Biological Potential of a Bibenzyl Compound ‘Gigantol’ for the Treatment of Human Disorders: Pharmacological Activities and Analytical Aspects of an Active Phytochemical Isolated from Orchid

Page: [445 - 454] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Dendrobium chrysotoxum Lindl. is an important medicinal plant of the genus Dendrobium from the Orchidaceae family. Gigantol is one of the key bioactive phytochemicals found in Dendrobium plants. Gigantol is reported to have diverse pharmacological activities.

Aims: This narrative review explores the analytical aspects along with pharmacological activities of gigantol as reported in different scientific publications.

Methods: To find appropriate information related to Dendrobium plants and gigantol, extensive data extraction was done using ScienceDirect, Google, PubMed, and Scopus databases, and diverse facts were collected, arranged and analyzed to know the therapeutic potential of gigantol. Analytical aspects of gigantol were also discussed in the present work.

Results: Gigantol has a wide distribution in the Dendrobium officinale, Dendrobium chrysanthum, Dendrobium crystallinum, Dendrobium aphyllum, and Dendrobium devonianum. Available data indicates diverse pharmacological activities of gigantol. Preclinical studies have shown its effectiveness in the treatment of cataractogenesis, liver injury, leishmaniasis, nephrotoxicity, spasm, and skin disorders. Gigantol has been found to control hepatocellular cancer, lung cancer, breast cancer, bladder cancer, and cervical cancer. The neuroprotective, antinociceptive, anti-inflammatory, antioxidant, vasorelaxant, immune modulatory effect, antimalarial, and anti-herpetic properties of gigantol have also been observed. Applications of different analytical techniques for the isolation and characterization of gigantol were also discussed in detail.

Conclusion: Gigantol has significant and diverse pharmacological activities that must be explored in clinical setup to develop therapeutic leads for different diseases and health conditions.

Graphical Abstract

[1]
Wu J, Li X, Wan W, et al. Gigantol from Dendrobium chrysotoxum Lindl. binds and inhibits aldose reductase gene to exert its anti-cataract activity: An in vitro mechanistic study. J Ethnopharmacol 2017; 198: 255-61.
[http://dx.doi.org/10.1016/j.jep.2017.01.026] [PMID: 28104409]
[2]
Fang H, Hu X, Wang M, et al. Anti-osmotic and antioxidant activities of gigantol from Dendrobium aurantiacum var. denneanum against cataractogenesis in galactosemic rats. J Ethnopharmacol 2015; 172: 238-46.
[http://dx.doi.org/10.1016/j.jep.2015.06.034] [PMID: 26119284]
[3]
Zhai D, Lv X, Chen J, Peng M, Cai J. Recent research progress on natural stilbenes in Dendrobium species. Molecules 2022; 27(21): 7233.
[http://dx.doi.org/10.3390/molecules27217233] [PMID: 36364058]
[4]
Fan Y, Han H, He C, Yang L, Wang Z. Identification of the metabolites of gigantol in rat urine by ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Biomed Chromatogr 2014; 28(12): 1808-15.
[http://dx.doi.org/10.1002/bmc.3224] [PMID: 24899569]
[5]
Huang J, Liu C, Duan S, et al. Gigantol inhibits proliferation and enhances DDP-induced apoptosis in breast-cancer cells by downregulating the PI3K/Akt/mTOR signaling pathway. Life Sci 2021; 274: 119354.
[http://dx.doi.org/10.1016/j.lfs.2021.119354] [PMID: 33737087]
[6]
Yu S, Wang Z, Su Z, et al. Gigantol inhibits Wnt/β-catenin signaling and exhibits anticancer activity in breast cancer cells. BMC Complement Altern Med 2018; 18(1): 59.
[http://dx.doi.org/10.1186/s12906-018-2108-x] [PMID: 29444668]
[7]
Chen H, Huang Y, Huang J, Lin L, Wei G. Gigantol attenuates the proliferation of human liver cancer HepG2 cells through the PI3K/Akt/NF-κB signaling pathway. Oncol Rep 2017; 37(2): 865-70.
[http://dx.doi.org/10.3892/or.2016.5299] [PMID: 27959444]
[8]
Chen H, Huang Y, Huang D, et al. Protective effect of gigantol against hydrogen peroxide induced apoptosis in rat bone marrow mesenchymal stem cells through the PI3K/Akt pathway. Mol Med Rep 2018; 17(2): 3267-73.
[PMID: 29257286]
[9]
Unahabhokha T, Chanvorachote P, Sritularak B, Kitsongsermthon J, Pongrakhananon V. Gigantol inhibits epithelial to mesenchymal process in human lung cancer cells. Evid Based Complement Alternat Med 2016; 2016: 1-10.
[http://dx.doi.org/10.1155/2016/4561674] [PMID: 27651818]
[10]
Unahabhokha T, Chanvorachote P, Pongrakhananon V. The attenuation of epithelial to mesenchymal transition and induction of anoikis by gigantol in human lung cancer H460 cells. Tumour Biol 2016; 37(7): 8633-41.
[http://dx.doi.org/10.1007/s13277-015-4717-z] [PMID: 26733180]
[11]
Reyes-Ramírez A, Leyte-Lugo M, Figueroa M, Serrano-Alba T, González-Andrade M, Mata R. Synthesis, biological evaluation, and docking studies of gigantol analogs as calmodulin inhibitors. Eur J Med Chem 2011; 46(7): 2699-708.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.057] [PMID: 21514702]
[12]
Déciga-Campos M, Palacios-Espinosa JF, Reyes-Ramírez A, Mata R. Antinociceptive and anti-inflammatory effects of compounds isolated from Scaphyglottis livida and Maxillaria densa. J Ethnopharmacol 2007; 114(2): 161-8.
[http://dx.doi.org/10.1016/j.jep.2007.07.021] [PMID: 17855030]
[13]
Chen MF, Liou SS, Hong TY, Kao ST, Liu IM. Gigantol has protective effects against high glucose-evoked nephrotoxicity in mouse glomerulus mesangial cells by suppressing ROS/MAPK/NF-κB signaling pathways. Molecules 2018; 24(1): 80.
[http://dx.doi.org/10.3390/molecules24010080] [PMID: 30587838]
[14]
Zheng S, Zhu Y, Jiao C, et al. Extraction and analysis of gigantol from Dendrobium officinale with response surface methodology. Molecules 2018; 23(4): 818.
[http://dx.doi.org/10.3390/molecules23040818] [PMID: 29614010]
[15]
Wu J, Li X, Fang H, et al. Investigation of synergistic mechanism and identification of interaction site of aldose reductase with the combination of gigantol and syringic acid for prevention of diabetic cataract. BMC Complement Altern Med 2016; 16(1): 286.
[http://dx.doi.org/10.1186/s12906-016-1251-5] [PMID: 27520089]
[16]
Li S, Li H, Yin D, et al. Effect of gigantol on the proliferation of hepatocellular carcinoma cells tested by a network-based pharmacological approach and experiments. Frontiers in Bioscience-Landmark 2022; 27(1): 1.
[http://dx.doi.org/10.31083/j.fbl2701025] [PMID: 35090330]
[17]
Xue Y, Deng Q, Zhang Q, et al. Gigantol ameliorates CCl4-induced liver injury via preventing activation of JNK/cPLA2/12-LOX inflammatory pathway. Sci Rep 2020; 10(1): 22265.
[http://dx.doi.org/10.1038/s41598-020-79400-0] [PMID: 33335297]
[18]
Losuwannarak N, Maiuthed A, Kitkumthorn N, Leelahavanichkul A, Roytrakul S, Chanvorachote P. Gigantol targets cancer stem cells and destabilizes tumors via the suppression of the PI3K/AKT and JAK/STAT pathways in ectopic lung cancer xenografts. Cancers (Basel) 2019; 11(12): 2032.
[http://dx.doi.org/10.3390/cancers11122032] [PMID: 31861050]
[19]
Losuwannarak N, Roytrakul S, Chanvorachote P. Gigantol Targets MYC for ubiquitin-proteasomal degradation and suppresses lung cancer cell growth. Cancer Genomics Proteomics 2020; 17(6): 781-93.
[http://dx.doi.org/10.21873/cgp.20232] [PMID: 33099479]
[20]
Aksorn N, Losuwannarak N, Tungsukruthai S, Roytrakul S, Chanvorachote P. Analysis of the protein–protein interaction network identifying c-Met as a target of gigantol in the suppression of lung cancer metastasis. Cancer Genomics Proteomics 2021; 18(3): 261-72.
[http://dx.doi.org/10.21873/cgp.20257] [PMID: 33893079]
[21]
Basque A, Nguyen HT, Touaibia M, Martin LJ. Gigantol improves cholesterol metabolism and progesterone biosynthesis in MA-10 leydig cells. Curr Issues Mol Biol 2021; 44(1): 73-93.
[http://dx.doi.org/10.3390/cimb44010006] [PMID: 35723385]
[22]
Cai Y, Hao Y, Xu H, Chen K, Ren B. Gigantol inhibits cell proliferation and induces apoptosis by regulating DEK in non small cell lung cancer. Exp Ther Med 2021; 22(5): 1317.
[http://dx.doi.org/10.3892/etm.2021.10752] [PMID: 34630671]
[23]
Zhao M, Sun Y, Gao Z, et al. Gigantol attenuates the metastasis of human bladder cancer cells, possibly through wnt/emt signaling. OncoTargets Ther 2020; 13: 11337-46.
[http://dx.doi.org/10.2147/OTT.S271032] [PMID: 33177841]
[24]
Bhummaphan N, Chanvorachote P. Gigantol suppresses cancer stem cell-like phenotypes in lung cancer cells. Evid Based Complement Alternat Med 2015; 2015: 1-10.
[http://dx.doi.org/10.1155/2015/836564] [PMID: 26339272]
[25]
Klongkumnuankarn P, Busaranon K, Chanvorachote P, Sritularak B, Jongbunprasert V, Likhitwitayawuid K. Cytotoxic and antimigratory activities of phenolic compounds from Dendrobium brymerianum. Evid Based Complement Alternat Med 2015; 2015: 1-9.
[http://dx.doi.org/10.1155/2015/350410] [PMID: 25685168]
[26]
Zhan R, Zhang Y, Chen L, Chen Y. A new (propylphenyl)bibenzyl from Eria bambusifolia. Nat Prod Res 2016; 30(15): 1740-5.
[http://dx.doi.org/10.1080/14786419.2015.1137572] [PMID: 26795438]
[27]
Tao B, Song Y, Wu Y, et al. Matrix stiffness promotes glioma cell stemness by activating BCL9L/Wnt/β-catenin signaling. Aging (Albany NY) 2021; 13(4): 5284-96.
[http://dx.doi.org/10.18632/aging.202449] [PMID: 33535177]
[28]
Wei X. Characterization of structural requirement for binding of gigantol and aldose reductase. Front Biosci 2019; 24(6): 1024-36.
[http://dx.doi.org/10.2741/4765]
[29]
Xue Y, Yao S, Liu Q, et al. Dihydro-stilbene gigantol relieves CCl4-induced hepatic oxidative stress and inflammation in mice via inhibiting C5b-9 formation in the liver. Acta Pharmacol Sin 2020; 41(11): 1433-45.
[http://dx.doi.org/10.1038/s41401-020-0406-6] [PMID: 32404983]
[30]
Sun J, Zhang F, Yang M, et al. Isolation of α-glucosidase inhibitors including a new flavonol glycoside from Dendrobium devonianum. Nat Prod Res 2014; 28(21): 1900-5.
[http://dx.doi.org/10.1080/14786419.2014.955495] [PMID: 25189122]
[31]
Estrada-Soto S, López-Guerrero JJ, Villalobos-Molina R, Mata R. Endothelium-independent relaxation of aorta rings by two stilbenoids from the orchids Scaphyglottis livida. Fitoterapia 2006; 77(3): 236-9.
[http://dx.doi.org/10.1016/j.fitote.2006.02.006] [PMID: 16533577]
[32]
Khoonrit P, Mirdogan A, Dehlinger A, et al. Immune modulatory effect of a novel 4,5-dihydroxy-3,3´,4´-trimethoxybibenzyl from Dendrobium lindleyi. PLoS One 2020; 15(9): e0238509.
[http://dx.doi.org/10.1371/journal.pone.0238509] [PMID: 32870935]
[33]
Ahammed S, Afrin R, Uddin N, et al. Acetylcholinesterase inhibitory and antioxidant activity of the compounds isolated from Vanda roxburghii. Adv Pharmacol Pharm Sci 2021; 2021: 1-9.
[http://dx.doi.org/10.1155/2021/5569054] [PMID: 33855299]
[34]
Sritularak B, Anuwat M, Likhitwitayawuid K. A new phenanthrenequinone from Dendrobium draconis. J Asian Nat Prod Res 2011; 13(3): 251-5.
[http://dx.doi.org/10.1080/10286020.2010.546354] [PMID: 21409687]
[35]
Hernández-Romero Y, Rojas JI, Castillo R, Rojas A, Mata R. Spasmolytic effects, mode of action, and structure-activity relationships of stilbenoids from Nidema boothii. J Nat Prod 2004; 67(2): 160-7.
[http://dx.doi.org/10.1021/np030303h] [PMID: 14987052]
[36]
Simmler C, Antheaume C, Lobstein A. Antioxidant biomarkers from Vanda coerulea stems reduce irradiated HaCaT PGE-2 production as a result of COX-2 inhibition. PLoS One 2010; 5(10): e13713.
[http://dx.doi.org/10.1371/journal.pone.0013713] [PMID: 21060890]
[37]
Sukphan P, Sritularak B, Mekboonsonglarp W, Lipipun V, Likhitwitayawuid K. Chemical constituents of Dendrobium venustum and their antimalarial and anti-herpetic properties. Nat Prod Commun 2014; 9: 1934578X140090.
[http://dx.doi.org/10.1177/1934578X1400900625]
[38]
Rahman F, Tabrez S, Ali R, et al. Virtual screening of natural compounds for potential inhibitors of Sterol C‐24 methyltransferase of Leishmania donovani to overcome leishmaniasis. J Cell Biochem 2021; 122(9): 1216-28.
[http://dx.doi.org/10.1002/jcb.29944] [PMID: 33955051]
[39]
Zhou Y-J, Wang J-H, Xu H, Chou G-X, Wang Z-T. Bibenzyls from Dendrobium officinale. Zhongguo Zhongyao Zazhi 2021; 46(15): 3853-8.
[PMID: 34472259]
[40]
Jia-Wei S, Ji-Mei L, Ri-Dao C, et al. Study on chemical bibenzyls in Dendrobium gratiosissimum. Zhongguo Zhongyao Zazhi 2020; 45(20): 4929-37.
[PMID: 33350266]
[41]
Zhao N, Yang G, Zhang Y, Chen L, Chen Y. A new 9,10-dihydrophenanthrene from Dendrobium moniliforme. Nat Prod Res 2016; 30(2): 174-9.
[http://dx.doi.org/10.1080/14786419.2015.1046379] [PMID: 26132274]
[42]
Adejobi OI, Guan J, Yang L, et al. Transcriptomic analyses shed light on critical genes associated with bibenzyl biosynthesis in Dendrobium officinale. Plants 2021; 10(4): 633.
[http://dx.doi.org/10.3390/plants10040633] [PMID: 33810588]
[43]
Hu J-M, Chen J-J, Yu H, Zhao Y-X, Zhou J. Two novel bibenzyls from Dendrobium trigonopus. J Asian Nat Prod Res 2008; 10(7-8): 653-7.
[PMID: 18636377]
[44]
Li Y, Wang CL, Guo SX, Yang JS, Xiao PG. Two new compounds from Dendrobium candidum. Chem Pharm Bull (Tokyo) 2008; 56(10): 1477-9.
[http://dx.doi.org/10.1248/cpb.56.1477] [PMID: 18827395]
[45]
Li Z-Q, Zhou H-Q, Ouyang Z, et al. Comparison of active ingredients and protective effects of Dendrobium huoshanense of different growth years on acute liver injury. Zhongguo Zhongyao Zazhi 2021; 46(2): 298-305.
[PMID: 33645115]
[46]
Xu FQ, Fan WW, Zi CT, et al. Four new glycosides from the stems of Dendrobium fimbriatum Hook. Nat Prod Res 2017; 31(7): 797-801.
[http://dx.doi.org/10.1080/14786419.2016.1247076] [PMID: 27798974]
[47]
Sarakulwattana C, Mekboonsonglarp W, Likhitwitayawuid K, Rojsitthisak P, Sritularak B. New bisbibenzyl and phenanthrene derivatives from Dendrobium scabrilingue and their α-glucosidase inhibitory activity. Nat Prod Res 2020; 34(12): 1694-701.
[http://dx.doi.org/10.1080/14786419.2018.1527839] [PMID: 30580616]
[48]
Zhang C, Liu SJ, Yang L, et al. Sesquiterpene amino ether and cytotoxic phenols from Dendrobium wardianum Warner. Fitoterapia 2017; 122: 76-9.
[http://dx.doi.org/10.1016/j.fitote.2017.08.015] [PMID: 28844931]
[49]
Yi X, Lan X. LC–MS/MS method for the determination of erianin in rat plasma: Application to a pharmacokinetic study. Biomed Chromatogr 2020; 34(7): e4826.
[http://dx.doi.org/10.1002/bmc.4826] [PMID: 32163178]
[50]
Chen X, Wang F, Wang Y, et al. Discrimination of the rare medicinal plant Dendrobium officinale based on naringenin, bibenzyl, and polysaccharides. Sci China Life Sci 2012; 55(12): 1092-9.
[http://dx.doi.org/10.1007/s11427-012-4419-3] [PMID: 23233224]
[51]
Nam B, Jang HJ, Han AR, et al. Chemical and biological profiles of Dendrobium in two different species, their hybrid, and gamma-irradiated mutant lines of the hybrid based on LC-QToF MS and cytotoxicity analysis. Plants 2021; 10(7): 1376.
[http://dx.doi.org/10.3390/plants10071376] [PMID: 34371579]
[52]
Wang C, Han S-W, Cui B-S, Wang X-J, Li S. Chemical constituents from Pleione bulbocodioides. Zhongguo Zhongyao Zazhi 2014; 39(3): 442-7.
[PMID: 24946545]
[53]
Hernández-Romero Y, Acevedo L, de Los Ángeles Sánchez M, Shier WT, Abbas HK, Mata R. Phytotoxic activity of bibenzyl derivatives from the orchid Epidendrum rigidum. J Agric Food Chem 2005; 53(16): 6276-80.
[http://dx.doi.org/10.1021/jf0508044] [PMID: 16076106]
[54]
Cakova V, Urbain A, Antheaume C, et al. Identification of phenanthrene derivatives in Aerides rosea (Orchidaceae) using the combined systems HPLC-ESI-HRMS/MS and HPLC-DAD-MS-SPE-UV-NMR. Phytochem Anal 2015; 26(1): 34-9.
[http://dx.doi.org/10.1002/pca.2533] [PMID: 25130411]
[55]
Yi Y-Q, Yang Q-H, Su J-F, et al. Experimental study on preclinical quality control, urgent poison and irritation of Dendrobium aurantiacum eye drops, a class I new drug against diabetic cataract. Zhongguo Zhongyao Zazhi 2013; 38(7): 1061-6.
[PMID: 23847958]
[56]
Morales-Sánchez V, Rivero-Cruz I, Laguna-Hernández G, Salazar-Chávez G, Mata R. Chemical composition, potential toxicity, and quality control procedures of the crude drug of Cyrtopodium macrobulbon. J Ethnopharmacol 2014; 154(3): 790-7.
[http://dx.doi.org/10.1016/j.jep.2014.05.006] [PMID: 24818583]
[57]
Yang L, Wang Y, Zhang G, et al. Simultaneous quantitative and qualitative analysis of bioactive phenols in Dendrobium aurantiacum var. denneanum by high-performance liquid chromatography coupled with mass spectrometry and diode array detection. Biomed Chromatogr 2007; 21(7): 687-94.
[http://dx.doi.org/10.1002/bmc.801] [PMID: 17428009]
[58]
Zhang C-F, Shao L, Huang W-H, Wang L, Wang Z-T, Xu L-S. Phenolic components from herbs of Dendrobium aphyllum. Zhongguo Zhongyao Zazhi 2008; 33(24): 2922-5.
[PMID: 19294851]
[59]
Wang L, Zhang CF, Wang ZT, Zhang M, Shao L, Xu LS. Studies on chemical constituents of Dendrobium crystallinum. Zhongguo Zhongyao Zazhi 2008; 33(15): 1847-8.
[PMID: 19007013]
[60]
Qin HL, Zhang JX, Wang ZT, Yang XS, Xu LS, Hao XJ. Analysis of 1H-NMR fingerprint in stem of Dendrobium loddigesii. Zhongguo Zhongyao Zazhi 2002; 27(12): 919-23.
[PMID: 12776532]
[61]
Patel DK. Biological importance and therapeutic potential of Trilobatin in the management of human disorders and associated secondary complications. Pharmacol Res - Mod Chinese Med 2022; 5: 100185.
[62]
Patel DK. Biological importance of a biflavonoid ‘bilobetin’ in the medicine: medicinal importance, pharmacological activities and analytical aspects. Infect Disord Drug Targets 2022; 22(5): e210322202490.
[http://dx.doi.org/10.2174/1871526522666220321152036] [PMID: 35319397]
[63]
Patel DK. Health beneficial aspect and therapeutic potential of cirsimaritin in the medicine for the treatment of human health complications. Curr Bioact Compd 2022; 18(7): e270122200566.
[http://dx.doi.org/10.2174/1573407218666220127092925]
[64]
Patel DK. Biological importance, therapeutic benefits, and analytical aspects of active flavonoidal compounds ‘corylin’ from Psoralea corylifolia in the field of medicine. Infect Disord Drug Targets 2023; 23(1): e250822208005.
[http://dx.doi.org/10.2174/1871526522666220825160906] [PMID: 36028973]
[65]
Patel DK, Patel K. Potential therapeutic applications of eudesmin in medicine: An overview on medicinal importance, pharmacological activities and analytical prospects. Modern Chin Med 2022; 5: 100175.
[http://dx.doi.org/10.1016/j.prmcm.2022.100175]
[66]
Patel DK. Biological potential and therapeutic benefit of Chrysosplenetin: An Applications of polymethoxylated flavonoid in medicine from natural sources. Pharmacol Res - Mod Chinese Med 2022; 4: 100155.
[http://dx.doi.org/10.1016/j.prmcm.2022.100155]
[67]
Patel DK, Patel K. Health benefits of avicularin in the medicine against cancerous disorders and other complications: biological importance, therapeutic benefit and analytical aspects. Curr Cancer Ther Rev 2022; 18(1): 41-50.
[http://dx.doi.org/10.2174/1573394717666210831163322]
[68]
Patel DK. Biological importance, therapeutic benefit, and medicinal importance of flavonoid, cirsiliol for the development of remedies against human disorders. Curr Bioact Compd 2022; 18(3): e240821195804.
[http://dx.doi.org/10.2174/1573407217666210824125427]
[69]
Patel K, Patel DK. Therapeutic benefit and biological importance of ginkgetin in the medicine: Medicinal importance, pharmacological activities and analytical aspects. Curr Bioact Compd 2021; 17(9): e190721190770.
[http://dx.doi.org/10.2174/1573407217666210127091221]
[70]
Patel DK. Grandisin and its therapeutic potential and pharmacological activities: A review. Pharmacol Res - Mod Chinese Med 2022; 5: 100176.
[71]
He L, Su Q, Bai L, et al. Recent research progress on natural small molecule bibenzyls and its derivatives in Dendrobium species. Eur J Med Chem 2020; 204: 112530.
[http://dx.doi.org/10.1016/j.ejmech.2020.112530] [PMID: 32711292]
[72]
Axiotis E, Angelis A, Antoniadi L, Petrakis EA, Skaltsounis LA. Phytochemical analysis and dermo-cosmetic evaluation of Cymbidium sp. (Orchidaceae) cultivation by-products. Antioxidants 2021; 11(1): 101.
[http://dx.doi.org/10.3390/antiox11010101] [PMID: 35052605]
[73]
Kang H, Sun Y, Hu X, Liu L. Gigantol inhibits proliferation and enhanced oxidative stress‐mediated apoptosis through modulating of Wnt/β‐catenin signaling pathway in HeLa cells. J Biochem Mol Toxicol 2022; 36(1): e22944.
[http://dx.doi.org/10.1002/jbt.22944] [PMID: 34729850]
[74]
Jimoh TO, Costa BC, Chansriniyom C, et al. Three new dihydrophenanthrene derivatives from Cymbidium ensifolium and their cytotoxicity against cancer cells. Molecules 2022; 27(7): 2222.
[http://dx.doi.org/10.3390/molecules27072222] [PMID: 35408617]
[75]
Yang D, Liu LY, Cheng ZQ, et al. Five new phenolic compounds from Dendrobium aphyllum. Fitoterapia 2015; 100: 11-8.
[http://dx.doi.org/10.1016/j.fitote.2014.11.004] [PMID: 25447160]
[76]
Thomas A, Pujari I, Shetty V, et al. Dendrobium protoplast co-culture promotes phytochemical assemblage in vitro. Protoplasma 2017; 254(4): 1517-28.
[http://dx.doi.org/10.1007/s00709-016-1043-2] [PMID: 27837285]
[77]
Warinhomhoun S, Muangnoi C, Buranasudja V, et al. Antioxidant activities and protective effects of dendropachol, a new bisbibenzyl compound from Dendrobium pachyglossum, on hydrogen peroxide-induced oxidative stress in hacat keratinocytes. Antioxidants 2021; 10(2): 252.
[http://dx.doi.org/10.3390/antiox10020252] [PMID: 33562174]
[78]
Gutierrez RMP, Solis RV. Relaxant and antispasmodic effects of extracts of the orchid Encyclia michuacana on isolated guinea pig ileum. J Nat Med 2009; 63(1): 65-8.
[http://dx.doi.org/10.1007/s11418-008-0280-x] [PMID: 18665331]
[79]
San HT, Chatsumpun N, Juengwatanatrakul T, Pornputtapong N, Likhitwitayawuid K, Sritularak B. Four novel phenanthrene derivatives with α-glucosidase inhibitory activity from Gastrochilus bellinus. Molecules 2021; 26(2): 418.
[http://dx.doi.org/10.3390/molecules26020418] [PMID: 33466863]
[80]
Uddin MN, Afrin R, Uddin MJ, et al. Vanda roxburghii chloroform extract as a potential source of polyphenols with antioxidant and cholinesterase inhibitory activities: identification of a strong phenolic antioxidant. BMC Complement Altern Med 2015; 15(1): 195.
[http://dx.doi.org/10.1186/s12906-015-0728-y] [PMID: 26100408]