 21411626]
[87]
Peinado H, Quintanilla M, Cano A. Transforming growth factor β-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem 2003; 278(23): 21113-23.
[http://dx.doi.org/10.1074/jbc.M211304200] [PMID: 12665527]
[88]
Shiwen X, Stratton R, Nikitorowicz-Buniak J, et al. A role of myocardin related transcription factor-A (MRTF-A) in scleroderma related fibrosis. PLoS One 2015; 10(5): e0126015.
[http://dx.doi.org/10.1371/journal.pone.0126015] [PMID: 25955164]
[89]
Nalluri SM, Sankhe CS, O’Connor JW, et al. Crosstalk between ERK and MRTF-A signaling regulates TGFβ1-induced epithelial-mesenchymal transition. J Cell Physiol 2022; 237(5): 2503-15.
[http://dx.doi.org/10.1002/jcp.30705] [PMID: 35224740]
[90]
O’Connor JW, Mistry K, Detweiler D, Wang C, Gomez EW. Cell- cell contact and matrix adhesion promote αSMA expression during TGFβ1-induced epithelial-myofibroblast transition via Notch and MRTF-A. Sci Rep 2016; 6(1): 26226.
[http://dx.doi.org/10.1038/srep26226] [PMID: 27194451]
[91]
Tinazzi I, Mulipa P, Colato C, et al. SFRP4 Expression is linked to immune-driven fibrotic conditions, correlates with skin and lung fibrosis in ssc and a potential EMT biomarker. J Clin Med 2021; 10(24): 5820.
[http://dx.doi.org/10.3390/jcm10245820] [PMID: 34945116]
[92]
Nikitorowicz-Buniak J, Shiwen X, Denton CP, Abraham D, Stratton R. Abnormally differentiating keratinocytes in the epidermis of systemic sclerosis patients show enhanced secretion of CCN2 and S100A9. J Invest Dermatol 2014; 134(11): 2693-702.
[http://dx.doi.org/10.1038/jid.2014.253] [PMID: 24933320]
[93]
Russo B, Brembilla NC, Chizzolini C. Interplay between keratinocytes and fibroblasts: A systematic review providing a new angle for understanding skin fibrotic disorders. Front Immunol 2020; 11: 648.
[http://dx.doi.org/10.3389/fimmu.2020.00648] [PMID: 32477322]
[94]
Aden N, Nuttall A, Shiwen X, et al. Epithelial cells promote fibroblast activation via IL-1alpha in systemic sclerosis. J Invest Dermatol 2010; 130(9): 2191-200.
[http://dx.doi.org/10.1038/jid.2010.120] [PMID: 20445556]
[95]
Wang H, Li X, Gao S, Sun X, Fang H. Transdifferentiation via transcription factors or microRNAs: Current status and perspective. Differentiation 2015; 90(4-5): 69-76.
[http://dx.doi.org/10.1016/j.diff.2015.10.002] [PMID: 26525508]
[96]
Zainal Abidin SAI, Paterson IC, Hunt S, Lambert DW, Higginbotham S, Pink RC. Myofibroblast transdifferentiation is associated with changes in cellular and extracellular vesicle miRNA abundance. PLoS One 2021; 16(11): e0256812.
[http://dx.doi.org/10.1371/journal.pone.0256812] [PMID: 34762649]
[97]
Xiao X, Huang C, Zhao C, et al. Regulation of myofibroblast differentiation by miR-424 during epithelial-to-mesenchymal transition. Arch Biochem Biophys 2015; 566: 49-57.
[http://dx.doi.org/10.1016/j.abb.2014.12.007] [PMID: 25524739]
[98]
Yang X, Jiang Z, Li Y, Zhang Y, Han Y, Gao L. Non-coding RNAs regulating epithelial-mesenchymal transition: Research progress in liver disease. Biomed Pharmacother 2022; 150: 112972.
[http://dx.doi.org/10.1016/j.biopha.2022.112972] [PMID: 35447551]
[99]
Cadena-Suárez AR, Hernández-Hernández HA, Alvarado-Vásquez N, Rangel-Escareño C, Sommer B, Negrete-García MC. Role of MicroRNAs in signaling pathways associated with the pathogenesis of idiopathic pulmonary fibrosis: a focus on epithelial-mesenchymal transition. Int J Mol Sci 2022; 23(12): 6613.
[http://dx.doi.org/10.3390/ijms23126613] [PMID: 35743055]
[100]
Li Z, Jimenez SA. Protein kinase Cδ and c-Abl kinase are required for transforming growth factor β induction of endothelial-mesenchymal transition in vitro. Arthritis Rheum 2011; 63(8): 2473-83.
[http://dx.doi.org/10.1002/art.30317] [PMID: 21425122]
[101]
Jimenez SA, Piera-Velazquez S. Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of Systemic Sclerosis-associated pulmonary fibrosis and pulmonary arterial hypertension. Myth or reality? Matrix Biol 2016; 51: 26-36.
[http://dx.doi.org/10.1016/j.matbio.2016.01.012] [PMID: 26807760]
[102]
van Meeteren LA, ten Dijke P. Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res 2012; 347(1): 177-86.
[http://dx.doi.org/10.1007/s00441-011-1222-6] [PMID: 21866313]
[103]
Ma J, Sanchez-Duffhues G, Goumans MJ, ten Dijke P. TGF-β-induced endothelial to mesenchymal transition in disease and tissue engineering. Front Cell Dev Biol 2020; 8: 260.
[http://dx.doi.org/10.3389/fcell.2020.00260] [PMID: 32373613]
[104]
Kokudo T, Suzuki Y, Yoshimatsu Y, Yamazaki T, Watabe T, Miyazono K. Snail is required for TGFβ-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells. J Cell Sci 2008; 121(20): 3317-24.
[http://dx.doi.org/10.1242/jcs.028282] [PMID: 18796538]
[105]
Medici D, Potenta S, Kalluri R. Transforming growth factor-β2 promotes Snail-mediated endothelial–mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling. Biochem J 2011; 437(3): 515-20.
[http://dx.doi.org/10.1042/BJ20101500] [PMID: 21585337]
[106]
Maleszewska M, Moonen JRAJ, Huijkman N, van de Sluis B, Krenning G, Harmsen MC. IL-1β and TGFβ2 synergistically induce endothelial to mesenchymal transition in an NFκB-dependent manner. Immunobiology 2013; 218(4): 443-54.
[http://dx.doi.org/10.1016/j.imbio.2012.05.026] [PMID: 22739237]
[107]
Song S, Zhang R, Cao W, et al. Foxm1 is a critical driver of TGF-β-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. J Cell Physiol 2019; 234(6): 9052-64.
[http://dx.doi.org/10.1002/jcp.27583] [PMID: 30378114]
[108]
Li Z, Chen B, Dong W, et al. MKL1 promotes endothelial-to-mesenchymal transition and liver fibrosis by activating TWIST1 transcription. Cell Death Dis 2019; 10(12): 899.
[http://dx.doi.org/10.1038/s41419-019-2101-4] [PMID: 31776330]
[109]
Patel J, Baz B, Wong HY, Lee JS, Khosrotehrani K. Accelerated endothelial to mesenchymal transition increased fibrosis via deleting notch signaling in wound vasculature. J Invest Dermatol 2018; 138(5): 1166-75.
[http://dx.doi.org/10.1016/j.jid.2017.12.004] [PMID: 29248546]
[110]
Liguori TTA, Liguori GR, Moreira LFP, Harmsen MC. Adipose tissue–derived stromal cells’ conditioned medium modulates endothelial-mesenchymal transition induced by IL-1β/TGF-β2 but does not restore endothelial function. Cell Prolif 2019; 52(6): e12629.
[http://dx.doi.org/10.1111/cpr.12629] [PMID: 31468648]
[111]
Katsura A, Suzuki HI, Ueno T, et al. Micro RNA -31 is a positive modulator of endothelial–mesenchymal transition and associated secretory phenotype induced by TGF -β. Genes Cells 2016; 21(1): 99-116.
[http://dx.doi.org/10.1111/gtc.12323] [PMID: 26663584]
[112]
Sharma V, Dogra N, Saikia UN, Khullar M. Transcriptional regulation of endothelial-to-mesenchymal transition in cardiac fibrosis: Role of myocardin-related transcription factor A and activating transcription factor 3. Can J Physiol Pharmacol 2017; 95(10): 1263-70.
[http://dx.doi.org/10.1139/cjpp-2016-0634] [PMID: 28686848]
[113]
Glaser SF, Heumüller AW, Tombor L, et al. The histone demethylase JMJD2B regulates endothelial-to-mesenchymal transition. Proc Natl Acad Sci 2020; 117(8): 4180-7.
[http://dx.doi.org/10.1073/pnas.1913481117] [PMID: 32034099]
[114]
Zhao J, Patel J, Kaur S, et al. Sox9 and Rbpj differentially regulate endothelial to mesenchymal transition and wound scarring in murine endovascular progenitors. Nat Commun 2021; 12(1): 2564.
[http://dx.doi.org/10.1038/s41467-021-22717-9] [PMID: 33963183]
[115]
Fuglerud BM, Drissler S, Lotto J, et al. SOX9 reprograms endothelial cells by altering the chromatin landscape. Nucleic Acids Res 2022; 50(15): 8547-65.
[http://dx.doi.org/10.1093/nar/gkac652] [PMID: 35904801]
[116]
Grotendorst GR. Connective tissue growth factor: A mediator of TGF-β action on fibroblasts. Cytokine Growth Factor Rev 1997; 8(3): 171-9.
[http://dx.doi.org/10.1016/S1359-6101(97)00010-5] [PMID: 9462483]
[117]
Leask A, Abraham DJ. The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochem Cell Biol 2003; 81(6): 355-63.
[http://dx.doi.org/10.1139/o03-069] [PMID: 14663501]
[118]
Shi-Wen X, Renzoni EA, Kennedy L, et al. Endogenous endothelin-1 signaling contributes to type I collagen and CCN2 overexpression in fibrotic fibroblasts. Matrix Biol 2007; 26(8): 625-32.
[http://dx.doi.org/10.1016/j.matbio.2007.06.003] [PMID: 17681742]
[119]
Leask A, Denton CP, Abraham DJ. Insights into the molecular mechanism of chronic fibrosis: The role of connective tissue growth factor in scleroderma. J Invest Dermatol 2004; 122(1): 1-6.
[http://dx.doi.org/10.1046/j.0022-202X.2003.22133.x] [PMID: 14962082]
[120]
Igarashi A, Nashiro K, Kikuchi K, et al. Significant correlation between connective tissue growth factor gene expression and skin sclerosis in tissue sections from patients with systemic sclerosis. J Invest Dermatol 1995; 105(2): 280-4.
[http://dx.doi.org/10.1111/1523-1747.ep12318465] [PMID: 7636314]
[121]
Sato S, Nagaoka T, Hasegawa M, et al. Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis: Association with extent of skin sclerosis and severity of pulmonary fibrosis. J Rheumatol 2000; 27(1): 149-54.
[PMID: 10648031]
[122]
Bogatkevich GS, Ludwicka-Bradley A, Singleton CB, Bethard JR, Silver RM. Proteomic analysis of CTGF-activated lung fibroblasts: Identification of IQGAP1 as a key player in lung fibroblast migration. Am J Physiol Lung Cell Mol Physiol 2008; 295(4): L603-11.
[http://dx.doi.org/10.1152/ajplung.00530.2007] [PMID: 18676875]
[123]
Ross R, Bowen-Pope DF, Raines EW. Platelet-derived growth factor and its role in health and disease. Philos Trans R Soc Lond B Biol Sci 1990; 327(1239): 155-69.
[http://dx.doi.org/10.1098/rstb.1990.0051] [PMID: 1969656]
[124]
Trojanowska M. Role of PDGF in fibrotic diseases and systemic sclerosis. Rheumatology 2008; 47 (5): v2-4.
[http://dx.doi.org/10.1093/rheumatology/ken265] [PMID: 18784131]
[125]
Yamakage A, Kikuchi K, Smith EA, LeRoy EC, Trojanowska M. Selective upregulation of platelet-derived growth factor alpha receptors by transforming growth factor beta in scleroderma fibroblasts. J Exp Med 1992; 175(5): 1227-34.
[http://dx.doi.org/10.1084/jem.175.5.1227] [PMID: 1314885]
[126]
Svegliati Baroni S, Santillo M, Bevilacqua F, et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. N Engl J Med 2006; 354(25): 2667-76.
[http://dx.doi.org/10.1056/NEJMoa052955] [PMID: 16790699]
[127]
Gabrielli A, Svegliati S, Moroncini G, Luchetti M, Tonnini C, Avvedimento EV. Stimulatory autoantibodies to the PDGF receptor: A link to fibrosis in scleroderma and a pathway for novel therapeutic targets. Autoimmun Rev 2007; 7(2): 121-6.
[http://dx.doi.org/10.1016/j.autrev.2007.02.020] [PMID: 18035321]
[128]
Paolini C, Agarbati S, Benfaremo D, Mozzicafreddo M, Svegliati S, Moroncini G. PDGF/PDGFR: A possible molecular target in scleroderma fibrosis. Int J Mol Sci 2022; 23(7): 3904.
[http://dx.doi.org/10.3390/ijms23073904] [PMID: 35409263]
[129]
Liu T, Zhang J, Zhang J, et al. RNA interference against platelet-derived growth factor receptor α mRNA inhibits fibroblast transdifferentiation in skin lesions of patients with systemic sclerosis. PLoS One 2013; 8(4): e60414.
[http://dx.doi.org/10.1371/journal.pone.0060414] [PMID: 23577108]
[130]
Gospodarowicz D, Neufeld G, Schweigerer L. Fibroblast growth factor: Structural and biological properties. J Cell Physiol 1987; 133(S5) (5): 15-26.
[http://dx.doi.org/10.1002/jcp.1041330405] [PMID: 2824530]
[131]
Klagsbrun M. The fibroblast growth factor family: Structural and biological properties. Prog Growth Factor Res 1989; 1(4): 207-35.
[http://dx.doi.org/10.1016/0955-2235(89)90012-4] [PMID: 2491263]
[132]
Shimbori C, Bellaye PS, Xia J, et al. Fibroblast growth factor-1 attenuates TGF-β1-induced lung fibrosis. J Pathol 2016; 240(2): 197-210.
[http://dx.doi.org/10.1002/path.4768] [PMID: 27425145]
[133]
Chen PY, Qin L, Tellides G, Simons M. Fibroblast growth factor receptor 1 is a key inhibitor of TGFβ signaling in the endothelium. Sci Signal 2014; 7(344): ra90.
[http://dx.doi.org/10.1126/scisignal.2005504] [PMID: 25249657]
[134]
Lawrence A, Khanna D, Misra R, Aggarwal A. Increased expression of basic fibroblast growth factor in skin of patients with systemic sclerosis. Dermatol Online J 2006; 12(1): 2.
[http://dx.doi.org/10.5070/D36S6582VR] [PMID: 16638370]
[135]
Chakraborty D, Zhu H, Jüngel A, et al. Fibroblast growth factor receptor 3 activates a network of profibrotic signaling pathways to promote fibrosis in systemic sclerosis. Sci Transl Med 2020; 12(563): eaaz5506.
[http://dx.doi.org/10.1126/scitranslmed.aaz5506] [PMID: 32998972]
[136]
Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989; 161(2): 851-8.
[http://dx.doi.org/10.1016/0006-291X(89)92678-8] [PMID: 2735925]
[137]
Gospodarowicz D, Abraham JA, Schilling J. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells. Proc Natl Acad Sci 1989; 86(19): 7311-5.
[http://dx.doi.org/10.1073/pnas.86.19.7311] [PMID: 2798412]
[138]
Choi JJ, Min DJ, Cho ML, et al. Elevated vascular endothelial growth factor in systemic sclerosis. J Rheumatol 2003; 30(7): 1529-33.
[PMID: 12858453]
[139]
Distler O, Distler JHW, Scheid A, et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res 2004; 95(1): 109-16.
[http://dx.doi.org/10.1161/01.RES.0000134644.89917.96] [PMID: 15178641]
[140]
Flower VA, Barratt SL, Ward S, Pauling JD. The role of vascular endothelial growth factor in systemic sclerosis. Curr Rheumatol Rev 2019; 15(2): 99-109.
[http://dx.doi.org/10.2174/1573397114666180809121005] [PMID: 30091416]
[141]
Cohick WS, Clemmons DR. The insulin-like growth factors. Annu Rev Physiol 1993; 55(1): 131-53.
[http://dx.doi.org/10.1146/annurev.ph.55.030193.001023] [PMID: 8466170]
[142]
Hamaguchi Y, Fujimoto M, Matsushita T, Hasegawa M, Takehara K, Sato S. Elevated serum insulin-like growth factor (IGF-1) and IGF binding protein-3 levels in patients with systemic sclerosis: Possible role in development of fibrosis. J Rheumatol 2008; 35(12): 2363-71.
[http://dx.doi.org/10.3899/jrheum.080340] [PMID: 19004037]
[143]
Hsu E, Feghali-Bostwick CA. Insulin-like growth factor-II is increased in systemic sclerosis-associated pulmonary fibrosis and contributes to the fibrotic process via Jun N-terminal kinase- and phosphatidylinositol-3 kinase-dependent pathways. Am J Pathol 2008; 172(6): 1580-90.
[http://dx.doi.org/10.2353/ajpath.2008.071021] [PMID: 18467708]
[144]
Garrett SM, Hsu E, Thomas JM, Pilewski JM, Feghali-Bostwick C. Insulin-like growth factor (IGF)-II- mediated fibrosis in pathogenic lung conditions. PLoS One 2019; 14(11): e0225422.
[http://dx.doi.org/10.1371/journal.pone.0225422] [PMID: 31765403]
[145]
Mahler GJ, Farrar EJ, Butcher JT. Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33(1): 121-30.
[http://dx.doi.org/10.1161/ATVBAHA.112.300504] [PMID: 23104848]
[146]
Pérez L, Muñoz-Durango N, Riedel CA, et al. Endothelial-to-mesenchymal transition: Cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine Growth Factor Rev 2017; 33: 41-54.
[http://dx.doi.org/10.1016/j.cytogfr.2016.09.002] [PMID: 27692608]
[147]
Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009; 27(1): 519-50.
[http://dx.doi.org/10.1146/annurev.immunol.021908.132612] [PMID: 19302047]
[148]
Dinarello CA. The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol 2019; 15(10): 612-32.
[http://dx.doi.org/10.1038/s41584-019-0277-8] [PMID: 31515542]
[149]
Rieder F, Kessler SP, West GA, et al. Inflammation-induced endothelial-to-mesenchymal transition: A novel mechanism of intestinal fibrosis. Am J Pathol 2011; 179(5): 2660-73.
[http://dx.doi.org/10.1016/j.ajpath.2011.07.042] [PMID: 21945322]
[150]
Sadler T, Scarpa M, Rieder F, West G, Stylianou E. Cytokine-induced chromatin modifications of the type I collagen alpha 2 gene during intestinal endothelial-to-mesenchymal transition. Inflamm Bowel Dis 2013; 19(7): 1354-64.
[http://dx.doi.org/10.1097/MIB.0b013e318281f37a] [PMID: 23635716]
[151]
Lovisa S, Genovese G, Danese S. Role of epithelial-to-mesenchymal transition in inflammatory bowel disease. J Crohn’s Colitis 2019; 13(5): 659-68.
[http://dx.doi.org/10.1093/ecco-jcc/jjy201] [PMID: 30520951]
[152]
Eloranta ML, Franck-Larsson K, Lövgren T, et al. Type I interferon system activation and association with disease manifestations in systemic sclerosis. Ann Rheum Dis 2010; 69(7): 1396-402.
[http://dx.doi.org/10.1136/ard.2009.121400] [PMID: 20472592]
[153]
Wu M, Assassi S. The role of type 1 interferon in systemic sclerosis. Front Immunol 2013; 4: 266.
[http://dx.doi.org/10.3389/fimmu.2013.00266] [PMID: 24046769]
[154]
Liu X, Mayes MD, Tan FK, et al. Correlation of interferon-inducible chemokine plasma levels with disease severity in systemic sclerosis. Arthritis Rheum 2013; 65(1): 226-35.
[http://dx.doi.org/10.1002/art.37742] [PMID: 23055137]
[155]
Skaug B, Assassi S. Type I interferon dysregulation in systemic sclerosis. Cytokine 2020; 132: 154635.
[http://dx.doi.org/10.1016/j.cyto.2018.12.018] [PMID: 30685202]
[156]
Chrobak I, Lenna S, Stawski L, Trojanowska M. Interferon-γ promotes vascular remodeling in human microvascular endothelial cells by upregulating endothelin (ET)-1 and transforming growth factor (TGF) β2. J Cell Physiol 2013; 228(8): 1774-83.
[http://dx.doi.org/10.1002/jcp.24337] [PMID: 23359533]
[157]
Kakkar V, Assassi S, Allanore Y, et al. Type 1 interferon activation in systemic sclerosis: A biomarker, a target or the culprit. Curr Opin Rheumatol 2022; 34(6): 357-64.
[http://dx.doi.org/10.1097/BOR.0000000000000907] [PMID: 36125916]
[158]
Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci 1975; 72(9): 3666-70.
[http://dx.doi.org/10.1073/pnas.72.9.3666] [PMID: 1103152]
[159]
Rock CS, Lowry SF. Tumor necrosis factor-α. J Surg Res 1991; 51(5): 434-45.
[http://dx.doi.org/10.1016/0022-4804(91)90146-D] [PMID: 1661798]
[160]
Tracey KJ, Cerami A. Tumor necrosis factor: A pleiotropic cytokine and therapeutic target. Annu Rev Med 1994; 45: 491-503.
[http://dx.doi.org/10.1146/annurev.med.45.1.491] [PMID: 8198398]
[161]
Bradley JR. TNF-mediated inflammatory disease. J Pathol 2008; 214(2): 149-60.
[http://dx.doi.org/10.1002/path.2287] [PMID: 18161752]
[162]
Baugh JA, Bucala R. Mechanisms for modulating TNF alpha in immune and inflammatory disease. Curr Opin Drug Discov Devel 2001; 4(5): 635-50.
[PMID: 12825458]
[163]
Möller B, Villiger PM. Inhibition of IL-1, IL-6, and TNF-α in immune-mediated inflammatory diseases. Springer Semin Immunopathol 2006; 27(4): 391-408.
[http://dx.doi.org/10.1007/s00281-006-0012-9] [PMID: 16738952]
[164]
Yoshimatsu Y, Wakabayashi I, Kimuro S, et al. TNF-α enhances TGF-β-induced endothelial-to-mesenchymal transition via TGF-β signal augmentation. Cancer Sci 2020; 111(7): 2385-99.
[http://dx.doi.org/10.1111/cas.14455] [PMID: 32385953]
[165]
Yoshimatsu Y, Kimuro S, Pauty J, et al. TGF-beta and TNF-alpha cooperatively induce mesenchymal transition of lymphatic endothelial cells via activation of Activin signals. PLoS One 2020; 15(5): e0232356.
[http://dx.doi.org/10.1371/journal.pone.0232356] [PMID: 32357159]
[166]
Singh H, Sen R, Baltimore D, Sharp PA. A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature 1986; 319(6049): 154-8.
[http://dx.doi.org/10.1038/319154a0] [PMID: 3079885]
[167]
Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 1986; 46(5): 705-16.
[http://dx.doi.org/10.1016/0092-8674(86)90346-6] [PMID: 3091258]
[168]
Baldwin AS Jr. The NF-kappa B and I kappa B proteins: New discoveries and insights. Annu Rev Immunol 1996; 14(1): 649-81.
[http://dx.doi.org/10.1146/annurev.immunol.14.1.649] [PMID: 8717528]
[169]
Barnes PJ, Karin M. Nuclear factor-kappaB: A pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336(15): 1066-71.
[http://dx.doi.org/10.1056/NEJM199704103361506] [PMID: 9091804]
[170]
Pahl HL. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 1999; 18(49): 6853-66.
[http://dx.doi.org/10.1038/sj.onc.1203239] [PMID: 10602461]
[171]
Yamamoto Y, Gaynor R. Role of the NF-kappaB pathway in the pathogenesis of human disease states. Curr Mol Med 2001; 1(3): 287-96.
[http://dx.doi.org/10.2174/1566524013363816] [PMID: 11899077]
[172]
Kumar A, Takada Y, Boriek A, Aggarwal B. Nuclear factor-?B: Its role in health and disease. J Mol Med 2004; 82(7): 434-48.
[http://dx.doi.org/10.1007/s00109-004-0555-y] [PMID: 15175863]
[173]
Murrell DF. A radical proposal for the pathogenesis of scleroderma. J Am Acad Dermatol 1993; 28(1): 78-85.
[http://dx.doi.org/10.1016/0190-9622(93)70014-K] [PMID: 8425975]
[174]
Sambo P, Baroni SS, Luchetti M, et al. Oxidative stress in scleroderma: Maintenance of scleroderma fibroblast phenotype by the constitutive up-regulation of reactive oxygen species generation through the NADPH oxidase complex pathway. Arthritis Rheum 2001; 44(11): 2653-64.
[http://dx.doi.org/10.1002/1529-0131(200111)44:11<2653::AID-ART445>3.0.CO;2-1] [PMID: 11710721]
[175]
Gabrielli A, Svegliati S, Moroncini G, Pomponio G, Santillo M, Avvedimento EV. Oxidative stress and the pathogenesis of scleroderma: The Murrell’s hypothesis revisited. Semin Immunopathol 2008; 30(3): 329-37.
[http://dx.doi.org/10.1007/s00281-008-0125-4] [PMID: 18548250]
[176]
Avouac J, Borderie D, Ekindjian OG, Kahan A, Allanore Y. High DNA oxidative damage in systemic sclerosis. J Rheumatol 2010; 37(12): 2540-7.
[http://dx.doi.org/10.3899/jrheum.100398] [PMID: 20843906]
[177]
Svegliati S, Spadoni T, Moroncini G, Gabrielli A. NADPH oxidase, oxidative stress and fibrosis in systemic sclerosis. Free Radic Biol Med 2018; 125: 90-7.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.04.554] [PMID: 29694853]
[178]
Piera-Velazquez S, Jimenez SA. Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis. Curr Rheumatol Rep 2015; 17(1): 473.
[http://dx.doi.org/10.1007/s11926-014-0473-0] [PMID: 25475596]
[179]
Piera-Velazquez S, Jimenez SA. Oxidative stress induced by reactive oxygen species (ROS) and NADPH oxidase 4 (NOX4) in the pathogenesis of the fibrotic process in systemic sclerosis: A promising therapeutic target. J Clin Med 2021; 10(20): 4791.
[http://dx.doi.org/10.3390/jcm10204791] [PMID: 34682914]
[180]
Sobierajska K, Wawro ME, Niewiarowska J. Oxidative stress enhances the TGF-β2-RhoA-MRTF-A/B axis in cells entering endothelial-mesenchymal transition. Int J Mol Sci 2022; 23(4): 2062.
[http://dx.doi.org/10.3390/ijms23042062] [PMID: 35216178]
[181]
Mao J, Liu J, Zhou M, Wang G, Xiong X, Deng Y. Hypoxia-induced interstitial transformation of microvascular endothelial cells by mediating HIF-1α/VEGF signaling in systemic sclerosis. PLoS One 2022; 17(3): e0263369.
[http://dx.doi.org/10.1371/journal.pone.0263369] [PMID: 35231032]
[182]
Eastwood M, McGrouther DA, Brown RA. Fibroblast responses to mechanical forces. Proc Inst Mech Eng H 1998; 212(2): 85-92.
[http://dx.doi.org/10.1243/0954411981533854] [PMID: 9611999]
[183]
Chan MWC, Hinz B, McCulloch CA. Mechanical induction of gene expression in connective tissue cells. Methods Cell Biol 2010; 98: 178-205.
[http://dx.doi.org/10.1016/S0091-679X(10)98008-4] [PMID: 20816235]
[184]
Hinz B, McCulloch CA, Coelho NM. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp Cell Res 2019; 379(1): 119-28.
[http://dx.doi.org/10.1016/j.yexcr.2019.03.027] [PMID: 30910400]
[185]
Delaine-Smith RM, Reilly GC. The effects of mechanical loading on mesenchymal stem cell differentiation and matrix production. Vitam Horm 2011; 87: 417-80.
[http://dx.doi.org/10.1016/B978-0-12-386015-6.00039-1] [PMID: 22127254]
[186]
Schuster R, Younesi F, Ezzo M, Hinz B. The Role of myofibroblasts in physiological and pathological tissue repair. Cold Spring Harb Perspect Biol 2023; 15(1): a041231.
[http://dx.doi.org/10.1101/cshperspect.a041231] [PMID: 36123034]
[187]
Masaki T. The discovery, the present state, and the future prospects of endothelin. J Cardiovasc Pharmacol 1989; 13 (5): S1-4.
[http://dx.doi.org/10.1097/00005344-198900135-00002] [PMID: 2473280]
[188]
Kawanabe Y, Nauli SM. Endothelin. Cell Mol Life Sci 2011; 68(2): 195-203.
[http://dx.doi.org/10.1007/s00018-010-0518-0] [PMID: 20848158]
[189]
Le Monnier de Gouville AC, Lippton HL, Cavero I, Summer WR, Hyman AL. Endothelin : A new family of endothelium-derived peptides with widespread biological properties. Life Sci 1989; 45(17): 1499-513.
[http://dx.doi.org/10.1016/0024-3205(89)90415-3] [PMID: 2685485]
[190]
Cozzani E, Javor S, Laborai E, Drosera M, Parodi A. Endothelin-1 levels in scleroderma patients: A pilot study. ISRN Dermatol 2013; 2013: 1-4.
[http://dx.doi.org/10.1155/2013/125632] [PMID: 23984086]
[191]
Shojaa M, Aghaei M, Gharibdost F, et al. Endothelin-1 in systemic sclerosis. Indian Dermatol Online J 2012; 3(1): 14-6.
[http://dx.doi.org/10.4103/2229-5178.93484] [PMID: 23130253]
[192]
Shao D, Park JES, Wort SJ. The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension. Pharmacol Res 2011; 63(6): 504-11.
[http://dx.doi.org/10.1016/j.phrs.2011.03.003] [PMID: 21419223]
[193]
Sulli A, Soldano S, Pizzorni C, et al. Raynaud’s phenomenon and plasma endothelin: Correlations with capillaroscopic patterns in systemic sclerosis. J Rheumatol 2009; 36(6): 1235-9.
[http://dx.doi.org/10.3899/jrheum.081030] [PMID: 19369451]
[194]
Shi-wen X, Howat SL, Renzoni EA, et al. Endothelin-1 induces expression of matrix-associated genes in lung fibroblasts through MEK/ERK. J Biol Chem 2004; 279(22): 23098-103.
[http://dx.doi.org/10.1074/jbc.M311430200] [PMID: 15044479]
[195]
Abraham D, Ponticos M, Nagase H. Connective tissue remodeling: cross-talk between endothelins and matrix metalloproteinases. Curr Vasc Pharmacol 2005; 3(4): 369-79.
[http://dx.doi.org/10.2174/157016105774329480] [PMID: 16248781]
[196]
Jain R, Shaul PW, Borok Z, Willis BC. Endothelin-1 induces alveolar epithelial-mesenchymal transition through endothelin type A receptor-mediated production of TGF-beta1. Am J Respir Cell Mol Biol 2007; 37(1): 38-47.
[http://dx.doi.org/10.1165/rcmb.2006-0353OC] [PMID: 17379848]
[197]
Wermuth PJ, Li Z, Mendoza FA, Jimenez SA. Stimulation of transforming growth factor-β-1 induced endohelial-to-mesenchymal transition and tissue fibrosis by endothelin-1 (ET-1): A novel profibrotic effect of ET-1. PLoS One 2016; 11(9): e0161988.
[http://dx.doi.org/10.1371/journal.pone.0161988] [PMID: 27583804]
[198]
Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982; 31(1): 99-109.
[http://dx.doi.org/10.1016/0092-8674(82)90409-3] [PMID: 6297757]
[199]
Nusse R, Brown A, Papkoff J, et al. A new nomenclature for int-1 and related genes: The Wnt gene family. Cell 1991; 64(2): 231.
[http://dx.doi.org/10.1016/0092-8674(91)90633-A] [PMID: 1846319]
[200]
Nusse R, Varmus HE. Wnt genes. Cell 1992; 69(7): 1073-87.
[http://dx.doi.org/10.1016/0092-8674(92)90630-U] [PMID: 1617723]
[201]
Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 2012; 13(12): 767-79.
[http://dx.doi.org/10.1038/nrm3470] [PMID: 23151663]
[202]
Beyer C, Schramm A, Akhmetshina A, et al. β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis. Ann Rheum Dis 2012; 71(5): 761-7.
[http://dx.doi.org/10.1136/annrheumdis-2011-200568] [PMID: 22328737]
[203]
Akhmetshina A, Palumbo K, Dees C, et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 2012; 3(1): 735.
[http://dx.doi.org/10.1038/ncomms1734] [PMID: 22415826]
[204]
Wei J, Fang F, Lam AP, et al. Wnt/β-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells. Arthritis Rheum 2012; 64(8): 2734-45.
[http://dx.doi.org/10.1002/art.34424] [PMID: 22328118]
[205]
Ruaro B, Casabella A, Paolino S, et al. Dickkopf-1 (Dkk-1) serum levels in systemic sclerosis and rheumatoid arthritis patients: Correlation with the Trabecular Bone Score (TBS). Clin Rheumatol 2018; 37(11): 3057-62.
[http://dx.doi.org/10.1007/s10067-018-4322-9] [PMID: 30291470]
[206]
Dees C, Distler JHW. Canonical Wnt signalling as a key regulator of fibrogenesis : Implications for targeted therapies? Exp Dermatol 2013; 22(11): 710-3.
[http://dx.doi.org/10.1111/exd.12255] [PMID: 24118232]
[207]
Cao H, Wang C, Chen X, et al. Inhibition of Wnt/β-catenin signaling suppresses myofibroblast differentiation of lung resident mesenchymal stem cells and pulmonary fibrosis. Sci Rep 2018; 8(1): 13644.
[http://dx.doi.org/10.1038/s41598-018-28968-9] [PMID: 30206265]
[208]
Cao Y, Lin JH, Hammes HP, Zhang C. Cellular phenotypic transitions in diabetic nephropathy: An update. Front Pharmacol 2022; 13: 1038073.
[http://dx.doi.org/10.3389/fphar.2022.1038073] [PMID: 36408221]
[209]
Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell 2012; 149(6): 1192-205.
[http://dx.doi.org/10.1016/j.cell.2012.05.012] [PMID: 22682243]
[210]
Condorelli AG, El Hachem M, Zambruno G, Nystrom A, Candi E, Castiglia D. Notch-ing up knowledge on molecular mechanisms of skin fibrosis: Focus on the multifaceted Notch signalling pathway. J Biomed Sci 2021; 28(1): 36.
[http://dx.doi.org/10.1186/s12929-021-00732-8] [PMID: 33966637]
[211]
Noseda M, McLean G, Niessen K, et al. Notch activation results in phenotypic and functional changes consistent with endothelial- to-mesenchymal transformation. Circ Res 2004; 94(7): 910-7.
[http://dx.doi.org/10.1161/01.RES.0000124300.76171.C9] [PMID: 14988227]
[212]
Seguro Paula F, Delgado Alves J. The role of the Notch pathway in the pathogenesis of systemic sclerosis: Clinical implications. Expert Rev Clin Immunol 2021; 17(12): 1257-67.
[http://dx.doi.org/10.1080/1744666X.2021.2000391] [PMID: 34719325]
[213]
Horn A, Palumbo K, Cordazzo C, et al. Hedgehog signaling controls fibroblast activation and tissue fibrosis in systemic sclerosis. Arthritis Rheum 2012; 64(8): 2724-33.
[http://dx.doi.org/10.1002/art.34444] [PMID: 22354771]
[214]
Sapao P, Roberson EDO, Shi B, et al. Reduced SPAG17 expression in systemic sclerosis triggers myofibroblast transition and drives fibrosis. J Invest Dermatol 2023; 143(2): 284-93.
[http://dx.doi.org/10.1016/j.jid.2022.08.052] [PMID: 36116512]
[215]
Tsou PS, Varga J, O’Reilly S. Advances in epigenetics in systemic sclerosis: molecular mechanisms and therapeutic potential. Nat Rev Rheumatol 2021; 17(10): 596-607.
[http://dx.doi.org/10.1038/s41584-021-00683-2] [PMID: 34480165]
[216]
Szabo I, Muntean L, Crisan T, Rednic V, Sirbe C, Rednic S. Novel concepts in systemic sclerosis pathogenesis: Role for miRNAs. Biomedicines 2021; 9(10): 1471.
[http://dx.doi.org/10.3390/biomedicines9101471] [PMID: 34680587]
[217]
Liu Y, Cheng L, Zhan H, et al. The Roles of noncoding RNAs in systemic sclerosis. Front Immunol 2022; 13: 856036.
[http://dx.doi.org/10.3389/fimmu.2022.856036] [PMID: 35464474]
[218]
Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression? Biochem Soc Trans 2008; 36(6): 1224-31.
[http://dx.doi.org/10.1042/BST0361224] [PMID: 19021530]
[219]
Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell 2008; 132(1): 9-14.
[http://dx.doi.org/10.1016/j.cell.2007.12.024] [PMID: 18191211]
[220]
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010; 79(1): 351-79.
[http://dx.doi.org/10.1146/annurev-biochem-060308-103103] [PMID: 20533884]
[221]
Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease. RNA Biol 2011; 8(5): 706-13.
[http://dx.doi.org/10.4161/rna.8.5.16154] [PMID: 21712654]
[222]
Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 2010; 207(8): 1589-97.
[http://dx.doi.org/10.1084/jem.20100035] [PMID: 20643828]
[223]
Saito S, Ohno S, Harada Y, Kanno Y, Kuroda M. MiR-34a induces myofibroblast differentiation from renal fibroblasts. Clin Exp Nephrol 2023; 27(5): 411-8.
[http://dx.doi.org/10.1007/s10157-023-02329-x] [PMID: 36808381]
[224]
Zhao M, Qi Q, Liu S, et al. MicroRNA-34a: A novel therapeutic target in fibrosis. Front Physiol 2022; 13: 895242.
[http://dx.doi.org/10.3389/fphys.2022.895242] [PMID: 35795649]
[225]
Ghosh AK, Nagpal V, Covington JW, Michaels MA, Vaughan DE. Molecular basis of cardiac endothelial-to-mesenchymal transition (EndMT): Differential expression of microRNAs during EndMT. Cell Signal 2012; 24(5): 1031-6.
[http://dx.doi.org/10.1016/j.cellsig.2011.12.024] [PMID: 22245495]
[226]
Correia AC, Moonen JR, Brinker MG, Krenning G. FGF2 inhibits endothelial-mesenchymal transition through microRNA-20a-mediated repression of canonical TGF-β signaling. J Cell Sci 2016; 129(3): 569-79.
[PMID: 26729221]
[227]
Jiang C, Guo Y, Yu H, Lu S, Meng L. Pleiotropic microRNA-21 in pulmonary remodeling: Novel insights for molecular mechanism and present advancements. Allergy Asthma Clin Immunol 2019; 15(1): 33.
[http://dx.doi.org/10.1186/s13223-019-0345-2] [PMID: 31139230]
[228]
Li N, Wang Z, Gao F, Lei Y, Li Z. Melatonin ameliorates renal fibroblast-myofibroblast transdifferentiation and renal fibrosis through miR-21-5p regulation. J Cell Mol Med 2020; 24(10): 5615-28.
[http://dx.doi.org/10.1111/jcmm.15221] [PMID: 32243691]
[229]
Ma CX, Wei ZR, Sun T, et al. Circ-sh3rf3/GATA-4/miR-29a regulatory axis in fibroblast–myofibroblast differentiation and myocardial fibrosis. Cell Mol Life Sci 2023; 80(2): 50.
[http://dx.doi.org/10.1007/s00018-023-04699-7] [PMID: 36694058]
[230]
Huang Y, Xie Y, Abel PW, et al. TGF-β1-induced miR-424 promotes pulmonary myofibroblast differentiation by targeting Slit2 protein expression. Biochem Pharmacol 2020; 180: 114172.
[http://dx.doi.org/10.1016/j.bcp.2020.114172] [PMID: 32712053]
[231]
Chou MY, Hsieh PL, Chao SC, Liao YW, Yu CC, Tsai CY. MiR-424/TGIF2-mediated pro-fibrogenic responses in oral submucous fibrosis. Int J Mol Sci 2023; 24(6): 5811.
[http://dx.doi.org/10.3390/ijms24065811] [PMID: 36982885]
[232]
Wajda A, Walczyk M, Dudek E, et al. Serum microRNAs in systemic sclerosis, associations with digital vasculopathy and lung involvement. Int J Mol Sci 2022; 23(18): 10731.
[http://dx.doi.org/10.3390/ijms231810731] [PMID: 36142646]
[233]
Bayati P, Poormoghim H, Mojtabavi N. Aberrant expression of miR-138 as a novel diagnostic biomarker in systemic sclerosis. Biomark Insights 2022; 17
[http://dx.doi.org/10.1177/11772719221135442] [PMID: 36518749]
[234]
Bayati P, Kalantari M, Assarehzadegan MA, Poormoghim H, Mojtabavi N. MiR-27a as a diagnostic biomarker and potential therapeutic target in systemic sclerosis. Sci Rep 2022; 12(1): 18932.
[http://dx.doi.org/10.1038/s41598-022-23723-7] [PMID: 36344812]
[235]
Boulberdaa M, Scott E, Ballantyne M, et al. A role for the long noncoding RNA SENCR in commitment and function of endothelial cells. Mol Ther 2016; 24(5): 978-90.
[http://dx.doi.org/10.1038/mt.2016.41] [PMID: 26898221]
[236]
Spencer HL, Sanders R, Boulberdaa M, et al. The LINC00961 transcript and its encoded micropeptide, small regulatory polypeptide of amino acid response, regulate endothelial cell function. Cardiovasc Res 2020; 116(12): 1981-94.
[http://dx.doi.org/10.1093/cvr/cvaa008] [PMID: 31990292]
[237]
Hu JX, Zheng ZQ, Kang T, Qian W, Huang SH, Li BG. LncRNA LINC00961 regulates endothelial-mesenchymal transition via the PTEN-PI3K-AKT pathway. Mol Med Rep 2022; 26(1): 246.
[http://dx.doi.org/10.3892/mmr.2022.12762] [PMID: 35656895]