Recent Development in the Search for Epidermal Growth Factor Receptor (EGFR) Inhibitors based on the Indole Pharmacophore

Page: [581 - 613] Pages: 33

  • * (Excluding Mailing and Handling)

Abstract

The signal transduction and cell proliferation are regulated by the epidermal growth factor receptor. The proliferation of tumor cells, apoptosis, invasion, and angiogenesis is inhibited by the epidermal growth factor receptor. Thus, breast cancer, non-small cell lung cancer, cervical cancer, glioma, and bladder cancer can be treated by targeting the epidermal growth factor receptor. Although third-generation epidermal growth factor receptor inhibitors are potent drugs, patients exhibit drug resistance after treatment. Thus, the search for new drugs is being continued. Among the different potent epidermal growth factor receptor inhibitors, we have reviewed the indole-based inhibitors. We have discussed the structure-activity relationship of the compounds with the active sites of the epidermal growth factor receptor receptors, their synthesis, and molecular docking studies.

Graphical Abstract

[1]
An, Z.; Aksoy, O.; Zheng, T.; Fan, Q.W.; Weiss, W.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies. Oncogene, 2018, 37(12), 1561-1575.
[http://dx.doi.org/10.1038/s41388-017-0045-7] [PMID: 29321659]
[2]
Aran, V.; Omerovic, J. Current approaches in NSCLC targeting K-RAS and EGFR. Int. J. Mol. Sci., 2019, 20(22), 5701.
[http://dx.doi.org/10.3390/ijms20225701] [PMID: 31739412]
[3]
Aredo, J.V.; Mambetsariev, I.; Hellyer, J.A.; Amini, A.; Neal, J.W.; Padda, S.K.; McCoach, C.E.; Riess, J.W.; Cabebe, E.C.; Naidoo, J.; Abuali, T.; Salgia, R.; Loo, B.W., Jr; Diehn, M.; Han, S.S.; Wakelee, H.A. Durvalumab for stage III EGFR-mutated NSCLC after definitive chemoradiotherapy. J. Thorac. Oncol., 2021, 16(6), 1030-1041.
[http://dx.doi.org/10.1016/j.jtho.2021.01.1628] [PMID: 33588109]
[4]
Ayati, A.; Moghimi, S.; Toolabi, M.; Foroumadi, A. Pyrimidine-based EGFR TK inhibitors in targeted cancer therapy. Eur. J. Med. Chem., 2021, 221, 113523.
[http://dx.doi.org/10.1016/j.ejmech.2021.113523] [PMID: 33992931]
[5]
Byeon, H.K.; Ku, M.; Yang, J. Beyond EGFR inhibition: Multilateral combat strategies to stop the progression of head and neck cancer. Exp. Mol. Med., 2019, 51(1), 1-14.
[http://dx.doi.org/10.1038/s12276-018-0202-2] [PMID: 30700700]
[6]
Lee, N.Y.; Hazlett, T.L.; Koland, J.G. Structure and dynamics of the epidermal growth factor receptor C-terminal phosphorylation domain. Protein Sci., 2006, 15(5), 1142-1152.
[http://dx.doi.org/10.1110/ps.052045306] [PMID: 16597832]
[7]
Chu, P.Y.; Tai, Y.L.; Shen, T.L. Grb7, a critical mediator of egfr/erbb signaling, in cancer development and as a potential therapeutic target. Cells, 2019, 8(5), 435.
[http://dx.doi.org/10.3390/cells8050435] [PMID: 31083325]
[8]
Abourehab, M.A.S.; Alqahtani, A.M.; Youssif, B.G.M.; Gouda, A.M. Globally approved EGFR inhibitors: Insights into their syntheses, target kinases, biological activities, receptor interactions, and metabolism. Molecules, 2021, 26(21), 6677.
[http://dx.doi.org/10.3390/molecules26216677] [PMID: 34771085]
[9]
Mahmoud, M.A.; Mohammed, A.F.; Salem, O.I.A.; Gomaa, H.A.M.; Youssif, B.G.M. New 1,3,4‐oxadiazoles linked with the 1,2,3‐triazole moiety as antiproliferative agents targeting the EGFR tyrosine kinase. Arch. Pharm., 2022, 355(6), 2200009.
[http://dx.doi.org/10.1002/ardp.202200009] [PMID: 35195309]
[10]
Lipinski, C.; Hopkins, A. Navigating chemical space for biology and medicine. Nature, 2004, 432(7019), 855-861.
[http://dx.doi.org/10.1038/nature03193] [PMID: 15602551]
[11]
Simon, Z.; Peragovics, Á.; Vigh-Smeller, M.; Csukly, G.; Tombor, L.; Yang, Z.; Zahoránszky-Kőhalmi, G.; Végner, L.; Jelinek, B.; Hári, P.; Hetényi, C.; Bitter, I.; Czobor, P.; Málnási-Csizmadia, A. Drug effect prediction by polypharmacology-based interaction profiling. J. Chem. Inf. Model., 2012, 52(1), 134-145.
[http://dx.doi.org/10.1021/ci2002022] [PMID: 22098080]
[12]
Qaseem, A.; Barry, M.J.; Humphrey, L.L.; Forciea, M.A.; Fitterman, N.; Horwitch, C.; Kansagara, D.; McLean, R.M.; Wilt, T.J. Oral pharmacologic treatment of type 2 diabetes mellitus: A clinical practice guideline update from the american college of physicians. Ann. Intern. Med., 2017, 166(4), 279-290.
[http://dx.doi.org/10.7326/M16-1860] [PMID: 28055075]
[13]
Lakhdar, S.; Westermaier, M.; Terrier, F.; Goumont, R.; Boubaker, T.; Ofial, A.R.; Mayr, H. Nucleophilic reactivities of indoles. J. Org. Chem., 2006, 71(24), 9088-9095.
[http://dx.doi.org/10.1021/jo0614339] [PMID: 17109534]
[14]
Leboho, T.C.; Michael, J.P.; van Otterlo, W.A.L.; van Vuuren, S.F.; de Koning, C.B. The synthesis of 2- and 3-aryl indoles and 1,3,4,5-tetrahydropyrano[4,3-b]indoles and their antibacterial and antifungal activity. Bioorg. Med. Chem. Lett., 2009, 19(17), 4948-4951.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.091] [PMID: 19660944]
[15]
Rahaman, S.A.; Ragjendra Prasad, Y.; Bhuvaneswari, K.; Kumar, P. Synthesis and antihistaminic activity of novel pyrazoline derivatives. Int. J. Chemtech Res., 2010, 2, 16-20.
[16]
Kumar, D.; Kumar, N.; Kumar, S.; Singh, T.; Singh, C.P. Synthesis of pharmacologically active 2-phenyl sulpha/substituted Indoles. Int. J. Eng. Sci. Technol., 2010, 2, 2553-2557.
[17]
Zhang, F.; Zhao, Y.; Sun, L.; Ding, L.; Gu, Y.; Gong, P. Synthesis and anti-tumor activity of 2-amino-3-cyano-6-(1H-indol-3-yl)-4-phenylpyridine derivatives in vitro. Eur. J. Med. Chem., 2011, 46(7), 3149-3157.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.055] [PMID: 21514012]
[18]
Ghanei-Nasab, S.; Khoobi, M.; Hadizadeh, F.; Marjani, A.; Moradi, A.; Nadri, H.; Emami, S.; Foroumadi, A.; Shafiee, A. Synthesis and anticholinesterase activity of coumarin-3-carboxamides bearing tryptamine moiety. Eur. J. Med. Chem., 2016, 121, 40-46.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.014] [PMID: 27214510]
[19]
Li, Y.; Wu, H.; Tang, L.; Feng, C.; Yu, J.; Li, Y.; Yang, Y.; Yang, B.; He, Q. The potential insulin sensitizing and glucose lowering effects of a novel indole derivative in vitro and in vivo. Pharmacol. Res., 2007, 56(4), 335-343.
[http://dx.doi.org/10.1016/j.phrs.2007.08.002] [PMID: 17889553]
[20]
Abdel-Gawad, H.; Mohamed, H.A.; Dawood, K.M.; Badria, F.A.R. Synthesis and antiviral activity of new indole-based heterocycles. Chem. Pharm. Bull., 2010, 58(11), 1529-1531.
[http://dx.doi.org/10.1248/cpb.58.1529] [PMID: 21048349]
[21]
Almagro, L.; Fernández-Pérez, F.; Pedreño, M. Indole alkaloids from Catharanthus roseus: Bioproduction and their effect on human health. Molecules, 2015, 20(2), 2973-3000.
[http://dx.doi.org/10.3390/molecules20022973] [PMID: 25685907]
[22]
Mirzaei, H.; Shokrzadeh, M.; Emami, S. Synthesis, cytotoxic activity and docking study of two indole-chalcone derivatives. J. Mazandaran Univ. Med. Sci., 2017, 27, 12-25.
[23]
Hu, M.J.; Zhang, B.; Yang, H.K.; Liu, Y.; Chen, Y.R.; Ma, T.Z.; Lu, L.; You, W.W.; Zhao, P.L. Design, synthesis and molecular docking studies of novel indole-pyrimidine hybrids as tubulin polymerization inhibitors. Chem. Biol. Drug Des., 2015, 86(6), 1491-1500.
[http://dx.doi.org/10.1111/cbdd.12616] [PMID: 26177395]
[24]
Shankaraiah, N.; Siraj, K.P.; Nekkanti, S.; Srinivasulu, V.; Sharma, P.; Senwar, K.R.; Sathish, M.; Vishnuvardhan, M.V.P.S.; Ramakrishna, S.; Jadala, C.; Nagesh, N.; Kamal, A. DNA-binding affinity and anticancer activity of β-carboline-chalcone conjugates as potential DNA intercalators: Molecular modelling and synthesis. Bioorg. Chem., 2015, 59, 130-139.
[http://dx.doi.org/10.1016/j.bioorg.2015.02.007] [PMID: 25771335]
[25]
Yan, J.; Chen, J.; Zhang, S.; Hu, J.; Huang, L.; Li, X. Synthesis, evaluation, and mechanism study of novel indole-chalcone derivatives exerting effective antitumor activity through microtubule destabilization in vitro and in vivo. J. Med. Chem., 2016, 59(11), 5264-5283.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00021] [PMID: 27149641]
[26]
Peerzada, M.N.; Khan, P.; Ahmad, K.; Hassan, M.I.; Azam, A. Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents. Eur. J. Med. Chem., 2018, 155, 13-23.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.034] [PMID: 29852328]
[27]
Aneja, B.; Arif, R.; Perwez, A.; Napoleon, J.V.; Hasan, P.; Rizvi, M.M.A.; Azam, A.; Rahisuddin, M.; Abid, M. N-Substituted 1,2,3-triazolyl-appended indole-chalcone hybrids as potential dna intercalators endowed with antioxidant and anticancer properties. ChemistrySelect, 2018, 3(9), 2638-2645.
[http://dx.doi.org/10.1002/slct.201702913]
[28]
Panathur, N.; Gokhale, N.; Dalimba, U.; Koushik, P.V.; Yogeeswari, P.; Sriram, D. New indole-isoxazolone derivatives: Synthesis, characterisation and in vitro SIRT1 inhibition studies. Bioorg. Med. Chem. Lett., 2015, 25(14), 2768-2772.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.015] [PMID: 26025875]
[29]
Lafayette, E.A.; de Almeida, S.M.V.; Cavalcanti Santos, R.V.; de Oliveira, J.F.; Amorim, C.A.C.; da Silva, R.M.F.; Pitta, M.G.R.; Pitta, I.R.; de Moura, R.O.; de Carvalho Júnior, L.B.; de Melo Rêgo, M.J.B.; de Lima, M.C.A.; Synthesis of novel indole derivatives as promising DNA-binding agents and evaluation of antitumor and antitopoisomerase I activities. Eur. J. Med. Chem., 2017, 136, 511-522.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.012] [PMID: 28531811]
[30]
Kamath, P.R.; Sunil, D.; Joseph, M.M.; Abdul Salam, A.A.; T T, S. Indole-coumarin-thiadiazole hybrids: An appraisal of their MCF-7 cell growth inhibition, apoptotic, antimetastatic and computational Bcl-2 binding potential. Eur. J. Med. Chem., 2017, 136, 442-451.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.032] [PMID: 28525842]
[31]
Nagesh, N.; Raju, G.; Srinivas, R.; Ramesh, P.; Reddy, M.D.; Reddy, C.R. A dihydroindolizino indole derivative selectively stabilizes G-quadruplex DNA and down-regulates c-MYC expression in human cancer cells. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(1), 129-140.
[http://dx.doi.org/10.1016/j.bbagen.2014.10.004] [PMID: 25452213]
[32]
Cai, M.; Hu, J.; Tian, J.L.; Yan, H.; Zheng, C.G.; Hu, W.L. Novel hybrids from N-hydroxyarylamide and indole ring through click chemistry as histone deacetylase inhibitors with potent antitumor activities. Chin. Chem. Lett., 2015, 26(6), 675-680.
[http://dx.doi.org/10.1016/j.cclet.2015.03.015]
[33]
Zhang, Q.; Lv, J.; He, F.; Yu, C.; Qu, Y.; Zhang, X.; Xu, A.; Wu, J. Design, synthesis and activity evaluation of indole-based double – Branched HDAC1 inhibitors. Bioorg. Med. Chem., 2019, 27(8), 1595-1604.
[http://dx.doi.org/10.1016/j.bmc.2019.03.008] [PMID: 30879863]
[34]
Patel, T.; Gaikwad, R.; Jain, K.; Ganesh, R.; Bobde, Y.; Ghosh, B.; Das, K.; Gayen, S. First report on 3‐(3‐oxoaryl) indole derivatives as anticancer agents: Microwave assisted synthesis, in vitro screening and molecular docking studies. ChemistrySelect, 2019, 4(15), 4478-4482.
[http://dx.doi.org/10.1002/slct.201900088]
[35]
La Regina, G.; Bai, R.; Coluccia, A.; Famiglini, V.; Pelliccia, S.; Passacantilli, S.; Mazzoccoli, C.; Ruggieri, V.; Verrico, A.; Miele, A.; Monti, L.; Nalli, M.; Alfonsi, R.; Di Marcotullio, L.; Gulino, A.; Ricci, B.; Soriani, A.; Santoni, A.; Caraglia, M.; Porto, S.; Da Pozzo, E.; Martini, C.; Brancale, A.; Marinelli, L.; Novellino, E.; Vultaggio, S.; Varasi, M.; Mercurio, C.; Bigogno, C.; Dondio, G.; Hamel, E.; Lavia, P.; Silvestri, R. New indole tubulin assembly inhibitors cause stable arrest of mitotic progression, enhanced stimulation of natural killer cell cytotoxic activity, and repression of hedgehog-dependent cancer. J. Med. Chem., 2015, 58(15), 5789-5807.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00310] [PMID: 26132075]
[36]
Yousif, M.N.M.; Hussein, H.A.R.; Yousif, N.M.; El-Manawaty, M.A.; El-Sayed, W.A. Synthesis and anticancer activity of novel 2-phenylindole linked imidazolothiazole, thiazolo-s-triazine and imidazolyl-sugar systems. J. App. Pharm. Sci., 2019, 6-14.
[37]
Mirzaei, H.; Shokrzadeh, M.; Modanloo, M.; Ziar, A.; Riazi, G.H.; Emami, S. New indole-based chalconoids as tubulin-targeting antiproliferative agents. Bioorg. Chem., 2017, 75, 86-98.
[http://dx.doi.org/10.1016/j.bioorg.2017.09.005] [PMID: 28922629]
[38]
Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; Okamoto, I.; Zhou, C.; Cho, B.C.; Cheng, Y.; Cho, E.K.; Voon, P.J.; Planchard, D.; Su, W.C.; Gray, J.E.; Lee, S.M.; Hodge, R.; Marotti, M.; Rukazenkov, Y.; Ramalingam, S.S. Osimertinib in untreated EGFR -mutated advanced non–small-cell lung cancer. N. Engl. J. Med., 2018, 378(2), 113-125.
[http://dx.doi.org/10.1056/NEJMoa1713137] [PMID: 29151359]
[39]
Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Oudard, S.; Negrier, S.; Szczylik, C.; Pili, R.; Bjarnason, G.A.; Garcia-del-Muro, X.; Sosman, J.A.; Solska, E.; Wilding, G.; Thompson, J.A.; Kim, S.T.; Chen, I.; Huang, X.; Figlin, R.A. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol., 2009, 27(22), 3584-3590.
[http://dx.doi.org/10.1200/JCO.2008.20.1293] [PMID: 19487381]
[40]
Sang, Y.L.; Zhang, W.M.; Lv, P.C.; Zhu, H.L. Indole-based, antiproliferative agents targeting tubulin polymerization. Curr. Top. Med. Chem., 2016, 17(2), 120-137.
[http://dx.doi.org/10.2174/1568026616666160530154812] [PMID: 27237326]
[41]
Dadashpour, S.; Emami, S. Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur. J. Med. Chem., 2018, 150, 9-29.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.065] [PMID: 29505935]
[42]
Mehra, A.; Sharma, V.; Verma, A.; Venugopal, S.; Mittal, A.; Singh, G.; Kaur, B. Indole derived anticancer agents. ChemistrySelect, 2022, 7(34), e202202361.
[http://dx.doi.org/10.1002/slct.202202361]
[43]
Sachdeva, H.; Mathur, J.; Guleria, A. Indole derivatives as potential anticancer agents: A review. J. Chil. Chem. Soc., 2020, 65(3), 4900-4907.
[http://dx.doi.org/10.4067/s0717-97072020000204900]
[44]
Gaur, A.; Peerzada, M.N.; Khan, N.S.; Ali, I.; Azam, A. Synthesis and anticancer evaluation of novel indole based arylsulfonylhydrazides against human breast cancer cells. ACS Omega, 2022, 7(46), 42036-42043.
[http://dx.doi.org/10.1021/acsomega.2c03908] [PMID: 36440122]
[45]
Dhiman, A.; Sharma, R.; Singh, R.K. Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018–2021). Acta Pharm. Sin. B, 2022, 12(7), 3006-3027.
[http://dx.doi.org/10.1016/j.apsb.2022.03.021] [PMID: 35865090]
[46]
Kumar, S.; Ritika, A brief review of the biological potential of indole derivatives. Future J. Pharm. Sci., 2020, 6(1), 121.
[http://dx.doi.org/10.1186/s43094-020-00141-y]
[47]
Lin, L.P.; Liu, D.; Qian, J.C.; Wu, L.; Zhao, Q.; Tan, R.X. Postingestion conversion of dietary indoles into anticancer agents. Natl. Sci. Rev., 2022, 9(4), nwab144.
[http://dx.doi.org/10.1093/nsr/nwab144] [PMID: 35505660]
[48]
Bivona, T.G.; Doebele, R.C. A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nat. Med., 2016, 22(5), 472-478.
[http://dx.doi.org/10.1038/nm.4091] [PMID: 27149220]
[49]
Singh, P.K.; Singh, H.; Silakari, O. Kinases inhibitors in lung cancer: From benchside to bedside. Biochim. Biophys. Acta Rev. Cancer, 2016, 1866(1), 128-140.
[http://dx.doi.org/10.1016/j.bbcan.2016.07.002] [PMID: 27393082]
[50]
Singh, P.K.; Silakari, O. Chemotherapeutics-resistance “arms” race: An update on mechanisms involved in resistance limiting EGFR inhibitors in lung cancer. Life Sci., 2017, 186, 25-32.
[http://dx.doi.org/10.1016/j.lfs.2017.08.001] [PMID: 28782530]
[51]
Yun, C.H.; Mengwasser, K.E.; Toms, A.V.; Woo, M.S.; Greulich, H.; Wong, K.K.; Meyerson, M.; Eck, M.J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci., 2008, 105(6), 2070-2075.
[http://dx.doi.org/10.1073/pnas.0709662105] [PMID: 18227510]
[52]
Butterworth, S.; Cross, D.A.E.; Finlay, M.R.V.; Ward, R.A.; Waring, M.J. The structure-guided discovery of osimertinib: The first U.S. FDA approved mutant selective inhibitor of EGFR T790M. MedChemComm, 2017, 8(5), 820-822.
[http://dx.doi.org/10.1039/C7MD90012K] [PMID: 30108799]
[53]
Callegari, D.; Ranaghan, K.E.; Woods, C.J.; Minari, R.; Tiseo, M.; Mor, M.; Mulholland, A.J.; Lodola, A. L718Q mutant EGFR escapes covalent inhibition by stabilizing a non-reactive conformation of the lung cancer drug osimertinib. Chem. Sci., 2018, 9(10), 2740-2749.
[http://dx.doi.org/10.1039/C7SC04761D] [PMID: 29732058]
[54]
Yano, S.; Yamada, T.; Takeuchi, S.; Tachibana, K.; Minami, Y.; Yatabe, Y.; Mitsudomi, T.; Tanaka, H.; Kimura, T.; Kudoh, S.; Nokihara, H.; Ohe, Y.; Yokota, J.; Uramoto, H.; Yasumoto, K.; Kiura, K.; Higashiyama, M.; Oda, M.; Saito, H.; Yoshida, J.; Kondoh, K.; Noguchi, M. Hepatocyte growth factor expression in EGFR mutant lung cancer with intrinsic and acquired resistance to tyrosine kinase inhibitors in a Japanese cohort. J. Thorac. Oncol., 2011, 6(12), 2011-2017.
[http://dx.doi.org/10.1097/JTO.0b013e31823ab0dd] [PMID: 22052230]
[55]
Zhao, Z.Q.; Yu, Z.Y.; Li, J.; Ouyang, X.N. Gefitinib induces lung cancer cell autophagy and apoptosis via blockade of the PI3K/AKT/mTOR pathway. Oncol. Lett., 2016, 12(1), 63-68.
[http://dx.doi.org/10.3892/ol.2016.4606] [PMID: 27347100]
[56]
Mphahlele, M.; Mmonwa, M.; Aro, A.; McGaw, L.; Choong, Y. Synthesis, biological evaluation and molecular docking of novel indole-aminoquinazoline hybrids for anticancer properties. Int. J. Mol. Sci., 2018, 19(8), 2232.
[http://dx.doi.org/10.3390/ijms19082232] [PMID: 30065164]
[57]
Elzahabi, H.S.A.; Nossier, E.S.; Alasfoury, R.A.; El-Manawaty, M.; Sayed, S.M.; Elkaeed, E.B.; Metwaly, A.M.; Hagras, M.; Eissa, I.H. Design, synthesis, and anti-cancer evaluation of new pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as potential EGFRWT and EGFRT790M inhibitors and apoptosis inducers. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 1053-1076.
[http://dx.doi.org/10.1080/14756366.2022.2062752] [PMID: 35821615]
[58]
Mohamed, F.A.M.; Alakilli, S.Y.M.; El Azab, E.F.; Baawad, F.A.M.; Shaaban, E.I.A.; Alrub, H.A.; Hendawy, O.; Gomaa, H.A.M.; Bakr, A.G.; Abdelrahman, M.H.; Trembleau, L.; Mohammed, A.F.; Youssif, B.G.M. Discovery of new 5-substituted-indole-2-carboxamides as dual epidermal growth factor receptor (EGFR)/cyclin dependent kinase-2 (CDK2) inhibitors with potent antiproliferative action. RSC Med. Chem., 2023, 14(4), 734-744.
[http://dx.doi.org/10.1039/D3MD00038A] [PMID: 37122549]
[59]
Al-Wahaibi, L.H.; Gouda, A.M.; Abou-Ghadir, O.F.; Salem, O.I.A.; Ali, A.T.; Farghaly, H.S.; Abdelrahman, M.H.; Trembleau, L.; Abdu-Allah, H.H.M.; Youssif, B.G.M. Design and synthesis of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as antiproliferative EGFR and BRAFV600E dual inhibitors. Bioorg. Chem., 2020, 104, 104260.
[http://dx.doi.org/10.1016/j.bioorg.2020.104260] [PMID: 32920363]
[60]
Liu, Y.; Gray, N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol., 2006, 2(7), 358-364.
[http://dx.doi.org/10.1038/nchembio799] [PMID: 16783341]
[61]
Zhang, X.; Gureasko, J.; Shen, K.; Cole, P.A.; Kuriyan, J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell, 2006, 125(6), 1137-1149.
[http://dx.doi.org/10.1016/j.cell.2006.05.013] [PMID: 16777603]
[62]
Park, J.H.; Liu, Y.; Lemmon, M.A.; Radhakrishnan, R. Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. Biochem. J., 2012, 448(3), 417-423.
[http://dx.doi.org/10.1042/BJ20121513] [PMID: 23101586]
[63]
Sever, B.; Altıntop, M.D.; Özdemir, A.; Akalın Çiftçi, G.; Ellakwa, D.E.; Tateishi, H.; Radwan, M.O.; Ibrahim, M.A.A.; Otsuka, M.; Fujita, M.; Ciftci, H.I.; Ali, T.F.S. In vitro and in silico evaluation of anticancer activity of new indole-based 1,3,4-oxadiazoles as EGFR and COX-2 inhibitors. Molecules, 2020, 25(21), 5190.
[http://dx.doi.org/10.3390/molecules25215190] [PMID: 33171861]
[64]
Prakash, O.; Kumar, A.; Kumar, P.; Ajeet, A. Anticancer potential of plants and natural products: A review. Am. J. Pharmacol. Sci., 2013, 1(6), 104-115.
[http://dx.doi.org/10.12691/ajps-1-6-1]
[65]
Youssif, B.G.M.; Abdelrahman, M.H.; Abdelazeem, A.H.; abdelgawad, M.A.; Ibrahim, H.M.; Salem, O.I.A.; Mohamed, M.F.A.; Treambleau, L.; Bukhari, S.N.A. Design, synthesis, mechanistic and histopathological studies of small-molecules of novel indole-2-carboxamides and pyrazino[1,2-a]indol-1(2H)-ones as potential anticancer agents effecting the reactive oxygen species production. Eur. J. Med. Chem., 2018, 146, 260-273.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.042] [PMID: 29407956]
[66]
Abdelrahman, M.H.; Aboraia, A.S.; Youssif, B.G.M.; Elsadek, B.E.M. Design, synthesis and pharmacophoric model building of new 3-alkoxymethyl/3-phenyl indole-2-carboxamides with potential antiproliferative activity. Chem. Biol. Drug Des., 2017, 90(1), 64-82.
[http://dx.doi.org/10.1111/cbdd.12928] [PMID: 28019082]
[67]
Zhang, M.Z.; Chen, Q.; Yang, G.F. A review on recent developments of indole-containing antiviral agents. Eur. J. Med. Chem., 2015, 89, 421-441.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.065] [PMID: 25462257]
[68]
Rao, V.K.; Chhikara, B.S.; Shirazi, A.N.; Tiwari, R.; Parang, K.; Kumar, A. 3-Substitued indoles: One-pot synthesis and evaluation of anticancer and Src kinase inhibitory activities. Bioorg. Med. Chem. Lett., 2011, 21(12), 3511-3514.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.010] [PMID: 21612925]
[69]
Kundu, A.; Quirit, J.G.; Khouri, M.G.; Firestone, G.L. Inhibition of oncogenic BRAF activity by indole-3-carbinol disrupts microphthalmia-associated transcription factor expression and arrests melanoma cell proliferation. Mol. Carcinog., 2017, 56(1), 49-61.
[http://dx.doi.org/10.1002/mc.22472] [PMID: 26878440]
[70]
Eldehna, W.M.; El Kerdawy, A.M.; Al-Ansary, G.H.; Al-Rashood, S.T.; Ali, M.M.; Mahmoud, A.E.; Type, I.I.A. Type IIA - Type IIB protein tyrosine kinase inhibitors hybridization as an efficient approach for potent multikinase inhibitor development: Design, synthesis, anti-proliferative activity, multikinase inhibitory activity and molecular modeling of novel indolinone-based ureides and amides. Eur. J. Med. Chem., 2019, 163, 37-53.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.061] [PMID: 30503942]
[71]
Moiseeva, E.P.; Heukers, R.; Manson, M.M. EGFR and Src are involved in indole-3-carbinol-induced death and cell cycle arrest of human breast cancer cells. Carcinogenesis, 2007, 28(2), 435-445.
[http://dx.doi.org/10.1093/carcin/bgl171] [PMID: 16956907]
[72]
Nguyen, H.H.; Lavrenov, S.N.; Sundar, S.N.; Nguyen, D.H.H.; Tseng, M.; Marconett, C.N.; Kung, J.; Staub, R.E.; Preobrazhenskaya, M.N.; Bjeldanes, L.F.; Firestone, G.L. 1-Benzylindole-3-carbinol is a novel indole-3-carbinol derivative with significantly enhanced potency of anti-proliferative and anti-estrogenic properties in human breast cancer cells. Chem. Biol. Interact., 2010, 186(3), 255-266.
[http://dx.doi.org/10.1016/j.cbi.2010.05.015] [PMID: 20570586]
[73]
Kundu, A.; Khouri, M.G.; Aryana, S.; Firestone, G.L. 1-Benzyl-indole-3-carbinol is a highly potent new small molecule inhibitor of Wnt/β-catenin signaling in melanoma cells that coordinately inhibits cell proliferation and disrupts expression of microphthalmiaassociated transcription factor isoform-M. Carcinogenesis, 2017, 38(12), 1207-1217.
[http://dx.doi.org/10.1093/carcin/bgx103] [PMID: 29028954]
[74]
Singh, P.K.; Silakari, O. Molecular dynamics guided development of indole based dual inhibitors of EGFR (T790M) and c-MET. Bioorg. Chem., 2018, 79, 163-170.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.001] [PMID: 29758406]
[75]
Song, J.; Yoo, J.; Kwon, A.; Kim, D.; Nguyen, H.K.; Lee, B.Y.; Suh, W.; Min, K.H. Structure-activity relationship of indole-tethered pyrimidine derivatives that concurrently inhibit epidermal growth factor receptor and other angiokinases. PLoS One, 2015, 10(9), e0138823.
[http://dx.doi.org/10.1371/journal.pone.0138823] [PMID: 26401847]
[76]
Bramson, H.N.; Corona, J.; Davis, S.T.; Dickerson, S.H.; Edelstein, M.; Frye, S.V.; Gampe, R.T., Jr; Harris, P.A.; Hassell, A.; Holmes, W.D.; Hunter, R.N.; Lackey, K.E.; Lovejoy, B.; Luzzio, M.J.; Montana, V.; Rocque, W.J.; Rusnak, D.; Shewchuk, L.; Veal, J.M.; Walker, D.H.; Kuyper, L.F. Oxindole-based inhibitors of cyclin-dependent kinase 2 (CDK2): Design, synthesis, enzymatic activities, and X-ray crystallographic analysis. J. Med. Chem., 2001, 44(25), 4339-4358.
[http://dx.doi.org/10.1021/jm010117d] [PMID: 11728181]
[77]
Zhang, H. Three generations of epidermal growth factor receptor tyrosine kinase inhibitors developed to revolutionize the therapy of lung cancer. Drug Des. Devel. Ther., 2016, 10, 3867-3872.
[http://dx.doi.org/10.2147/DDDT.S119162] [PMID: 27920501]
[78]
Saha, S.; Reddy, C.V.R.; Xu, S.; Sankar, S.; Neamati, N.; Patro, B. Synthesis and SAR studies of marine natural products ma’edamines A, B and their analogues. Bioorg. Med. Chem. Lett., 2013, 23(18), 5135-5139.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.017] [PMID: 23927972]
[79]
Goldberg, D.R.; Choi, Y.; Cogan, D.; Corson, M.; DeLeon, R.; Gao, A.; Gruenbaum, L.; Hao, M.H.; Joseph, D.; Kashem, M.A.; Miller, C.; Moss, N.; Netherton, M.R.; Pargellis, C.P.; Pelletier, J.; Sellati, R.; Skow, D.; Torcellini, C.; Tseng, Y.C.; Wang, J.; Wasti, R.; Werneburg, B.; Wu, J.P.; Xiong, Z. Pyrazinoindolone inhibitors of MAPKAP-K2. Bioorg. Med. Chem. Lett., 2008, 18(3), 938-941.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.037] [PMID: 18221871]
[80]
Eldehna, W.M.; EL-Naggar, D.H.; Hamed, A.R.; Ibrahim, H.S.; Ghabbour, H.A.; Abdel-Aziz, H.A. One-pot three-component synthesis of novel spirooxindoles with potential cytotoxic activity against triple-negative breast cancer MDA-MB-231 cells. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 309-318.
[http://dx.doi.org/10.1080/14756366.2017.1417276] [PMID: 29281924]
[81]
Ueno, N.T.; Zhang, D. Targeting EGFR in triple negative breast cancer. J. Cancer, 2011, 2, 324-328.
[http://dx.doi.org/10.7150/jca.2.324] [PMID: 21716849]
[82]
Mohamed, F.A.M.; Gomaa, H.A.M.; Hendawy, O.M.; Ali, A.T.; Farghaly, H.S.; Gouda, A.M.; Abdelazeem, A.H.; Abdelrahman, M.H.; Trembleau, L.; Youssif, B.G.M. Design, synthesis, and biological evaluation of novel EGFR inhibitors containing 5-chloro-3-hydroxymethyl-indole-2-carboxamide scaffold with apoptotic antiproliferative activity. Bioorg. Chem., 2021, 112, 104960.
[http://dx.doi.org/10.1016/j.bioorg.2021.104960] [PMID: 34020242]
[83]
Li, W.; Qi, Y.Y.; Wang, Y.Y.; Gan, Y.Y.; Shao, L.H.; Zhang, L.Q.; Tang, Z.H.; Zhu, M.; Tang, S.Y.; Wang, Z.C.; Ouyang, G.P. Design, synthesis, and biological evaluation of sorafenib derivatives containing indole (ketone) semicarbazide analogs as antitumor agents. J. Heterocycl. Chem., 2020, 57(6), 2548-2560.
[http://dx.doi.org/10.1002/jhet.3972]
[84]
Gomaa, H.A.M.; Shaker, M.E.; Alzarea, S.I.; Hendawy, O.M.; Mohamed, F.A.M.; Gouda, A.M.; Ali, A.T.; Morcoss, M.M.; Abdelrahman, M.H.; Trembleau, L.; Youssif, B.G.M. Optimization and SAR investigation of novel 2,3-dihydropyrazino[1,2-a]indole-1,4-dione derivatives as EGFR and BRAFV600E dual inhibitors with potent antiproliferative and antioxidant activities. Bioorg. Chem., 2022, 120, 105616.
[http://dx.doi.org/10.1016/j.bioorg.2022.105616] [PMID: 35078049]
[85]
Youssef, M.F.; Nafie, M.S.; Salama, E.E.; Boraei, A.T.A.; Gad, E.M. Synthesis of new bioactive indolyl-1,2,4-triazole hybrids as dual inhibitors for EGFR/PARP-1 targeting breast and liver cancer cells. ACS Omega, 2022, 7(49), 45665-45677.
[http://dx.doi.org/10.1021/acsomega.2c06531] [PMID: 36530255]
[86]
Shawish, I.; Nafie, M.S.; Barakat, A.; Aldalbahi, A.; Al-Rasheed, H.H.; Ali, M.; Alshaer, W.; Al Zoubi, M.; Al Ayoubi, S.; De la Torre, B.G.; Albericio, F.; El-Faham, A. Pyrazolyl-s-triazine with indole motif as a novel of epidermal growth factor receptor/cyclindependent kinase 2 dual inhibitors. Front Chem., 2022, 10, 1078163.
[http://dx.doi.org/10.3389/fchem.2022.1078163] [PMID: 36505739]
[87]
Bergman, J.; Slätt, J.; Romero, I. Cyanoacetylation of indoles, pyrroles and aromatic amines with the combination cyanoacetic acid and acetic anhydride. Synthesis, 2004, 2004(16), 2760-2765.
[http://dx.doi.org/10.1055/s-2004-831164]
[88]
Khalilullah, H.; Agarwal, D.K.; Ahsan, M.J.; Jadav, S.S.; Mohammed, H.A.; Khan, M.A.; Mohammed, S.A.A.; Khan, R. Synthesis and anti-cancer activity of new pyrazolinyl-indole derivatives: pharmacophoric interactions and docking studies for identifying new EGFR inhibitors. Int. J. Mol. Sci., 2022, 23(12), 6548.
[http://dx.doi.org/10.3390/ijms23126548] [PMID: 35742992]
[89]
Al-Wahaibi, L.H.; Mostafa, Y.A.; Abdelrahman, M.H.; El-Bahrawy, A.H.; Trembleau, L.; Youssif, B.G.M. Synthesis and biological evaluation of indole-2-carboxamides with potent apoptotic antiproliferative activity as EGFR/CDK2 dual inhibitors. Pharmaceuticals, 2022, 15(8), 1006.
[http://dx.doi.org/10.3390/ph15081006] [PMID: 36015154]
[90]
Roskoski, R., Jr The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res., 2014, 79, 34-74.
[http://dx.doi.org/10.1016/j.phrs.2013.11.002] [PMID: 24269963]
[91]
Hagmann, W.K. The many roles for fluorine in medicinal chemistry. J. Med. Chem., 2008, 51(15), 4359-4369.
[http://dx.doi.org/10.1021/jm800219f] [PMID: 18570365]
[92]
Isanbor, C.; O’Hagan, D. Fluorine in medicinal chemistry: A review of anti-cancer agents. J. Fluor. Chem., 2006, 127(3), 303-319.
[http://dx.doi.org/10.1016/j.jfluchem.2006.01.011]
[93]
Fink, S.L.; Cookson, B.T. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect. Immun., 2005, 73(4), 1907-1916.
[http://dx.doi.org/10.1128/IAI.73.4.1907-1916.2005] [PMID: 15784530]
[94]
Taylor, R.C.; Cullen, S.P.; Martin, S.J. Apoptosis: Controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol., 2008, 9(3), 231-241.
[http://dx.doi.org/10.1038/nrm2312] [PMID: 18073771]
[95]
Postel-Vinay, S.; Aspeslagh, S.; Lanoy, E.; Robert, C.; Soria, J.C.; Marabelle, A. Challenges of phase 1 clinical trials evaluating immune checkpoint-targeted antibodies. Ann. Oncol., 2016, 27(2), 214-224.
[http://dx.doi.org/10.1093/annonc/mdv550] [PMID: 26578728]
[96]
Shepherd, F.A.; Pereira, J.; Ciuleanu, T.E.; Tan, E.H.; Hirsh, V.; Thongprasert, S.; Bezjak, A.; Tu, D.; Santabárbara, P.; Seymour, L. A randomized placebo-controlled trial of erlotinib in patients with advanced non-small cell lung cancer (NSCLC) following failure of 1st line or 2nd line chemotherapy. A National Cancer Institute of Canada Clinical Trials Group (NCIC CTG) trial. J. Clin. Oncol., 2004, 22(14)(Suppl.), 7022-7022.
[http://dx.doi.org/10.1200/jco.2004.22.90140.7022]