Traditional Therapies Involving Nutrition for the Management of COVID-19

Article ID: e271023222838 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

The novel coronavirus SARS-CoV-2 causes ARDS, respiratory failure, organ failure, and even death. The immunopathology associated with the SARS-CoV-2 virus involves an overproduction of pro-inflammatory cytokines, commonly referred to as a "cytokine storm". SARS-CoV-2 is a positive-sense RNA virus responsible for the COVID-19 pandemic. The pandemic kept the world silent since its emergence by engulfing most public activities. The symptoms of COVID-19 like coughing, fatigue, dysphagia, and poor appetite reduce the nutritional intake among the patients. Therefore, the nutritional status of the infected patients needs monitoring. The deficiency of nutrition puts the patients at high risk during clinical therapy. Moreover, insufficient micronutrients lead to weakened immune responses, causing improper cytokine secretion, changes in secretory antibody response, and reduced antibody affinity; all of which enhance the vulnerability of viral infections. As the pandemic is affecting a large number of people all over the world, there is an urgent requirement for newer therapies/therapeutics with nutritional information for hospitalized and recovered patients of COVID-19. Hospitalized patients are highly at risk of malnutrition, weight loss, muscle loss, etc. Therefore, nutritional support is essential for COVID-19 patients. Based on the recent reports obtained from the COVID-19 resources; the present review describes the various clinical therapies, the involvement of nutritional support, the role of diet, the modified lifestyle, and micronutrients (zinc, selenium, and vitamin D) in the management of COVID-19 patients.

Graphical Abstract

[1]
Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[2]
Ramesh M, Anand K, Shahbaaz M, Abdellattif MH. Current perspectives in the discovery of newer medications against the outbreak of COVID-19. Front Mol Biosci 2021; 8: 648232.
[http://dx.doi.org/10.3389/fmolb.2021.648232] [PMID: 34322517]
[3]
Asselah T, Durantel D, Pasmant E, Lau G, Schinazi RF. COVID-19: Discovery, diagnostics and drug development. J Hepatol 2021; 74(1): 168-84.
[http://dx.doi.org/10.1016/j.jhep.2020.09.031] [PMID: 33038433]
[4]
McKee DL, Sternberg A, Stange U, Laufer S, Naujokat C. Candidate drugs against SARS-CoV-2 and COVID-19. Pharmacol Res 2020; 157: 104859.
[http://dx.doi.org/10.1016/j.phrs.2020.104859] [PMID: 32360480]
[5]
Hu B, Huang S, Yin L. The cytokine storm and COVID‐19. J Med Virol 2021; 93(1): 250-6.
[http://dx.doi.org/10.1002/jmv.26232] [PMID: 32592501]
[6]
Asai A, Konno M, Ozaki M, et al. COVID-19 drug discovery using intensive approaches. Int J Mol Sci 2020; 21(8): 2839.
[http://dx.doi.org/10.3390/ijms21082839] [PMID: 32325767]
[7]
NIH. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. 2023. [https://COVID19treatmentguidelines.nih.gov/2020]
[8]
Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10): 929-36.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[9]
Solinas C, Perra L, Aiello M, Migliori E, Petrosillo N. A critical evaluation of glucocorticoids in the management of severe COVID-19. Cytokine Growth Factor Rev 2020; 54: 8-23.
[http://dx.doi.org/10.1016/j.cytogfr.2020.06.012] [PMID: 32616381]
[10]
Simonovich VA, Burgos Pratx LD, Scibona P, et al. A randomized trial of convalescent plasma in COVID-19 severe pneumonia. N Engl J Med 2021; 384(7): 619-29.
[http://dx.doi.org/10.1056/NEJMoa2031304] [PMID: 33232588]
[11]
Turgutkaya A, Yavaşoğlu İ, Bolaman Z. Application of plasmapheresis for COVID‐19 patients. Ther Apher Dial 2021; 25(2): 248-9.
[http://dx.doi.org/10.1111/1744-9987.13536] [PMID: 32510799]
[12]
Guo H, Zheng J, Huang G, et al. Xuebijing injection in the treatment of COVID-19: A retrospective case-control study. Ann Palliat Med 2020; 9(5): 3235-48.
[http://dx.doi.org/10.21037/apm-20-1478] [PMID: 32954754]
[13]
Dash AP, Nina PB. Hydroxychloroquine as prophylaxis or treatment for COVID-19: What does the evidence say? Indian J Public Health 2020; 64(6) (Suppl.): 125.
[http://dx.doi.org/10.4103/ijph.IJPH_496_20] [PMID: 32496241]
[14]
Hung IFN, Lung KC, Tso EYK, et al. Triple combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: An open-label, randomised, phase 2 trial. Lancet 2020; 395(10238): 1695-704.
[http://dx.doi.org/10.1016/S0140-6736(20)31042-4] [PMID: 32401715]
[15]
León López R, Fernández SC, Limia Pérez L, et al. Efficacy and safety of early treatment with sarilumab in hospitalised adults with COVID-19 presenting cytokine release syndrome (SARICOR STUDY): Protocol of a phase II, open-label, randomised, multicentre, controlled clinical trial. BMJ Open 2020; 10(11): e039951.
[http://dx.doi.org/10.1136/bmjopen-2020-039951] [PMID: 33191263]
[16]
Zou H, Yang Y, Dai H, et al. Recent updates in experimental research and clinical evaluation on drugs for COVID-19 treatment. Front Pharmacol 2021; 12: 732403.
[http://dx.doi.org/10.3389/fphar.2021.732403] [PMID: 34880750]
[17]
Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 2020; 383(27): 2603-15.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[18]
Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; 384(5): 403-16.
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[19]
Sadoff J, Le Gars M, Shukarev G, et al. Interim results of a phase 1–2a trial of Ad26.COV2.S COVID-19 vaccine. N Engl J Med 2021; 384(19): 1824-35.
[http://dx.doi.org/10.1056/NEJMoa2034201] [PMID: 33440088]
[20]
Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against COVID-19. N Engl J Med 2021; 384(23): 2187-201.
[http://dx.doi.org/10.1056/NEJMoa2101544] [PMID: 33882225]
[21]
Solforosi L, Kuipers H, Jongeneelen M, et al. Immunogenicity and efficacy of one and two doses of Ad26.COV2.S COVID vaccine in adult and aged NHP. J Exp Med 2021; 218(7): e20202756.
[http://dx.doi.org/10.1084/jem.20202756] [PMID: 33909009]
[22]
World Health Organization. The Sinovac-CoronaVac COVID-19 vaccine: What you need to know. 2021. Available from: [https://www.who.int/news-room/feature-stories/detail/the-sinovac-COVID-19-vaccine-what-you-need-to-know]
[23]
Wilder-Smith A, Mulholland K. Effectiveness of an inactivated SARS-CoV-2 vaccine. N Engl J Med 2021; 385(10): 946-8.
[http://dx.doi.org/10.1056/NEJMe2111165] [PMID: 34469651]
[24]
Baraniuk C. COVID-19: What do we know about Sputnik V and other Russian vaccines? BMJ 2021; 372: n743.
[http://dx.doi.org/10.1136/bmj.n743] [PMID: 33741559]
[25]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[26]
Goldman JD, Lye DCB, Hui DS, et al. Remdesivir for 5 or 10 Days in patients with severe COVID-19. N Engl J Med 2020; 383(19): 1827-37.
[http://dx.doi.org/10.1056/NEJMoa2015301] [PMID: 32459919]
[27]
Alexaki VI, Henneicke H. The role of glucocorticoids in the management of COVID-19. Horm Metab Res 2021; 53(1): 9-15.
[http://dx.doi.org/10.1055/a-1300-2550] [PMID: 33207372]
[28]
Bloch EM, Shoham S, Casadevall A, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest 2020; 130(6): 2757-65.
[http://dx.doi.org/10.1172/JCI138745] [PMID: 32254064]
[29]
Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. Pharmacol Res Perspect 2017; 5(1): e00293.
[http://dx.doi.org/10.1002/prp2.293] [PMID: 28596841]
[30]
Gao J, Hu S. Update on use of chloroquine/hydroxychloroquine to treat coronavirus disease 2019 (COVID-19). Biosci Trends 2020; 14(2): 156-8.
[http://dx.doi.org/10.5582/bst.2020.03072] [PMID: 32281583]
[31]
Cao B, Wang Y, Wen D, et al. A trial of Lopinavir–Ritonavir in adults hospitalized with severe COVID-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[32]
Cutino-Moguel MT, Eades C, Rezvani K, Armstrong-James D. Immunotherapy for infectious diseases in haematological immunocompromise. Br J Haematol 2017; 177(3): 348-56.
[http://dx.doi.org/10.1111/bjh.14595] [PMID: 28369798]
[33]
Alkhatib A. Antiviral functional foods and exercise lifestyle prevention of coronavirus. Nutrients 2020; 12(9): 2633.
[http://dx.doi.org/10.3390/nu12092633] [PMID: 32872374]
[34]
Im JH, Je YS, Baek J, Chung MH, Kwon HY, Lee JS. Nutritional status of patients with COVID-19. Int J Infect Dis 2020; 100: 390-3.
[http://dx.doi.org/10.1016/j.ijid.2020.08.018] [PMID: 32795605]
[35]
Aman F, Masood S. How Nutrition can help to fight against COVID-19 Pandemic. Pak J Med Sci 2020; 36(COVID19-S4): S121-123.
[http://dx.doi.org/10.12669/pjms.36.COVID19-S4.2776 ] [PMID: 32582329]
[36]
Farhan Aslam M, Majeed S, Aslam S, Irfan JA. Vitamins: Key role players in boosting up immune response-A mini review. Vitam Miner 2017; 6(1)
[http://dx.doi.org/10.4172/2376-1318.1000153]
[37]
Nieman DC, Wentz LM. The compelling link between physical activity and the body’s defense system. J Sport Health Sci 2019; 8(3): 201-17.
[http://dx.doi.org/10.1016/j.jshs.2018.09.009] [PMID: 31193280]
[38]
Chowdhury MA, Hossain N, Kashem MA, Shahid MA, Alam A. Immune response in COVID-19: A review. J Infect Public Health 2020; 13(11): 1619-29.
[http://dx.doi.org/10.1016/j.jiph.2020.07.001] [PMID: 32718895]
[39]
Rayman MP, Calder PC. Optimising COVID-19 vaccine efficacy by ensuring nutritional adequacy. Br J Nutr 2021; 126(12): 1919-20.
[http://dx.doi.org/10.1017/S0007114521000386] [PMID: 33504378]
[40]
Martinez-Gonzalez MA, Bes-Rastrollo M. Dietary patterns, Mediterranean diet, and cardiovascular disease. Curr Opin Lipidol 2014; 25(1): 20-6.
[http://dx.doi.org/10.1097/MOL.0000000000000044] [PMID: 24370845]
[41]
Casas R, Sacanella E, Estruch R. The immune protective effect of the Mediterranean diet against chronic low-grade inflammatory diseases. Endocr Metab Immune Disord Drug Targets 2014; 14(4): 245-54.
[http://dx.doi.org/10.2174/1871530314666140922153350] [PMID: 25244229]
[42]
Varraso R, Fung TT, Barr RG, Hu FB, Willett W, Camargo CA Jr. Prospective study of dietary patterns and chronic obstructive pulmonary disease among US women. Am J Clin Nutr 2007; 86(2): 488-95.
[http://dx.doi.org/10.1093/ajcn/86.2.488] [PMID: 17684223]
[43]
Butler MJ, Barrientos RM. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav Immun 2020; 87: 53-4.
[http://dx.doi.org/10.1016/j.bbi.2020.04.040] [PMID: 32311498]
[44]
Rottoli M, Bernante P, Belvedere A, et al. How important is obesity as a risk factor for respiratory failure, intensive care admission and death in hospitalised COVID-19 patients? Results from a single Italian centre. Eur J Endocrinol 2020; 183(4): 389-97.
[http://dx.doi.org/10.1530/EJE-20-0541] [PMID: 32674071]
[45]
James PT, Ali Z, Armitage AE, et al. The role of nutrition in COVID-19 susceptibility and severity of disease: A systematic review. J Nutr 2021; 151(7): 1854-78.
[http://dx.doi.org/10.1093/jn/nxab059] [PMID: 33982105]
[46]
Akhtar S, Das JK, Ismail T, Wahid M, Saeed W, Bhutta ZA. Nutritional perspectives for the prevention and mitigation of COVID-19. Nutr Rev 2021; 79(3): 289-300.
[http://dx.doi.org/10.1093/nutrit/nuaa063] [PMID: 33570583]
[47]
Boléo-Tomé C, Monteiro-Grillo I, Camilo M, Ravasco P. Validation of the malnutrition universal screening tool (MUST) in cancer. Br J Nutr 2012; 108(2): 343-8.
[http://dx.doi.org/10.1017/S000711451100571X] [PMID: 22142968]
[48]
Aguila EJT, Cua IHY. Different barriers to nutritional therapy among critically-ill patients with COVID-19. Clin Nutr 2021; 40(2): 655-6.
[http://dx.doi.org/10.1016/j.clnu.2020.12.002] [PMID: 33353766]
[49]
Romano L, Bilotta F, Dauri M, et al. Short Report - Medical nutrition therapy for critically ill patients with COVID-19. Eur Rev Med Pharmacol Sci 2020; 24(7): 4035-9.
[http://dx.doi.org/10.26355/EURREV_202004_20874] [PMID: 32329880]
[50]
Casaer MP, Wilmer A, Hermans G, Wouters PJ, Mesotten D, Van den Berghe G. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial: A post hoc analysis. Am J Respir Crit Care Med 2013; 187(3): 247-55.
[http://dx.doi.org/10.1164/rccm.201206-0999OC] [PMID: 23204255]
[51]
Villet S, Chiolero RL, Bollmann MD, et al. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr 2005; 24(4): 502-9.
[http://dx.doi.org/10.1016/j.clnu.2005.03.006] [PMID: 15899538]
[52]
Tappy L, Schwarz JM, Schneiter P, et al. Effects of isoenergetic glucose-based or lipid-based parenteral nutrition on glucose metabolism, de novo lipogenesis, and respiratory gas exchanges in critically ill patients. Crit Care Med 1998; 26(5): 860-7.
[http://dx.doi.org/10.1097/00003246-199805000-00018] [PMID: 9590315]
[53]
Bousie E, van Blokland D, Lammers HJW, van Zanten ARH. Relevance of non-nutritional calories in mechanically ventilated critically ill patients. Eur J Clin Nutr 2016; 70(12): 1443-50.
[http://dx.doi.org/10.1038/ejcn.2016.167] [PMID: 27623980]
[54]
McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of critical care medicine (SCCM) and American society for parenteral and enteral nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr 2016; 40(2): 159-211.
[http://dx.doi.org/10.1177/0148607115621863] [PMID: 26773077]
[55]
Wang Y, Lin H, Lin B, Lin J. Effects of different ascorbic acid doses on the mortality of critically ill patients: A meta-analysis. Ann Intensive Care 2019; 9(1): 58.
[http://dx.doi.org/10.1186/s13613-019-0532-9] [PMID: 31111241]
[56]
Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: A retrospective before-after study. Chest 2017; 151(6): 1229-38.
[http://dx.doi.org/10.1016/j.chest.2016.11.036] [PMID: 27940189]
[57]
Rosenthal MD, Carrott PW, Patel J, Kiraly L, Martindale RG. Parenteral or enteral arginine supplementation safety and efficacy. J Nutr 2016; 146(12): 2594S-600S.
[http://dx.doi.org/10.3945/jn.115.228544] [PMID: 27934650]
[58]
Heller RA, Sun Q, Hackler J, et al. Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker. Redox Biol 2021; 38: 101764.
[http://dx.doi.org/10.1016/j.redox.2020.101764] [PMID: 33126054]
[59]
Wang N, Tan HY, Li S, Xu Y, Guo W, Feng Y. Supplementation of micronutrient selenium in metabolic diseases: Its role as an antioxidant. Oxid Med Cell Longev 2017; 2017: 1-13.
[http://dx.doi.org/10.1155/2017/7478523] [PMID: 29441149]
[60]
Kiełczykowska M, Kocot J, Paździor MAREK, Musik I. Selenium – a fascinating antioxidant of protective properties. Adv Clin Exp Med 2018; 27(2): 245-55.
[http://dx.doi.org/10.17219/acem/67222] [PMID: 29521069]
[61]
Vinceti M, Filippini T, Del Giovane C, et al. Selenium for preventing cancer. Cochrane Libr 2018; 2020(2)
[http://dx.doi.org/10.1002/14651858.CD005195.pub4]
[62]
Yang J, Huang K, Qin S, Wu X, Zhao Z, Chen F. Antibacterial action of selenium-enriched probiotics against pathogenic Escherichia coli. Dig Dis Sci 2009; 54(2): 246-54.
[http://dx.doi.org/10.1007/s10620-008-0361-4] [PMID: 18612820]
[63]
Taylor EW, Radding W. Understanding selenium and glutathione as antiviral factors in COVID-19: Does the viral Mpro Protease target host selenoproteins and glutathione synthesis? Front Nutr 2020; 7: 143.
[http://dx.doi.org/10.3389/fnut.2020.00143] [PMID: 32984400]
[64]
Hoffmann PR, Berry MJ. The influence of selenium on immune responses. Mol Nutr Food Res 2008; 52(11): 1273-80.
[http://dx.doi.org/10.1002/mnfr.200700330] [PMID: 18384097]
[65]
Zhang J, Taylor EW, Bennett K, Saad R, Rayman MP. Association between regional selenium status and reported outcome of COVID-19 cases in China. Am J Clin Nutr 2020; 111(6): 1297-9.
[http://dx.doi.org/10.1093/ajcn/nqaa095] [PMID: 32342979]
[66]
Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses 2020; 143: 109878.
[http://dx.doi.org/10.1016/j.mehy.2020.109878] [PMID: 32464491]
[67]
Ali N. Role of vitamin D in preventing of COVID-19 infection, progression and severity. J Infect Public Health 2020; 13(10): 1373-80.
[http://dx.doi.org/10.1016/j.jiph.2020.06.021] [PMID: 32605780]
[68]
Greiller C, Martineau A. Modulation of the immune response to respiratory viruses by vitamin D. Nutrients 2015; 7(6): 4240-70.
[http://dx.doi.org/10.3390/nu7064240] [PMID: 26035247]
[69]
Kaufman HW, Niles JK, Kroll MH, Bi C, Holick MF. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS One 2020; 15(9): e0239252.
[http://dx.doi.org/10.1371/journal.pone.0239252] [PMID: 32941512]
[70]
Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY) 2020; 12(10): 9959-81.
[http://dx.doi.org/10.18632/aging.103344] [PMID: 32470948]
[71]
Bouillon R. Comparative analysis of nutritional guidelines for vitamin D. Nat Rev Endocrinol 2017; 13(8): 466-79.
[http://dx.doi.org/10.1038/nrendo.2017.31] [PMID: 28387318]
[72]
Shakoor H, Feehan J, Al Dhaheri AS, et al. Role of vitamin D supplementation in aging patients with COVID-19. Maturitas 2021; 152: 63-5.
[http://dx.doi.org/10.1016/j.maturitas.2021.03.006] [PMID: 33757717]
[73]
Luo Z, Su K, Zhang X. Potential of plant proteins digested in silico by gastrointestinal enzymes as nutritional supplement for COVID-19 patients. Plant Foods Hum Nutr 2020; 75(4): 583-91.
[http://dx.doi.org/10.1007/s11130-020-00850-y] [PMID: 32870435]
[74]
Kotta S, Aldawsari HM, Badr-Eldin SM, et al. Combating the pandemic COVID-19: Clinical trials, therapies and perspectives. Front Mol Biosci 2020; 7: 606393.
[http://dx.doi.org/10.3389/fmolb.2020.606393] [PMID: 33282914]
[75]
Pandey A, Nikam AN, Shreya AB, et al. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci 2020; 256: 117883.
[http://dx.doi.org/10.1016/j.lfs.2020.117883] [PMID: 32497632]
[76]
Feng G, Zheng KI, Yan QQ, et al. COVID-19 and liver dysfunction: Current insights and emergent therapeutic strategies. J Clin Transl Hepatol 2020; 8(1): 1-7.
[http://dx.doi.org/10.14218/JCTH.2020.00018] [PMID: 32274342]
[77]
Tang JW, Tambyah PA, Hui DSC. Emergence of a new SARS-CoV-2 variant in the UK. J Infect 2021; 82(4): e27-8.
[http://dx.doi.org/10.1016/j.jinf.2020.12.024] [PMID: 33383088]
[78]
Jogalekar MP, Veerabathini A, Gangadaran P. SARS-CoV-2 variants: A double-edged sword? Exp Biol Med (Maywood) 2021; 246(15): 1721-6.
[http://dx.doi.org/10.1177/15353702211014146] [PMID: 34024159]