A Review on the Recent Progress of Layered Double Hydroxides (LDHs)-based Catalysts for Heterocyclic Synthesis

Page: [154 - 174] Pages: 21

  • * (Excluding Mailing and Handling)

Abstract

Over the past decade, heterocyclic compounds and their derivatives have emerged as promising substances with potential pharmacological applications due to their interesting biological properties. The significance of heterocyclic compounds in drug discovery and development is evident from the fact that a majority of drugs in the pharmaceutical market incorporate heterocyclic compounds as active substances or ingredients. Various synthetic methods and advancements have been devised to prepare these heterocyclic compounds using diverse catalysts under mild conditions. Layered double hydroxides (LDHs)-based materials have gained considerable attention across different fields, and their usability can be significantly enhanced via the selection of metal cations, their molar ratios, surface complexation, and intercalation modifications. The synthesis and application of LDH-based materials as catalysts have garnered increasing interest due to their exceptional properties. Moreover, LDH-based materials have found extensive use as heterogeneous catalysts in the synthesis of numerous heterocyclic compounds. This review presents the latest developments in the catalytic application of LDH-based materials as solid heterogeneous catalysts in the synthesis of heterocyclic compounds, covering literature published from 2018 to 2023.

Graphical Abstract

[1]
Banik, B.K.; Yadav, R.N.; Shaikh, A.L.; Das, A.; Ray, D. Asymmetric synthesis of 3-pyrrole substituted β-lactams through p-toluene sulphonic acid-catalyzed reaction of azetidine-2,3-diones with hydroxyprolines. Curr. Organocatal., 2022, 9(4), 337-345.
[http://dx.doi.org/10.2174/2213337209666220802105301]
[2]
Dib, M.; Ouchetto, H.; Ouchetto, K.; Hafid, A.; Khouili, M. Recent developments of quinoline derivatives and their potential biological activities. Curr. Org. Synth., 2021, 18(3), 248-269.
[http://dx.doi.org/10.2174/1570179417666201216162055] [PMID: 33327918]
[3]
Bouhaoui, A.; Eddahmi, M.; Dib, M.; Khouili, M.; Aires, A.; Catto, M.; Bouissane, L. Synthesis and biological properties of coumarin derivatives. A review. ChemistrySelect, 2021, 6(24), 5848-5870.
[http://dx.doi.org/10.1002/slct.202101346]
[4]
Ma, X.; Yu, E.C. Recent synthetic advances in borylated pyrazoles. Tetrahedron Lett., 2022, 104, 154008.
[http://dx.doi.org/10.1016/j.tetlet.2022.154008]
[5]
Liu, Q.; Liu, M.; Wang, W. Recent progress of the synthesis methods of homo-trisubstituted pyrimidines compounds. J. Mol. Struct., 2023, 1285, 135411.
[http://dx.doi.org/10.1016/j.molstruc.2023.135411]
[6]
Farahi, M.; Keshavarz, R. Cellulose supported propylamine/molybdate complex: A novel and recyclable nanocatalyst for the synthesis of pyranopyrimidine derivatives. Curr. Organocatal., 2022, 9(4), 318-336.
[http://dx.doi.org/10.2174/2213337209666220525161703]
[7]
Mir, M.A. Synthesis of oxadiazole, imidazole, benzimidazole, cyclohexano analogues of 1, 5-benzodiazepines through phenoxyl/phenylamino linkage. Curr. Organocatal., 2022, 9(4), 297-304.
[http://dx.doi.org/10.2174/2212796816666220404151254]
[8]
Kabir, E.; Uzzaman, M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem., 2022, 4, 100606.
[http://dx.doi.org/10.1016/j.rechem.2022.100606]
[9]
Hu, Y.; Gao, Y.; Ye, J.; Ma, Z.; Feng, J.; Liu, X.; Lei, P.; Szostak, M. Suzuki–miyaura cross-coupling of 2-pyridyl trimethylammonium salts by N–C activation catalyzed by air- and moisture-stable Pd–NHC precatalysts: Application to the discovery of agrochemicals. Org. Lett., 2023, 25(17), 2975-2980.
[http://dx.doi.org/10.1021/acs.orglett.3c00741] [PMID: 37079757]
[10]
Bhandare, R.R.; Munikrishnappa, S.; Suresh Kumar, G.V.; Konidala, S.K.; Vaishnav, Y.; Sigalapalli, D. K Multistep synthesis and screening of heterocyclic tetrads containing furan, pyrazoline, thiazole and triazole (or oxadiazole) as antimicrobial and anticancer agents. J. Saudi Chem. Soc., 2022, 26, 101447.
[http://dx.doi.org/10.1016/j.jscs.2022.101447]
[11]
Talbi, S.; Dib, M.; Bouissane, L.; Abderrafia, H.; Rabi, S.; Khouili, M. Recent progress in the synthesis of heterocycles based on 1,3-diketones. Curr. Org. Synth., 2022, 19(2), 220-245.
[http://dx.doi.org/10.2174/1570179418666211011141428] [PMID: 34635043]
[12]
Tajuddin, N.A.; Sokeri, E.F.B.; Kamal, N.A.; Dib, M. Fluoride removal in drinking water using layered double hydroxide materials: Preparation, characterization and the current perspective on IR4.0 technologies. J. Environ. Chem. Eng., 2023, 11(3), 110305.
[http://dx.doi.org/10.1016/j.jece.2023.110305]
[13]
Mishra, G.; Dash, B.; Pandey, S. Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials. Appl. Clay Sci., 2018, 153, 172-186.
[http://dx.doi.org/10.1016/j.clay.2017.12.021]
[14]
Wei, K.; Zhao, X.; Zhang, Z.; Yuan, Y.; Kong, W.; Zhang, Y. Duplex coating combining layers of vanadate intercalated double hydroxide and Ce-doped sol-gel on an aluminum alloy for active protection against corrosion. Matériaux, 2023, 16, 775.
[http://dx.doi.org/10.3390/ma16020775] [PMID: 36676512]
[15]
Valeikiene, L.; Kriukaite, K.; Grigoraviciute-Puroniene, I.; Popov, A.; Kareiva, A. Influence of ultrasound and cation substitution on the intercalation of organic anions to the Mg3/Al1 layered double hydroxide. EFB Bioecon. J., 2022, 2, 100024.
[http://dx.doi.org/10.1016/j.bioeco.2022.100024]
[16]
Sangtam, A.R.; Saikia, P.; Goswamee, R.L.; Sinha, D.; Sinha, U.B. Green synthesis of mesoporous Ni-Co layered double hydroxide and its application for removal of 2,4-dinitrophenol from water: A theoretical study complemented by the first principle density functional theory-Monte-Carlo approach. J. Environ. Chem. Eng., 2022, 10(5), 108378.
[http://dx.doi.org/10.1016/j.jece.2022.108378]
[17]
Naseem, S.; Gevers, B.; Boldt, R.; Labuschagné, F.J.W.J.; Leuteritz, A. Comparison of transition metal (Fe, Co, Ni, Cu, and Zn) containing tri-metal layered double hydroxides (LDHs) prepared by urea hydrolysis. RSC Advances, 2019, 9(6), 3030-3040.
[http://dx.doi.org/10.1039/C8RA10165E] [PMID: 35518998]
[18]
Yang, P.; Ren, M.; Jin, C.; Xing, H. Facile synthesis of N and P co doped NiMoO 4 hollow nanowires and electrochemical deposition of nife-layered double hydroxide for boosting overall seawater splitting. J. Electrochem. Soc., 2022, 169(4), 046511.
[http://dx.doi.org/10.1149/1945-7111/ac64ca]
[19]
Huang, G.; Jiang, L.; Shao, L.; Yang, X.; Huang, J. In situ electrochemical synthesis of Zn-Al layered double hydroxides for removal of strontium. Colloids Surf. A Physicochem. Eng. Asp., 2020, 597, 124785.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124785]
[20]
Reguig, M.; Bettahar, N.; Belkhadem, F.; de Ménorval, L.C. Synthesis and characterization by co-precipitation under an inert atmosphere of lamellar Fe/Al double hydroxides and comparison with samples co-precipitated under an ambient atmosphere. J. Solid State Chem., 2023, 317, 123665.
[http://dx.doi.org/10.1016/j.jssc.2022.123665]
[21]
Edañol, Y.D.G.; Poblador, J.A.O.; Talusan, T.J.E.; Payawan, L.M. Jr Co-precipitation synthesis of Mg-Al-CO3 layered double hydroxides and its adsorption kinetics with phosphate(V) ions. Mater. Today Proc., 2020, 33, 1809-1813.
[http://dx.doi.org/10.1016/j.matpr.2020.05.059]
[22]
Li, X.; Shi, Z.; Zhang, J.; Gan, T.; Xiao, Z. Aqueous Cr (VI) removal performance of an invasive plant-derived biochar modified by Mg/Al-layered double hydroxides. Colloid Interface Sci. Commun., 2023, 53, 100700.
[http://dx.doi.org/10.1016/j.colcom.2023.100700]
[23]
Stepanova, L.N.; Belskaya, O.B.; Vasilevich, A.V.; Leont’eva, N.N.; Salanov, A.N.; A, L.V. Synthesis and study of Mg(Ni, Co, Li)Al-LDH prepared by mechanochemical method. AIP Conf. Proc., 2019, 2141, 020013.
[http://dx.doi.org/10.1063/1.5122032]
[24]
Jo, S.; Jayababu, N.; Kim, D. Rational design of cobalt-iron bimetal layered hydroxide on conductive fabric as a flexible battery-type electrode for enhancing the performance of hybrid supercapacitor. J. Alloys Compd., 2022, 904, 164082.
[http://dx.doi.org/10.1016/j.jallcom.2022.164082]
[25]
Gabriel, R.; Carvalho, S.H.V.; Duarte, J.L.S.; Oliveira, L.M.T.M.; Giannakoudakis, D.A.; Triantafyllidis, K.S.; Soletti, J.I.; Meili, L. Mixed metal oxides derived from layered double hydroxide as catalysts for biodiesel production. Appl. Catal. A Gen., 2022, 630, 118470.
[http://dx.doi.org/10.1016/j.apcata.2021.118470]
[26]
Fang, D.; Huang, L.; Fan, J.; Xiao, H.; Wu, G.; Wang, Y.; Zeng, Z.; Shen, F.; Deng, S.; Ji, F. New insights into the arrangement pattern of layered double hydroxide nanosheets and their ion-exchange behavior with phosphate. Chem. Eng. J., 2022, 441, 136057.
[http://dx.doi.org/10.1016/j.cej.2022.136057]
[27]
Keyikoglu, R.; Khataee, A.; Yoon, Y. Layered double hydroxides for removing and recovering phosphate: Recent advances and future directions. Adv. Colloid Interface Sci., 2022, 300, 102598.
[http://dx.doi.org/10.1016/j.cis.2021.102598] [PMID: 35007948]
[28]
Kumari, S.; Sharma, V.; Sharma, A. Layered double hydroxides: A gleam on their synthetic routes with biomedical applications. Int. J. Interact. Des. Manuf., 2023.
[http://dx.doi.org/10.1007/s12008-023-01333-5]
[29]
Zhao, N.; Feng, Y.; Chen, H. Exquisite microstructure design of quaternary nickel cobalt manganese iron layered double hydroxides for high performance hybrid supercapacitors. Electrochim. Acta, 2023, 441, 141756.
[http://dx.doi.org/10.1016/j.electacta.2022.141756]
[30]
Lyu, J.S.; Lee, J.S.; Han, J. Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Sci. Rep., 2019, 9(1), 20236.
[http://dx.doi.org/10.1038/s41598-019-56757-5] [PMID: 31882928]
[31]
Ding, Y.; Zhou, Q.; Han, A.; Zhou, H.; Chen, R.; Guo, S. Fabrication of poly (ϵ-caprolactone)-based biodegradable packaging materials with high water vapor barrier property. Ind. Eng. Chem. Res., 2020, 59(51), 22163-22172.
[http://dx.doi.org/10.1021/acs.iecr.0c05311]
[32]
Zhou, P.; Xu, J.; Wang, Z. Chloride sorption of nano-SiO2@MgAl layered double hydroxides core-shell nanocomposite in simulated concrete pore solution: Equilibrium, thermodynamic and kinetic studies. Appl. Clay Sci., 2023, 240, 106975.
[http://dx.doi.org/10.1016/j.clay.2023.106975]
[33]
Xie, S.; Liu, M.; Zhang, X. Zeolite/ZnAl-double hydroxide layer with different Zn/Al ratios and intercalated anions as a substrate for engineered wetlands: Synthesis, characterization, and purification effect of hexavalent chromium. Environ. Sci. Pollut. Res. Int., 2023, 30, 19814-19827.
[http://dx.doi.org/10.1007/s11356-022-23594-5] [PMID: 36242668]
[34]
El khanchaoui, A.; Sajieddine, M.; Ounacer, M.; Fnidiki, A.; Richomme, F.; Juraszek, J.; Mansori, M.; Dib, M.; Essoumhi, A. Structural, morphological, and magnetic studies of spinel ferrites derived from layered double hydroxides. Appl. Phys., A Mater. Sci. Process., 2022, 128(5), 406.
[http://dx.doi.org/10.1007/s00339-022-05547-4]
[35]
Karim, A.V.; Hassani, A.; Eghbali, P.; Nidheesh, P.V. Nanostructured modified layered double hydroxides (LDHs)-based catalysts: A review on synthesis, characterization, and applications in water remediation by advanced oxidation processes. Curr. Opin. Solid State Mater. Sci., 2022, 26(1), 100965.
[http://dx.doi.org/10.1016/j.cossms.2021.100965]
[36]
Dewangan, N.; Hui, W.M.; Jayaprakash, S.; Bawah, A.R.; Poerjoto, A.J.; Jie, T.; Jangam, A.; Hidajat, K.; Kawi, S. Recent progress on layered double hydroxide (LDH) derived metal-based catalysts for CO2 conversion to valuable chemicals. Catal. Today, 2020, 356, 490-513.
[http://dx.doi.org/10.1016/j.cattod.2020.06.020]
[37]
Jia, H.; Zhao, Y.; Niu, P.; Lu, N.; Fan, B.; Li, R. Amine-functionalized MgAl LDH nanosheets as efficient solid base catalysts for Knoevenagel condensation. Molecular Catalysis, 2018, 449, 31-37.
[http://dx.doi.org/10.1016/j.mcat.2018.02.004]
[38]
Dib, M.; Bennani, M.N.; Ouchetto, H.; Ouchetto, K.; Hafid, A.; Khouili, M. Effect of exchanged MgAl-hydrotalcite with carbonate on increases of acid neutralizing capacity: A good candidate as an antacid. Curr. Nanomater., 2022, 7(1), 49-56.
[http://dx.doi.org/10.2174/2405461506666210526145531]
[39]
Song, Y.; Tang, Y.; Fang, L.; Wu, F.; Zeng, X.; Hu, J.; Zhang, S.F.; Jiang, B.; Luo, H. Enhancement of corrosion resistance of AZ31 Mg alloys by one-step in situ synthesis of ZnAl-LDH films intercalated with organic anions (ASP, La). J. Magnes. Alloy., 2021, 9(2), 658-667.
[http://dx.doi.org/10.1016/j.jma.2020.03.013]
[40]
Das, A.; Jana, A.; Das, D.; Biswas, S.; Sheshadri, H.; Rao, M.S.; De, S. Surfactant assisted APTES functionalization of graphene oxide intercalated layered double hydroxide (LDH) for uranium adsorption from alkaline leach liquor. J. Clean. Prod., 2023, 390, 136058.
[http://dx.doi.org/10.1016/j.jclepro.2023.136058]
[41]
Tao, Q.; Zhu, J.; Wellard, R.M.; Bostrom, T.E.; Frost, R.L.; Yuan, P.; He, H. Silylation of layered double hydroxides via an induced hydrolysis method. J. Mater. Chem., 2011, 21(29), 10711-10719.
[http://dx.doi.org/10.1039/c1jm10328h]
[42]
Chen, X.; Wang, H.; Xia, B.; Meng, R. Noncovalent phosphorylation of CoCr layered double hydroxide nanosheets with improved electrocatalytic activity for the oxygen evolution reaction. Chem. Commun., 2019, 55(80), 12076-12079.
[http://dx.doi.org/10.1039/C9CC06863E] [PMID: 31536068]
[43]
Dib, M.; Moutcine, A.; Ouchetto, H.; Ouchetto, K.; Chtaini, A.; Hafid, A.; Khouili, M. Novel synthesis of α-Fe2O3@Mg/Al-CO3-LDH nanocomposite for rapid electrochemical detection of p-nitrophenol. Inorg. Chem. Commun., 2021, 131, 108788.
[http://dx.doi.org/10.1016/j.inoche.2021.108788]
[44]
Dib, M.; Moutcine, A.; Ouchetto, H.; Chtaini, A.; Hafid, A.; Khouili, M. New efficient modified carbon paste electrode by Fe2O3@Ni/Al-LDH magnetic nanocomposite for the electrochemical detection of mercury. Inorg. Chem. Commun., 2021, 131, 108624.
[http://dx.doi.org/10.1016/j.inoche.2021.108624]
[45]
Dib, M.; Ounacer, M.; Kacem, M.; Sajieddine, M.; Ouchetto, H.; Ouchetto, K.; Essoumhi, A.; Hafid, A.; Khouili, M. Synthesis of iron based nanoparticles assembled with layered double hydroxides: Structural and magnetic properties study. Mater. Res. Innov., 2022, 26(2), 76-83.
[http://dx.doi.org/10.1080/14328917.2021.1902090]
[46]
Xie, Z.H.; Zhou, H.Y.; He, C.S.; Pan, Z.C.; Yao, G.; Lai, B. Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: A review. Chem. Eng. J., 2021, 414, 128713.
[http://dx.doi.org/10.1016/j.cej.2021.128713]
[47]
Taoufik, N.; Sadiq, M.; Abdennouri, M.; Qourzal, S.; Khataee, A.; Sillanpää, M.; Barka, N. Recent advances in the synthesis and environmental catalytic applications of layered double hydroxides-based materials for degradation of emerging pollutants through advanced oxidation processes. Mater. Res. Bull., 2022, 154, 111924.
[http://dx.doi.org/10.1016/j.materresbull.2022.111924]
[48]
Menezes, J.C.J.M.D.S.; Diederich, M. Translational role of natural coumarins and their derivatives as anticancer agents. Future Med. Chem., 2019, 11(9), 1057-1082.
[http://dx.doi.org/10.4155/fmc-2018-0375] [PMID: 31140865]
[49]
Maleki, E.H.; Bahrami, A.R.; Sadeghian, H.; Matin, M.M. Discovering the structure–activity relationships of different O-prenylated coumarin derivatives as effective anticancer agents in human cervical cancer cells. Toxicol. In Vitro, 2020, 63, 104745.
[http://dx.doi.org/10.1016/j.tiv.2019.104745] [PMID: 31830504]
[50]
Liu, Y.P.; Yan, G.; Xie, Y.T.; Lin, T.C.; Zhang, W.; Li, J.; Wu, Y.J.; Zhou, J.Y.; Fu, Y.H. Bioactive prenylated coumarins as potential anti-inflammatory and anti-HIV agents from Clausena lenis. Bioorg. Chem., 2020, 97, 103699.
[http://dx.doi.org/10.1016/j.bioorg.2020.103699] [PMID: 32146173]
[51]
Wang, G.; Liu, Y.; Zhang, L.; An, L.; Chen, R.; Liu, Y.; Luo, Q.; Li, Y.; Wang, H.; Xue, Y. Computational study on the antioxidant property of coumarin-fused coumarins. Food Chem., 2020, 304, 125446.
[http://dx.doi.org/10.1016/j.foodchem.2019.125446] [PMID: 31491715]
[52]
Mishra, S.; Pandey, A.; Manvati, S. Coumarin: An emerging antiviral agent. Heliyon, 2020, 6(1), e03217.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03217] [PMID: 32042967]
[53]
Prusty, J.S.; Kumar, A. Coumarins: Antifungal effectiveness and future therapeutic scope. Mol. Divers., 2020, 24(4), 1367-1383.
[http://dx.doi.org/10.1007/s11030-019-09992-x] [PMID: 31520360]
[54]
Qin, H.L.; Zhang, Z.W.; Ravindar, L.; Rakesh, K.P. Antibacterial activities with the structure-activity relationship of coumarin derivatives. Eur. J. Med. Chem., 2020, 207, 112832.
[http://dx.doi.org/10.1016/j.ejmech.2020.112832] [PMID: 32971428]
[55]
Yang, X.C.; Hu, C.F.; Zhang, P.L.; Li, S.; Hu, C.S.; Geng, R.X.; Zhou, C.H. Coumarin thiazoles as unique structural skeleton of potential antimicrobial agents. Bioorg. Chem., 2022, 124, 105855.
[http://dx.doi.org/10.1016/j.bioorg.2022.105855] [PMID: 35576797]
[56]
Gilanizadeh, M.; Zeynizadeh, B. Synthesis of acridinediones and biscoumarins using Fe 3 O 4 @SiO 2 @Ni–Zn–Fe LDH as an efficient magnetically recoverable mesoporous catalyst. Polycycl. Aromat. Compd., 2021, 41(1), 15-32.
[http://dx.doi.org/10.1080/10406638.2019.1567560]
[57]
Zeynizadeh, B.; Gilanizadeh, M. Synthesis and characterization of a magnetic graphene oxide/Zn–Ni–Fe layered double hydroxide nanocomposite: An efficient mesoporous catalyst for the green preparation of biscoumarins. New J. Chem., 2019, 43(47), 18794-18804.
[http://dx.doi.org/10.1039/C9NJ04718B]
[58]
Abdelall, E.K.A.; A.H., Elshemy; H., Labib; M.B., E A Mohamed F. Characterization of novel heterocyclic compounds based on 4-aryl-4H-chromene scaffold as anticancer agents: Design, synthesis, antiprofilerative activity against resistant cancer cells, dual β-tubulin/c-Src inhibition, cell cycle arrest and apoptosis induction. Bioorg. Chem., 2022, 120, 105591.
[http://dx.doi.org/10.1016/j.bioorg.2021.105591] [PMID: 34998122]
[59]
Alblewi, F.F.; Okasha, R.M.; Hritani, Z.M.; Mohamed, H.M.; El-Nassag, M.A.A.; Halawa, A.H.; Mora, A.; Fouda, A.M.; Assiri, M.A.; Al-Dies, A.A.M.; Afifi, T.H.; El-Agrody, A.M. Antiproliferative effect, cell cycle arrest and apoptosis generation of novel synthesized anticancer heterocyclic derivatives based 4H benzo[h]chromene. Bioorg. Chem., 2019, 87, 560-571.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.059] [PMID: 30928878]
[60]
Anaikutti, P.; Selvaraj, M.; Prabhakaran, J.; Pooventhiran, T.; Jeyakumar, T.C.; Thomas, R.; Makam, P. Indolyl-4H-chromenes: Multicomponent one-pot green synthesis, in vitro and in silico, anticancer and antioxidant studies. J. Mol. Struct., 2022, 1266, 133464.
[http://dx.doi.org/10.1016/j.molstruc.2022.133464]
[61]
Aminkhani, A.; Talati, M.; Sharifi, R.; Chalabian, F.; Katouzian, F. Highly efficient one pot three component synthesis and antimicrobial activity of 2‐Amino‐4 H chromene derivatives. J. Heterocycl. Chem., 2019, 56(6), 1812-1819.
[http://dx.doi.org/10.1002/jhet.3555]
[62]
Thanh, N.D.; Hai, D.S.; Ngoc Bich, V.T.; Thu Hien, P.T.; Ky Duyen, N.T.; Mai, N.T.; Dung, T.T.; Toan, V.N.; Kim Van, H.T.; Dang, L.H.; Toan, D.N.; Thanh Van, T.T. Efficient click chemistry towards novel 1H-1,2,3-triazole-tethered 4H-chromene d-glucose conjugates: Design, synthesis and evaluation of in vitro antibacterial, MRSA and antifungal activities. Eur. J. Med. Chem., 2019, 167, 454-471.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.060] [PMID: 30784879]
[63]
Jiang, N.; Huang, Q.; Liu, J.; Liang, N.; Li, Q.; Li, Q.; Xie, S.S. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 146, 287-298.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.055] [PMID: 29407958]
[64]
Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Naik, N.S.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Green, unexpected synthesis of bis-coumarin derivatives as potent anti-bacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2018, 143, 1744-1756.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.072] [PMID: 29133055]
[65]
Maharramov, A.; Kaya, R.; Taslimi, P.; Kurbanova, M.; Sadigova, A.; Farzaliyev, V.; Sujayev, A.; Gulçin, İ. Synthesis, crystal structure, and biological evaluation of optically active 2-amino-4-aryl-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4 H -chromen-3-carbonitriles: Antiepileptic, antidiabetic, and anticholinergics potentials. Arch. Pharm., 2019, 352(2), 1800317.
[http://dx.doi.org/10.1002/ardp.201800317] [PMID: 30600532]
[66]
Nikpassand, M.; Keyhani, A.; Fekri, L.Z.; Varma, R.S. Mechanochemical synthesis of azo-linked 2-amino-4H-chromene derivatives using Fe3O4@SiO2@KIT-6-NH2@Schiff-base complex nanoparticles. J. Mol. Struct., 2022, 1251, 132065.
[http://dx.doi.org/10.1016/j.molstruc.2021.132065]
[67]
Arzehgar, Z.; Sajjadifar, S.; Fekri, M.H. Chemical methodologies original synthesis of 2-amino-4h-chromene derivatives under solvent-free condition using MOF-5 chemical methodologies synthesis of 2-amino-4h-chromene derivatives under solvent-free condition using MOF-5. Chem. Methodol, 2018, 6, 251-260.
[http://dx.doi.org/10.22034/chemm.2018.149048.1089]
[68]
Mohammadzadeh, A.; Marjani, A.P.; Zamani, A. A novel biopolymer-based nanomagnetic catalyst for the synthesis of 4H-pyran and tetrahydro-4h-chromene derivatives. S. Afr. J. Chem., 2020, 73, 55-63.
[http://dx.doi.org/10.17159/0379-4350/2020/v73a9]
[69]
Velázquez-Herrera, F.D.; González-Rodal, D.; Fetter, G.; Pérez-Mayoral, E. Towards highly efficient hydrotalcite/hydroxyapatite composites as novel catalysts involved in eco-synthesis of chromene derivatives. Appl. Clay Sci., 2020, 198, 105833.
[http://dx.doi.org/10.1016/j.clay.2020.105833]
[70]
Velázquez-Herrera, F.D.; González-Rodal, D.; Fetter, G.; Pérez-Mayoral, E. Enhanced catalytic performance of highly mesoporous hydrotalcite/SBA-15 composites involved in chromene multicomponent synthesis. Microp. Mesop. Mater., 2020, 309, 110569.
[http://dx.doi.org/10.1016/j.micromeso.2020.110569]
[71]
Jaiswal, D.; Tiwari, J.; Singh, S.; Sharma, A.K.; Singh, J.; Singh, J. Sarcosine as a novel and recyclable organocatalyst: A greener approach towards the synthesis of multisubstituted pyrazole derivatives. Curr. Organocatal., 2019, 5(3), 229-238.
[http://dx.doi.org/10.2174/2213337205666180810123412]
[72]
Badhe, K.; Dabholkar, V.; Kurade, S. One-pot synthesis of 5-amino-1H-pyrazole-4-carbonitrile using calcined Mg-Fe hydrotalcite catalyst. Curr. Organocatal., 2018, 5(1), 3-12.
[http://dx.doi.org/10.2174/2213337205666180516094624]
[73]
Dib, M.; Ouchetto, H.; Akhramez, S.; Fadili, H.; Essoumhi, A.; Ouchetto, K.; Hafid, A.; Sajieddine, M.; Khouili, M. Preparation of Mg/Al-LDH nanomaterials and its application in the condensation of 3-amino-1-phenyl-2-pyrazolin-5-one with aromatic aldehyde. Mater. Today Proc., 2020, 22, 104-107.
[http://dx.doi.org/10.1016/j.matpr.2019.08.106]
[74]
Azarifar, D.; Tadayoni, M.; Ghaemi, M. γ-Fe 2 O 3 @Cu 3 Al-LDH-TUD as a new Amphoteric, Highly efficient and recyclable heterogeneous catalyst for the solvent-free synthesis of dihydropyrano[3,2- c]pyrazoles and dihydropyrano[3,2- c]chromens. Appl. Organomet. Chem., 2018, 32(4), e4293.
[http://dx.doi.org/10.1002/aoc.4293]
[75]
Ghanbari, N.; Ghafuri, H. Design and preparation of nanoarchitectonics of LDH/polymer composite with particular morphology as catalyst for green synthesis of imidazole derivatives. Sci. Rep., 2022, 12(1), 11288.
[http://dx.doi.org/10.1038/s41598-022-15582-z] [PMID: 35787674]
[76]
Duc, D.X.; Dung, V.C. Microwave-assisted, [Bmim]HSO4-catalyzed the friedländer quinoline synthesis of quinoline under solvent-free conditions. Curr. Organocatal., 2022, 9(2), 117-123.
[http://dx.doi.org/10.2174/2213337209666220127142333]
[77]
Upadhyay, K.D.; Dodia, N.M.; Khunt, R.C.; Chaniara, R.S.; Shah, A.K. Synthesis and biological screening of pyrano[3,2- c]quinoline analogues as anti-inflammatory and anticancer agents. ACS Med. Chem. Lett., 2018, 9(3), 283-288.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00545] [PMID: 29541375]
[78]
Fan, Y.L.; Wu, J.B.; Cheng, X.W.; Zhang, F.Z.; Feng, L.S. Fluoroquinolone derivatives and their anti-tubercular activities. Eur. J. Med. Chem., 2018, 146, 554-563.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.080] [PMID: 29407980]
[79]
Fan, Y.L.; Cheng, X.W.; Wu, J.B.; Liu, M.; Zhang, F.Z.; Xu, Z.; Feng, L.S. Antiplasmodial and antimalarial activities of quinolone derivatives: An overview. Eur. J. Med. Chem., 2018, 146, 1-14.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.039] [PMID: 29360043]
[80]
Wang, Z.; Hu, J.; Yang, X.; Feng, X.; Li, X.; Huang, L.; Chan, A.S.C. Design, synthesis, and evaluation of orally bioavailable quinoline–indole derivatives as innovative multitarget-directed ligands: Promotion of cell proliferation in the adult murine hippocampus for the treatment of Alzheimer’s disease. J. Med. Chem., 2018, 61(5), 1871-1894.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01417] [PMID: 29420891]
[81]
Teng, P.; Li, C.; Peng, Z.; Anne Marie, V.; Nimmagadda, A.; Su, M.; Li, Y.; Sun, X.; Cai, J. Facilely accessible quinoline derivatives as potent antibacterial agents. Bioorg. Med. Chem., 2018, 26(12), 3573-3579.
[http://dx.doi.org/10.1016/j.bmc.2018.05.031] [PMID: 29858158]
[82]
Zeleke, D.; Eswaramoorthy, R.; Belay, Z.; Melaku, Y. Synthesis and antibacterial, antioxidant, and molecular docking analysis of some novel quinoline derivatives. J. Chem., 2020, 2020, 1-16.
[http://dx.doi.org/10.1155/2020/1324096]
[83]
Ghanim, A.M.; Girgis, A.S.; Kariuki, B.M.; Samir, N.; Said, M.F.; Abdelnaser, A.; Nasr, S.; Bekheit, M.S.; Abdelhameed, M.F.; Almalki, A.J.; Ibrahim, T.S.; Panda, S.S. Design and synthesis of ibuprofen-quinoline conjugates as potential anti-inflammatory and analgesic drug candidates. Bioorg. Chem., 2022, 119, 105557.
[http://dx.doi.org/10.1016/j.bioorg.2021.105557] [PMID: 34952242]
[84]
Eissa, S.I.; Farrag, A.M.; Abbas, S.Y.; El Shehry, M.F.; Ragab, A.; Fayed, E.A.; Ammar, Y.A. Novel structural hybrids of quinoline and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities with molecular modeling studies. Bioorg. Chem., 2021, 110, 104803.
[http://dx.doi.org/10.1016/j.bioorg.2021.104803] [PMID: 33761314]
[85]
Mahboubi Rabbani, S.M.I.; Vahabpour, R.; Hajimahdi, Z.; Zarghi, A. Design, synthesis, molecular modeling studies and biological evaluation of n′-arylidene-6-(benzyloxy)-4-oxo-1,4-dihydroquinoline-3-carbohydrazide derivatives as novel Anti-HCV agents. Iran. J. Pharm. Res., 2019, 18(4), 1790-1802.
[http://dx.doi.org/10.22037/ijpr.2019.112186.13586] [PMID: 32184846]
[86]
Singh, V.K.; Mishra, R.; Kumari, P.; Som, A.; Yadav, A.K.; Ram, N.K.; Kumar, P.; Schols, D.; Singh, R.K. In silico design, synthesis and anti-HIV activity of quinoline derivatives as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Comput. Biol. Chem., 2022, 98, 107675.
[http://dx.doi.org/10.1016/j.compbiolchem.2022.107675] [PMID: 35395595]
[87]
Murnane, R.; Zloh, M.; Tanna, S.; Allen, R.; Santana-Gomez, F.; Parish, T.; Brucoli, F. Synthesis and antitubercular activity of novel 4-arylalkyl substituted thio-, oxy- and sulfoxy-quinoline analogues targeting the cytochrome bc1 complex. Bioorg. Chem., 2023, 138, 106659.
[http://dx.doi.org/10.1016/j.bioorg.2023.106659] [PMID: 37336104]
[88]
Yousefian, M.; Rafiee, Z. Hybrid nanoarchitectonics of cellulose-PMAA/layered double hydroxide: A novel reusable catalyst for the unsymmetrical Hantzsch reaction. Appl. Surf. Sci. Adv., 2022, 11, 100277.
[http://dx.doi.org/10.1016/j.apsadv.2022.100277]
[89]
Motokura, K.; Ozawa, N.; Sato, R.; Manaka, Y.; Chun, W.J. Porous FeO(OH) dispersed on Mg Al hydrotalcite surface for one pot synthesis of quinoline derivatives. Chem. Cat. Chem., 2021, 13(12), 2915-2921.
[http://dx.doi.org/10.1002/cctc.202100338]
[90]
Esfandiary, N.; Heydari, A. Fe 2 O 3 @[proline]–CuMgAl–LDH: A magnetic bifunctional copper and organocatalyst system for one pot synthesis of quinolines and 2 H indazoles in green media. Appl. Organomet. Chem., 2020, 34(9)
[http://dx.doi.org/10.1002/aoc.5760]
[91]
Abu-Hashem, A.A.; El-Shazly, M. Synthesis and antimicrobial evaluation of novel triazole, tetrazole, and spiropyrimidine-thiadiazole derivatives. Polycycl. Aromat. Compd., 2021, 41(3), 478-497.
[http://dx.doi.org/10.1080/10406638.2019.1598448]
[92]
Srinivas, B.; Kumar, P.V.; Nagendra Reddy, P.; Venu, S.; Shyam, P.; David Krupadanam, G.L. Design, synthesis, antioxidant and antibacterial activities of novel 2-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-5-(2hchromen- 3-yl)-2H-tetrazoles. Russ. J. Bioorganic Chem., 2018, 44(2), 244-251.
[http://dx.doi.org/10.1134/S1068162018020097]
[93]
Hussein, R.K.; Khouqeer, G.; Alkaoud, A.M.; El-Khayatt, A.M. Probing the action of screened anticancer triazole–tetrazole derivatives against COVID-19 using molecular docking and DFT investigations. Nat. Prod. Commun., 2022, 17(5), 1934578X2210939.
[http://dx.doi.org/10.1177/1934578X221093915]
[94]
He, M.; Li, Y.J.; Shao, J.; Fu, C.; Li, Y.S.; Cui, Z.N. 2,5-Disubstituted furan derivatives containing imidazole, triazole or tetrazole moiety as potent α-glucosidase inhibitors. Bioorg. Chem., 2023, 131, 106298.
[http://dx.doi.org/10.1016/j.bioorg.2022.106298] [PMID: 36455481]
[95]
Celik, F.; Unver, Y.; Barut, B.; Ozel, A.; Sancak, K. Synthesis, characterization and biological activities of new symmetric bis-1, 2, 3-triazoles with click chemistry. Med. Chem., 2018, 14(3), 230-241.
[http://dx.doi.org/10.2174/1573406413666171120165226] [PMID: 29165092]
[96]
Chu, X.M.; Wang, C.; Wang, W.L.; Liang, L.L.; Liu, W.; Gong, K.K.; Sun, K.L. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2019, 166, 206-223.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.047] [PMID: 30711831]
[97]
Gao, F.; Xiao, J.; Huang, G. Current scenario of tetrazole hybrids for antibacterial activity. Eur. J. Med. Chem., 2019, 184, 111744.
[http://dx.doi.org/10.1016/j.ejmech.2019.111744] [PMID: 31605865]
[98]
Kumbar, M.N.; Kamble, R.R.; Dasappa, J.P.; Bayannavar, P.K.; Khamees, H.A.; Mahendra, M.; Joshi, S.D.; Dodamani, S.; Rasal, V.P.; Jalalpure, S. 5-(1-Aryl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)-1H-tetrazoles: Synthesis, structural characterization, Hirshfeld analysis, anti-inflammatory and anti-bacterial studies. J. Mol. Struct., 2018, 1160, 63-72.
[http://dx.doi.org/10.1016/j.molstruc.2018.01.047]
[99]
Gao, C.; Chang, L.; Xu, Z.; Yan, X.F.; Ding, C.; Zhao, F.; Wu, X.; Feng, L.S. Recent advances of tetrazole derivatives as potential anti-tubercular and anti-malarial agents. Eur. J. Med. Chem., 2019, 163, 404-412.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.001] [PMID: 30530192]
[100]
Salimi, M.; Zamanpour, A. Green synthesis of the 1 substituted 1H 1, 2, 3, 4 tetrazoles over bifunctional catalyst based on copper intercalated into Mg/Al hydrotalcite modified magnetite nanoparticles. Appl. Organomet. Chem., 2020, 34(8)
[http://dx.doi.org/10.1002/aoc.5682]
[101]
Ara, M.; Ghafuri, H.; Ghanbari, N. Copper (II) anchored on layered double hydroxide functionalized guanidine as a heterogeneous catalyst for the synthesis of tetrazole derivatives. Colloid Interface Sci. Commun., 2023, 53, 100704.
[http://dx.doi.org/10.1016/j.colcom.2023.100704]
[102]
Salimi, M.; Esmaeli-nasrabadi, F.; Sandaroos, R. Fe3O4@Hydrotalcite-NH2-CoII NPs: A novel and extremely effective heterogeneous magnetic nanocatalyst for synthesis of the 1-substituted 1H-1, 2, 3, 4-tetrazoles. Inorg. Chem. Commun., 2020, 122, 108287.
[http://dx.doi.org/10.1016/j.inoche.2020.108287]
[103]
Kamanna, K.; Badiger, K.B.; Khatavi, S.Y.; Hiremath, P.B. Agro waste sourced catalyst as an eco-friendly and sustainable approach for knoevenagel condensation reaction. Curr. Organocatal., 2022, 9(2), 179-194.
[http://dx.doi.org/10.2174/2213337209666211222145453]
[104]
Floriano da Silva, J.; Deise da Silva Ferracine, E.; Cardoso, D. Improved accessibility of Na-LTA zeolite catalytic sites for the Knoevenagel condensation reaction. Microp. Mesop. Mater., 2022, 331, 111640.
[http://dx.doi.org/10.1016/j.micromeso.2021.111640]
[105]
Xu, Q.; Niu, Y.; Wang, G.; Li, Y.; Zhao, Y.; Singh, V.; Niu, J.; Wang, J. Polyoxoniobates as a superior Lewis base efficiently catalyzed Knoevenagel condensation. Mol. Catal., 2018, 453, 93-99.
[http://dx.doi.org/10.1016/j.mcat.2018.05.002]
[106]
Wang, Y.; Yao, Q.X.; He, J.R.; Liang, Z.H.; Li, X.; Cheng, H.; Li, L.L. L-proline-catalyzed Knoevenagel reaction promoted by choline chloride-based deep eutectic solvents. Biomass Convers. Biorefin., 2022, 12(S1), 87-93.
[http://dx.doi.org/10.1007/s13399-021-01747-9]
[107]
Anahmadi, H.; Fathi, M.; El hajri, F.; Benzekri, Z.; Sibous, S.; Idrissi, B.C.E.; El youbi, M.S.; Souizi, A.; Boukhris, S. Synthesis, characterization and application of α-Ca3 (PO4)2 as a heterogeneous catalyst for the synthesis of 2.3-diphenylquinoxaline derivatives and knoevenagel condensation under green conditions. J. Mol. Struct., 2022, 1248, 131449.
[http://dx.doi.org/10.1016/j.molstruc.2021.131449]
[108]
Appaturi, J.N.; Jothi Ramalingam, R.; Al-Lohedan, H.A. Synthesis, characterization and catalytic activity of melamine immobilized MCM-41 for condensation reactions. J. Porous Mater., 2018, 25(2), 629-641.
[http://dx.doi.org/10.1007/s10934-017-0481-3]
[109]
Chen, H.; Fan, L.; Hu, T.; Zhang, X. 6s-3d Ba 3 Zn 4–organic framework as an effective heterogeneous catalyst for chemical fixation of CO 2 and knoevenagel condensation reaction. Inorg. Chem., 2021, 60(5), 3384-3392.
[http://dx.doi.org/10.1021/acs.inorgchem.0c03736] [PMID: 33595310]
[110]
Zapelini, I.W.; Cardoso, D. Amine-grafted Na-LTA zeolite precursors as basic catalysts for knoevenagel condensation. Microp. Mesop. Mater., 2021, 324, 111270.
[http://dx.doi.org/10.1016/j.micromeso.2021.111270]
[111]
Ouaddari, H.; Beqqour, D.; Bennazha, J.; El Amrani, I.E.; Albizane, A.; Solhy, A.; Varma, R.S. Natural moroccan clays: Comparative study of their application as recyclable catalysts in Knoevenagel condensation. Sustain. Chem. Pharm., 2018, 10, 1-8.
[http://dx.doi.org/10.1016/j.scp.2018.07.003]
[112]
Rosati, O.; Lanari, D.; Scavo, R.; Persia, D.; Marmottini, F.; Nocchetti, M.; Curini, M.; Piermatti, O. Zirconium potassium phosphate methyl and/or phenyl phosphonates as heterogeneous catalysts for Knoevenagel condensation under solvent free conditions. Microporous Mesoporous Mater., 2018, 268, 251-259.
[http://dx.doi.org/10.1016/j.micromeso.2018.04.035]
[113]
Alhumaimess, M.S.; Hotan Alsohaimi, I.; Hassan, H.M.A.; El-Sayed, M.Y.; Alshammari, M.S.; Aldosari, O.F.; Alshammari, H.M.; Kamel, M.M. Synthesis of ionic liquid intercalated layered double hydroxides of magnesium and aluminum: A greener catalyst of Knoevenagel condensation. J. Saudi Chem. Soc., 2020, 24(3), 321-333.
[http://dx.doi.org/10.1016/j.jscs.2020.01.006]
[114]
Bhattacharjee, S. Synthesis and application of layered double hydroxide-hosted 2-aminoterephthalate for the Knoevenagel condensation reaction. Inorg. Nano-Met. Chem, 2018, 48(7), 1-7.
[http://dx.doi.org/10.1080/24701556.2019.1567538]
[115]
Li, T.; Zhang, W.; Chen, W.; Miras, H.N.; Song, Y.F. Layered double hydroxide anchored ionic liquids as amphiphilic heterogeneous catalysts for the Knoevenagel condensation reaction. Dalton Trans., 2018, 47(9), 3059-3067.
[http://dx.doi.org/10.1039/C7DT03665E] [PMID: 29184948]
[116]
Gilanizadeh, M.; Zeynizadeh, B. Synthesis and characterization of the immobilized Ni–Zn–Fe layered double hydroxide (LDH) on silica-coated magnetite as a mesoporous and magnetically reusable catalyst for the preparation of benzylidenemalononitriles and bisdimedones (tetraketones) under green conditions. New J. Chem., 2018, 42(11), 8553-8566.
[http://dx.doi.org/10.1039/C8NJ00788H]
[117]
Khiri-Meribout, N.; Benzerka, S.; Redouane, M.A.; Debache, A. Highly efficient, reusable, functionalized pyridinium salts as a catalyst for the simple and cost-effective preparation of tetrahydro [b] benzopyran derivatives. Curr. Organocatal., 2022, 9(3), 252-261.
[http://dx.doi.org/10.2174/2213337209666220217112937]
[118]
Shirini, F.; Shirzad, M.; Nasiri, M.; Daneshvar, N.; Tajik, H. Synthesis of 1,8-dioxo-octahydro-xanthene and tetrahydrobenzo[b]pyran derivatives promoted by two bis-imidazolium-based ionic liquids. Curr. Organocatal., 2022, 9(2), 102-116.
[http://dx.doi.org/10.2174/2213337208666210726141934]
[119]
Hakiminasab, S.; Habibi, A.; Shahcheragh, S.M.; Farahani, Y.; Sardari, S.; Dolati, H.; Mahdavi, S.M.; Habibi, M. Efficient pyran derivatives synthesis in DES medium and their antimicrobial evaluation as inhibitors of mycobacterium bovis (BCG). J. Indian Chem. Soc., 2021, 18(10), 2575-2582.
[http://dx.doi.org/10.1007/s13738-021-02209-9]
[120]
Baitha, A.; Gopinathan, A.; Krishnan, K.; Dabholkar, V.V. Synthesis of 2-amino-4-(2-ethoxybenzo[d][1,3]dioxol-5-yl)-4 H -pyran-3-carbonitrile derivatives and their biological evaluation. J. Heterocycl. Chem., 2018, 55(5), 1189-1192.
[http://dx.doi.org/10.1002/jhet.3152]
[121]
Yang, Z.J.; Gong, Q.T.; Wang, Y.; Yu, Y.; Liu, Y.H.; Wang, N.; Yu, X.Q. Biocatalytic tandem multicomponent reactions for one-pot synthesis of 2-Amino-4H-Pyran library and in vitro biological evaluation. Mol. Cat., 2020, 491, 110983.
[http://dx.doi.org/10.1016/j.mcat.2020.110983]
[122]
Lagu, S.B.; Yejella, R.P.; Nissankararao, S.; Bhandare, R.R.; Golla, V.S.; Subrahmanya Lokesh, B.V.; Rahman, M.M.; Shaik, A.B. Antitubercular activity assessment of fluorinated chalcones, 2-aminopyridine-3-carbonitrile and 2-amino-4H-pyran-3-carbonitrile derivatives: In vitro, molecular docking and in-silico drug likeliness studies. PLoS One, 2022, 17(6), e0265068.
[http://dx.doi.org/10.1371/journal.pone.0265068] [PMID: 35709194]
[123]
Kathavarayan, A.; Ramasamy, V.; Rajamanickam, R.; Subramaniyan, G. Synthesis, crystal structure, hirshfeld surface and docking studies of 2-(methacryloyloxy)ethyl‐6‐amino‐5‐cyano‐2‐methyl‐4‐(thiophen‐2‐yl)‐4 H ‐pyran‐3‐carboxylate. ChemistrySelect, 2022, 7(45), e202203680.
[http://dx.doi.org/10.1002/slct.202203680]
[124]
Debbabi, M.; Nimbarte, V.D.; Chekir, S.; Chortani, S.; Romdhane, A. Ben jannet, H. Design and synthesis of novel potent anticoagulant and anti-tyrosinase pyranopyrimidines and pyranotriazolopyrimidines: Insights from molecular docking and SAR analysis. Bioorg. Chem., 2019, 82, 129-138.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.004] [PMID: 30312868]
[125]
Kumar, R.S.; Almansour, A.I.; Arumugam, N.; Al-thamili, D.M.; Basiri, A.; Kotresha, D.; Manohar, T.S.; Venketesh, S.; Asad, M.; Asiri, A.M. Highly functionalized 2-amino-4H-pyrans as potent cholinesterase inhibitors. Bioorg. Chem., 2018, 81, 134-143.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.009] [PMID: 30121001]
[126]
Hiremath, P.B.; Kantharaju, K. An efficient and facile synthesis of 2‐Amino‐4 H ‐pyrans & Tetrahydrobenzo[ b ]pyrans catalysed by WEMFSA at room temperature. Chemistry Select, 2020, 5(6), 1896-1906.
[http://dx.doi.org/10.1002/slct.201904336]
[127]
Dib, M.; Kacem, M.; Talbi, S.; Ouchetto, H.; Ouchetto, K.; Essoumhi, A.; Hafid, A.; Khouili, M. MgO-MgAl2O4: An efficient catalyst for multicomponent synthesis of substituted 4H-pyran. Curr. Chem. Biol., 2023, 17.
[http://dx.doi.org/10.2174/2212796817666230626120825]
[128]
Baghernejad, B. Fiuzat, mahsa. new strategy for the synthesis of 2-amino-4H-pyran derivatives in aqueous media using DABCO-Cucl complex as a novel and efficient catalyst. Eurasian Chem. Commun., 2020, 2, 1088-1092.
[http://dx.doi.org/10.22034/ecc.2020.250740.1078]
[129]
Yousefi, M.R.; Goli-Jolodar, O.; Shirini, F. Piperazine: An excellent catalyst for the synthesis of 2-amino-3-cyano-4H-pyrans derivatives in aqueous medium. Bioorg. Chem., 2018, 81, 326-333.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.026] [PMID: 30179795]
[130]
Nope, E.; Sathicq, Á.G.; Martínez, J.J.; Rojas, H.A.; Luque, R.; Romanelli, G.P. Ternary hydrotalcites in the multicomponent synthesis of 4H-pyrans. Catalysts, 2020, 10(1), 70.
[http://dx.doi.org/10.3390/catal10010070]
[131]
Momeni, S.; Ghorbani-Vaghei, R. Synthesis, properties, and application of the new nanocatalyst of double layer hydroxides in the one pot multicomponent synthesis of 2-amino-3-cyanopyridine derivatives. Sci. Rep., 2023, 13(1), 1627.
[http://dx.doi.org/10.1038/s41598-023-27940-6] [PMID: 36709240]
[132]
Sayed, M.; Younis, O.; Hassanien, R.; Ahmed, M.; Mohammed, A.A.K.; Kamal, A.M.; Tsutsumi, O. Design and synthesis of novel indole derivatives with aggregation-induced emission and antimicrobial activity. J. Photochem. Photobiol. Chem., 2019, 383, 111969.
[http://dx.doi.org/10.1016/j.jphotochem.2019.111969]
[133]
Luo, M.L.; Huang, W.; Zhu, H.P.; Peng, C.; Zhao, Q.; Han, B. Advances in indole-containing alkaloids as potential anticancer agents by regulating autophagy. Biomed. Pharmacother., 2022, 149, 112827.
[http://dx.doi.org/10.1016/j.biopha.2022.112827] [PMID: 35316753]
[134]
Bajad, N.G.; Singh, S.K.; Singh, S.K.; Singh, T.D.; Singh, M. Indole: A promising scaffold for the discovery and development of potential anti-tubercular agents. Curr. Res. Pharmacol, 2022, 3, 100119.
[http://dx.doi.org/10.1016/j.crphar.2022.100119] [PMID: 35992375]
[135]
Elshemy, H.A.H.; Zaki, M.A.; Mohamed, E.I.; Khan, S.I.; Lamie, P.F. A multicomponent reaction to design antimalarial pyridyl-indole derivatives: Synthesis, biological activities and molecular docking. Bioorg. Chem., 2020, 97, 103673.
[http://dx.doi.org/10.1016/j.bioorg.2020.103673] [PMID: 32106041]
[136]
Angelova, V.T.; Rangelov, M.; Todorova, N.; Dangalov, M.; Andreeva-Gateva, P.; Kondeva-Burdina, M.; Karabeliov, V.; Shivachev, B.; Tchekalarova, J. Discovery of novel indole-based aroylhydrazones as anticonvulsants: Pharmacophore-based design. Bioorg. Chem., 2019, 90, 103028.
[http://dx.doi.org/10.1016/j.bioorg.2019.103028] [PMID: 31220672]
[137]
Nie, S.; Zhao, J.; Wu, X.; Yao, Y.; Wu, F.; Lin, Y.L.; Li, X.; Kneubehl, A.R.; Vogt, M.B.; Rico-Hesse, R.; Song, Y. Synthesis, structure-activity relationship and antiviral activity of indole-containing inhibitors of Flavivirus NS2B-NS3 protease. Eur. J. Med. Chem., 2021, 225, 113767.
[http://dx.doi.org/10.1016/j.ejmech.2021.113767] [PMID: 34450494]
[138]
Hamad, H.A.; Nageh, H.; El-Bery, H.M.; Kasry, A.; Carrasco-Marín, F.; Elhady, O.M.; Soliman, A.M.M.; El-Remaily, M.A.E.A.A.A. Unveiling the exceptional synergism-induced design of Co-Mg-Al layered triple hydroxides (LTHs) for boosting catalytic activity toward the green synthesis of indol-3-yl derivatives under mild conditions. J. Colloid Interface Sci., 2021, 599, 227-244.
[http://dx.doi.org/10.1016/j.jcis.2021.04.083] [PMID: 33945970]
[139]
(a) Hoang Nguyen, T-T.; Thi Nguyen, X-T.; Quoc Nguyen, C.; Hoang Tran, P. Porous metal oxides derived from CueAl layered double hydroxide as an efficient heterogeneous catalyst for the FriedeleCrafts alkylation of indoles with benzaldehydes under microwave irradiation. Heliyon, 2018, 4, 966.
[http://dx.doi.org/10.1016/j.heliyon.2018];
(b) Huang, L.; Ding, J.; Li, M.; Hou, Z.; Geng, Y.; Li, X.; Yu, H. Discovery of [1,2,4]-triazolo [1,5-a]pyrimidine-7(4H)-one derivatives as positive modulators of GABAA1 receptor with potent anticonvulsant activity and low toxicity. Eur. J. Med. Chem., 2020, 185, 111824.
[http://dx.doi.org/10.1016/j.ejmech.2019.111824] [PMID: 31708184]
[140]
Savateev, K.; Fedotov, V.; Butorin, I.; Eltsov, O.; Slepukhin, P.; Ulomsky, E.; Rusinov, V.; Litvinov, R.; Babkov, D.; Khokhlacheva, E.; Radaev, P.; Vassiliev, P.; Spasov, A. Nitrothiadiazolo[3,2-a]pyrimidines as promising antiglycating agents. Eur. J. Med. Chem., 2020, 185, 111808.
[http://dx.doi.org/10.1016/j.ejmech.2019.111808] [PMID: 31683103]
[141]
Kumar, B.; Sharma, P.; Gupta, V.P.; Khullar, M.; Singh, S.; Dogra, N.; Kumar, V. Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies. Bioorg. Chem., 2018, 78, 130-140.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.027] [PMID: 29554587]
[142]
Tan, Y.M.; Li, D.; Li, F.F.; Fawad Ansari, M.; Fang, B.; Zhou, C.H. Pyrimidine conjugated fluoroquinolones as new potential broad spectrum antibacterial agents. Bioorg. Med. Chem. Lett., 2022, 73, 128885.
[http://dx.doi.org/10.1016/j.bmcl.2022.128885] [PMID: 35835379]
[143]
Blokhina, S.V.; Sharapova, A.V.; Ol’khovich, M.V.; Doroshenko, I.A.; Levshin, I.B.; Perlovich, G.L. Synthesis and antifungal activity of new hybrids thiazolo[4,5-d]pyrimidines with (1H-1,2,4)triazole. Bioorg. Med. Chem. Lett., 2021, 40, 127944.
[http://dx.doi.org/10.1016/j.bmcl.2021.127944] [PMID: 33713781]
[144]
Sun, J.; Yogarajah, T.; Lee, R.C.H.; Kaur, P.; Inoue, M.; Tan, Y.W.; Chu, J.J.H. Drug repurposing of pyrimidine analogs as potent antiviral compounds against human enterovirus A71 infection with potential clinical applications. Sci. Rep., 2020, 10(1), 8159.
[http://dx.doi.org/10.1038/s41598-020-65152-4] [PMID: 32424333]
[145]
Liu, L.; Wang, Z.; Gao, C.; Dai, H.; Si, X.; Zhang, Y.; Meng, Y.; Zheng, J.; Ke, Y.; Liu, H.; Zhang, Q. Design, synthesis and antitumor activity evaluation of trifluoromethyl-substituted pyrimidine derivatives. Bioorg. Med. Chem. Lett., 2021, 51, 128268.
[http://dx.doi.org/10.1016/j.bmcl.2021.128268] [PMID: 34302974]
[146]
Sui, Y.F.; Li, D.; Wang, J.; Bheemanaboina, R.R.Y.; Ansari, M.F.; Gan, L.L.; Zhou, C.H. Design and biological evaluation of a novel type of potential multi-targeting antimicrobial sulfanilamide hybrids in combination of pyrimidine and azoles. Bioorg. Med. Chem. Lett., 2020, 30(6), 126982.
[http://dx.doi.org/10.1016/j.bmcl.2020.126982] [PMID: 32001137]
[147]
Finger, V.; Kufa, M.; Soukup, O.; Castagnolo, D.; Roh, J.; Korabecny, J. Pyrimidine derivatives with antitubercular activity. Eur. J. Med. Chem., 2023, 246, 114946.
[http://dx.doi.org/10.1016/j.ejmech.2022.114946] [PMID: 36459759]
[148]
Murwih Alidmat, M.; Khairuddean, M.; Mohammad Norman, N.; Mohamed Asri, A.N.; Mohd Suhaimi, M.H.; Sharma, G. Synthesis, characterization, docking study and biological evaluation of new chalcone, pyrazoline, and pyrimidine derivatives as potent antimalarial compounds. Arab. J. Chem., 2021, 14(9), 103304.
[http://dx.doi.org/10.1016/j.arabjc.2021.103304]
[149]
Alfayomy, A.M.; Abdel-Aziz, S.A.; Marzouk, A.A.; Shaykoon, M.S.A.; Narumi, A.; Konno, H.; Abou-Seri, S.M.; Ragab, F.A.F. Design and synthesis of pyrimidine-5-carbonitrile hybrids as COX-2 inhibitors: Anti-inflammatory activity, ulcerogenic liability, histopathological and docking studies. Bioorg. Chem., 2021, 108, 104555.
[http://dx.doi.org/10.1016/j.bioorg.2020.104555] [PMID: 33376011]
[150]
Ghobakhloo, F.; Azarifar, D.; Mohammadi, M. Macrocyclic pseudo crown-ether- manganese (II) complex coated on nanomagnetic LDH catalyzed Biginelli annulation reactions. J. Phys. Chem. Solids, 2023, 175, 111222.
[http://dx.doi.org/10.1016/j.jpcs.2023.111222]
[151]
Nope, E.; Sathicq, Á.G.; Martínez, J.J.; Rojas, H.; Romanelli, G. Hydrotalcites as catalyst in suitable multicomponent synthesis of uracil derivatives. Catal. Today, 2021, 372, 126-135.
[http://dx.doi.org/10.1016/j.cattod.2020.12.029]
[152]
Rasouli, N. Application of a novel, efficient and recyclable photo redox catalyst (Zn-Al layered double hydroxide/eosin) for the synthesis of substituted pyridine derivatives under visible light irradiation. Appl. Organomet. Chem., 2018, 32(12), e4585.
[http://dx.doi.org/10.1002/aoc.4585]
[153]
Lin, S.; Sheng, X.; Zhang, X.; Liu, H.; Luo, C.; Hou, S.; Li, B.; Chen, X.; Li, Y.; Xie, F. Layered double hydroxides as reusable catalysts for cyclocondensation of amidines and aminoalcohols: Access to multi-functionalized oxazolines. J. Org. Chem., 2022, 87(2), 1366-1376.
[http://dx.doi.org/10.1021/acs.joc.1c02696] [PMID: 34964647]
[154]
Saikia, H.; Basumatary, S. MgRuAl-layered double hydroxides (LDH): An efficient multifunctional catalyst for aldol condensation and transfer hydrogenation reactions. Curr. Catal., 2019, 8(1), 62-69.
[http://dx.doi.org/10.2174/2211550108666190418125857]
[155]
Wang, Y.; Li, S.; Yang, Y.; Shen, X.; Liu, H.; Han, B. A fully heterogeneous catalyst Br-LDH for the cycloaddition reactions of CO 2 with epoxides. Chem. Commun., 2019, 55(48), 6942-6945.
[http://dx.doi.org/10.1039/C9CC03052B] [PMID: 31140483]
[156]
Gao, D.; Han, F.; Waterhouse, G.I.N.; Li, Y.; Zhang, L. A highly efficient iron phthalocyanine-intercalated CuFe-LDH catalyst for the selective oxidation of 5-hydroxymethylfurfural to 5-formyl-2-furanic acid. Catal. Commun., 2023, 173, 106561.
[http://dx.doi.org/10.1016/j.catcom.2022.106561]
[157]
Akhramez, S.; Achour, Y.; Dib, M.; Bahsis, L.; Ouchetto, H.; Hafid, A.; Khouili, M.; El Haddad, M. DFT study and synthesis of novel bioactive bispyrazole using Mg/Al-LDH as a solid base catalyst. Curr. Chem. Biol., 2021, 14(4), 240-249.
[http://dx.doi.org/10.2174/2212796814999200918175018]
[158]
Pazoki, F.; Bagheri, S.; Shamsayei, M.; Nejad, M.J.; Heydari, A. BiPO4 decorated with Ni–Fe layered double hydroxide as a highly efficient and reusable heterogeneous catalyst for aldol condensation in green solvent. Mater. Chem. Phys., 2020, 253, 123327.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123327]
[159]
Mirzaei-Mosbat, M.; Ghorbani-Vaghei, R. Condensation–cyclization reaction for one - pot synthesis of 1,3-thiazolidin-4-one derivatives by poly(p -phenylenediamine) grafted on LDHs as a catalyst with green tool. J. Sulfur Chem., 2021, 42(1), 83-95.
[http://dx.doi.org/10.1080/17415993.2020.1812611]
[160]
Khare, S.; Singh Kirar, J.; Parashar, S. Solvent-free oxidation of ethylbenzene over LDH-hosted Co(II) Schiff base of 2-hydroxy-1-naphthaldehyde and 4-amino benzoic acid. Inorg. Nano-Met. Chem, 2019, 49(7), 204-216.
[http://dx.doi.org/10.1080/24701556.2019.1653320]
[161]
Yang, Z.; Zhang, C.; Zeng, G.; Tan, X.; Wang, H.; Huang, D.; Yang, K.; Wei, J.; Ma, C.; Nie, K. Design and engineering of layered double hydroxide based catalysts for water depollution by advanced oxidation processes: A review. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(8), 4141-4173.
[http://dx.doi.org/10.1039/C9TA13522G]
[162]
Dionigi, F.; Zeng, Z.; Sinev, I.; Merzdorf, T.; Deshpande, S.; Lopez, M.B.; Kunze, S.; Zegkinoglou, I.; Sarodnik, H.; Fan, D.; Bergmann, A.; Drnec, J.; Araujo, J.F.; Gliech, M.; Teschner, D.; Zhu, J.; Li, W.X.; Greeley, J.; Cuenya, B.R.; Strasser, P. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun., 2020, 11(1), 2522.
[http://dx.doi.org/10.1038/s41467-020-16237-1] [PMID: 32433529]
[163]
Heravi, M.M.; Mohammadi, P. Layered double hydroxides as heterogeneous catalyst systems in the cross-coupling reactions: An overview. Mol. Divers., 2022, 26, 569-587.
[http://dx.doi.org/10.1007/s11030-020-10170-7]
[164]
Rathee, G.; Kohli, S.; Singh, N.; Awasthi, A.; Chandra, R.; Chandra, R. Calcined layered double hydroxides: Catalysts for xanthene, 1,4-dihydropyridine, and polyhydroquinoline derivative synthesis. ACS Omega, 2020, 5(25), 15673-15680.
[http://dx.doi.org/10.1021/acsomega.0c01901] [PMID: 32637842]