Taxonomic Status and Phylogenetic Relationship of the Charadriidae Family Based on Complete Mitogenomes

Page: [263 - 272] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The Charadriiformes provide a good source for researching evolution owing to their diverse distribution, behavior, morphology, and ecology. However, in the Charadrii, family-level relationships remain understudied, and the monophyly of Charadriidae is also a subject of controversy.

Methods: In the present study, we generated complete mitogenomes for two species, Charadrius leschenaultii and Charadrius mongolus, which were found to be 16,905 bp and 16,844 bp in length, respectively. Among the 13 protein codon genes, we observed variation in the rate of nonsynonymous substitution rates, with the slowest rate found in COI and the fastest rate observed in ATP8. The Ka/Ks ratio for all Charadriidae species was significantly lower than one, which inferred that the protein-coding genes underwent purifying selection.

Results: Phylogenetic analysis based on the genes of Cyt b, 12S and ND2 revealed that the genus Pluvialis is the sister group of three families (Haematopodidae, Ibidorhynchidae, Recurvirostridae). However, the phylogenetic analysis based on complete mitogenomes indicated that the genus Pluvialis is within the Charadriidae family.

Conclusion: This study highlights the importance of carefully selecting the number of genes used to obtain accurate estimates of the species tree. It also suggests that relying on partial mtDNA genes with fast-evolving rates may lead to misleading results when resolving the Pluvialis sister group. Future research should focus on sequencing more mitogenomes at different taxonomic levels to gain a better understanding of the features and phylogenetic relationships within the Charadriiformes order.

Graphical Abstract

[1]
Paton, T.A.; Baker, A.J. Sequences from 14 mitochondrial genes provide a well-supported phylogeny of the Charadriiform birds congruent with the nuclear RAG-1 tree. Mol. Phylogenet. Evol., 2006, 39(3), 657-667.
[http://dx.doi.org/10.1016/j.ympev.2006.01.011] [PMID: 16531074]
[2]
Fain, M.G.; Houde, P. Multilocus perspectives on the monophyly and phylogeny of the order Charadriiformes (Aves). BMC Evol. Biol., 2007, 7(1), 35.
[http://dx.doi.org/10.1186/1471-2148-7-35] [PMID: 17346347]
[3]
Livezey, B.C. Phylogenetics of modern shorebirds (Charadriiformes) based on phenotypic evidence: Analysis and discussion. Zool. J. Linn. Soc., 2010, 160(3), 567-618.
[http://dx.doi.org/10.1111/j.1096-3642.2010.00635.x]
[4]
Tuinen, M.V.; Waterhouse, D.; Dyke, G.J. Avian molecular systematics on the rebound: A fresh look at modern shorebird phylogenetic relationships. J. Avian Biol., 2004, 35, 191-194.
[http://dx.doi.org/10.1111/j.0908-8857.2004.03362.x]
[5]
Hu, C.; Zhang, C.; Sun, L.; Zhang, Y.; Xie, W.; Zhang, B.; Chang, Q. The mitochondrial genome of pin-tailed snipe Gallinago stenura, and its implications for the phylogeny of Charadriiformes. PLoS One, 2017, 12(4), e0175244.
[http://dx.doi.org/10.1371/journal.pone.0175244] [PMID: 28384231]
[6]
Smith, N.A.; Clarke, J.A. Systematics and evolution of the Pan‐Alcidae (Aves, Charadriiformes). J. Avian Biol., 2015, 46(2), 125-140.
[http://dx.doi.org/10.1111/jav.00487]
[7]
Musser, G.; Clarke, J.A. An exceptionally preserved specimen from the Green River Formation elucidates complex phenotypic evolution in Gruiformes and Charadriiformes. Front. Ecol. Evol., 2020, 8, 559929.
[http://dx.doi.org/10.3389/fevo.2020.559929]
[8]
Chen, W.; Miao, K.; Wang, J.; Wang, H.; Sun, W.; Yuan, S.; Luo, S.; Hu, C.; Chang, Q. Five new mitogenomes sequences of Calidridine sandpipers (Aves: Charadriiformes) and comparative mitogenomics of genus Calidris. PeerJ, 2022, 10, e13268.
[http://dx.doi.org/10.7717/peerj.13268] [PMID: 35462767]
[9]
Päckert, M. Free access of published DNA sequences facilitates regular control of (meta‐) data quality – an example from shorebird mitogenomes (Aves, Charadriiformes: Charadrius). Ibis, 2022, 164(1), 336-342.
[http://dx.doi.org/10.1111/ibi.13005]
[10]
Zhao, B.; Gao, S.; Zhao, M.; Lv, H.; Song, J.; Wang, H.; Zeng, Q.; Liu, J. Mitochondrial genomic analyses provide new insights into the “missing” atp8 and adaptive evolution of Mytilidae. BMC Genomics, 2022, 23(1), 738.
[http://dx.doi.org/10.1186/s12864-022-08940-8] [PMID: 36324074]
[11]
Urantówka, A.D.; Kroczak, A.; Mackiewicz, P. New view on the organization and evolution of Palaeognathae mitogenomes poses the question on the ancestral gene rearrangement in Aves. BMC Genomics, 2020, 21(1), 874.
[http://dx.doi.org/10.1186/s12864-020-07284-5] [PMID: 33287726]
[12]
Černý, D.; Natale, R. Comprehensive taxon sampling and vetted fossils help clarify the time tree of shorebirds (Aves, Charadriiformes). Mol. Phylogenet. Evol., 2022, 177, 107620.
[http://dx.doi.org/10.1016/j.ympev.2022.107620] [PMID: 36038056]
[13]
Baker, A.J.; Pereira, S.L.; Paton, T.A. Phylogenetic relationships and divergence times of Charadriiformes genera: Multigene evidence for the Cretaceous origin of at least 14 clades of shorebirds. Biol. Lett., 2007, 3(2), 205-210.
[http://dx.doi.org/10.1098/rsbl.2006.0606] [PMID: 17284401]
[14]
Baker, A.J.; Yatsenko, Y.; Tavares, E.S. Eight independent nuclear genes support monophyly of the plovers: The role of mutational variance in gene trees. Mol. Phylogenet. Evol., 2012, 65(2), 631-641.
[http://dx.doi.org/10.1016/j.ympev.2012.07.018] [PMID: 22842291]
[15]
Chen, W.; Zhang, C.; Pan, T.; Liu, W.; Li, K.; Hu, C.; Chang, Q. The mitochondrial genome of the Kentish Plover Charadrius alexandrinus (Charadriiformes: Charadriidae) and phylogenetic analysis of Charadrii. Genes Genomics, 2018, 40(9), 955-963.
[http://dx.doi.org/10.1007/s13258-018-0703-3] [PMID: 30155708]
[16]
Mayr, G. The phylogeny of charadriiform birds (shorebirds and allies) - reassessing the conflict between morphology and molecules. Zool. J. Linn. Soc., 2011, 161(4), 916-934.
[http://dx.doi.org/10.1111/j.1096-3642.2010.00654.x]
[17]
Dos Remedios, N.; Lee, P.L.M.; Burke, T.; Székely, T.; Küpper, C. North or south? Phylogenetic and biogeographic origins of a globally distributed avian clade. Mol. Phylogenet. Evol., 2015, 89, 151-159.
[http://dx.doi.org/10.1016/j.ympev.2015.04.010] [PMID: 25916188]
[18]
Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; Sharma, S.; Soussov, V.; Sullivan, J.P.; Sun, L.; Turner, S.; Karsch-Mizrachi, I. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database (Oxford), 2020, 2020, baaa062.
[http://dx.doi.org/10.1093/database/baaa062] [PMID: 32761142]
[19]
Zheng, G. A checklist on the classification and distribution of the birds of China, 3rd ed; Science Press: Beijing, 2017.
[20]
Barth, J.M.I.; Matschiner, M.; Robertson, B.C. Phylogenetic position and subspecies divergence of the endangered New Zealand Dotterel (Charadrius obscurus). PLoS One, 2013, 8(10), e78068.
[http://dx.doi.org/10.1371/journal.pone.0078068] [PMID: 24205094]
[21]
Argüelles-Ticó, A. Sexual selection: Breeding systems and melanin-based plumage colouration in plovers Charadrius spp. PhD Thesis University of Bath.: Bath, UK, 2011.
[22]
Van de Kam, J.; Ens, B.; Piersma, T.; Zwarts, L. Shorebirds: An Illustrated Behavioural Ecology; KNNV Publishers: Utrecht, Netherlands, 2004.
[http://dx.doi.org/10.1163/9789004277991]
[23]
Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res., 1999, 27(8), 1767-1780.
[http://dx.doi.org/10.1093/nar/27.8.1767] [PMID: 10101183]
[24]
Ruokonen, M.; Kvist, L. Structure and evolution of the avian mitochondrial control region. Mol. Phylogenet. Evol., 2002, 23(3), 422-432.
[http://dx.doi.org/10.1016/S1055-7903(02)00021-0] [PMID: 12099796]
[25]
Oliver, L.A.; Prendini, E.; Kraus, F.; Raxworthy, C.J. Systematics and biogeography of the Hylarana frog (Anura: Ranidae) radiation across tropical Australasia, Southeast Asia, and Africa. Mol. Phylogenet. Evol., 2015, 90, 176-192.
[http://dx.doi.org/10.1016/j.ympev.2015.05.001] [PMID: 25987527]
[26]
Wolstenholme, D.R. Animal mitochondrial DNA: Structure and evolution. Int. Rev. Cytol., 1992, 141, 173-216.
[http://dx.doi.org/10.1016/S0074-7696(08)62066-5] [PMID: 1452431]
[27]
Morales, H.E.; Pavlova, A.; Amos, N.; Major, R.; Kilian, A.; Greening, C.; Sunnucks, P. Concordant divergence of mitogenomes and a mitonuclear gene cluster in bird lineages inhabiting different climates. Nat. Ecol. Evol., 2018, 2(8), 1258-1267.
[http://dx.doi.org/10.1038/s41559-018-0606-3] [PMID: 29988164]
[28]
Mackiewicz, P.; Urantówka, A.D.; Kroczak, A.; Mackiewicz, D. Resolving phylogenetic relationships within Passeriformes based on mitochondrial genes and inferring the evolution of their mitogenomes in terms of duplications. Genome Biol. Evol., 2019, 11(10), 2824-2849.
[http://dx.doi.org/10.1093/gbe/evz209] [PMID: 31580435]
[29]
Du, Z.; Hasegawa, H.; Cooley, J.R.; Simon, C.; Yoshimura, J.; Cai, W.; Sota, T.; Li, H. Mitochondrial genomics reveals shared phylogeographic patterns and demographic history among three periodical cicada species groups. Mol. Biol. Evol., 2019, 36(6), 1187-1200.
[http://dx.doi.org/10.1093/molbev/msz051] [PMID: 30850829]
[30]
Pan, T.; Sun, Z.; Lai, X.; Orozcoterwengel, P.; Yan, P.; Wu, G.; Wang, H.; Zhu, W.; Wu, X.; Zhang, B. Hidden species diversity in Pachyhynobius: A multiple approaches species delimitation with mitogenomes. Mol. Phylogenet. Evol., 2019, 137, 138-145.
[http://dx.doi.org/10.1016/j.ympev.2019.05.005] [PMID: 31085325]
[31]
Arif, I.A.; Khan, H.A. Molecular markers for biodiversity analysis of wildlife animals: A brief review. Anim. Biodivers. Conserv., 2009, 32(1), 9-17.
[http://dx.doi.org/10.32800/abc.2009.32.0009]
[32]
Ödeen, A.; Håstad, O.; Alström, P. Evolution of ultraviolet vision in shorebirds (Charadriiformes). Biol. Lett., 2010, 6(3), 370-374.
[http://dx.doi.org/10.1098/rsbl.2009.0877] [PMID: 20015861]
[33]
Ruan, L.; Wang, Y.; Hu, J.; Ouyang, Y. Polyphyletic origin of the genus Amaurornis inferred from molecular phylogenetic analysis of rails. Biochem. Genet., 2012, 50(11-12), 959-966.
[http://dx.doi.org/10.1007/s10528-012-9535-z] [PMID: 22983685]
[34]
Gibson, R.; Baker, A. Multiple gene sequences resolve phylogenetic relationships in the shorebird suborder Scolopaci (Aves: Charadriiformes). Mol. Phylogenet. Evol., 2012, 64(1), 66-72.
[http://dx.doi.org/10.1016/j.ympev.2012.03.008] [PMID: 22491071]
[35]
Ding, J.; Qian, R.; Tai, D.; Yao, W.; Hu, C.; Chang, Q. The complete mitochondrial genome of grey plover Pluvialis squatarola (Charadriiformes, charadriidae). Mitochondrial DNA B Resour., 2020, 5(3), 2738-2739.
[http://dx.doi.org/10.1080/23802359.2020.1787892] [PMID: 33457928]
[36]
Xie, W.; Hu, C.; Yu, T.; Yang, R.; Chang, Q. The complete mitochondrial genome of Vanellus cinereus (Charadriiformes: Charadriidae). Mitochondrial DNA A. DNA Mapp. Seq. Anal., 2016, 27(3), 1726-1727.
[PMID: 25242177]
[37]
Hu, C.; Yu, T.; Xie, W.; Zhu, Y.; Chang, Q. The complete mitochondrial genome of Vanellus vanellus (Charadriiformes: Charadriidae). Mitochondrial DNA A. DNA Mapp. Seq. Anal., 2016, 27(3), 1936-1937.
[PMID: 25329259]
[38]
Ding, J.; Liu, W.; Zhang, Y.; Chang, Q.; Hu, C. The complete mitochondrial genome of Pacific golden plover Pluvialis fulva (Charadriiformes, charadriidae). Mitochondrial DNA B Resour., 2016, 1(1), 701-702.
[http://dx.doi.org/10.1080/23802359.2016.1225524] [PMID: 33490417]
[39]
Lee, M.Y.; Jeon, H.S.; Lee, S.H.; An, J. The mitochondrial genome of the long-billed plover, Charadrius placidus (Charadriiformes: Charadriidae). Mitochondrial DNA B Resour., 2017, 2(1), 122-123.
[http://dx.doi.org/10.1080/23802359.2017.1292473] [PMID: 33473738]
[40]
Lee, D.Y.; Roh, S.J.; Kim, S.H.; Jung, T.W.; Lee, D.J.; Kim, H.K.; Jung, J.H.; Cho, S.Y.; Kim, Y.J.; Kook, J.W.; Sung, H.C.; Lee, J.H.; Kim, W.Y. Complete mitochondrial genome of little ringed plover Charadrius dubius (Charadriiformes, Charadriidae). Mitochondrial DNA B Resour., 2022, 7(11), 1896-1898.
[http://dx.doi.org/10.1080/23802359.2022.2134746] [PMID: 36353056]
[41]
Zhang, S.; Zheng, X.; Zhou, C.; Yang, K.; Wu, Y. The complete mitochondrial genome of Lesser Sand-Plover Charadrius mongolus atrifrons and its phylogenetic position. Mitochondrial DNA B Resour., 2021, 6(10), 2880-2881.
[http://dx.doi.org/10.1080/23802359.2021.1972482] [PMID: 34532576]
[42]
Sambrook, J.; Russell, D.W. Molecular cloning: A laboratory manual; Cold Spring Harbor Laboratory Press: Long Island, New York, 1989, Vol. 3, .
[43]
Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 2018, 34(17), i884-i890.
[http://dx.doi.org/10.1093/bioinformatics/bty560] [PMID: 30423086]
[44]
Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; Thierer, T.; Ashton, B.; Meintjes, P.; Drummond, A. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 2012, 28(12), 1647-1649.
[http://dx.doi.org/10.1093/bioinformatics/bts199] [PMID: 22543367]
[45]
Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol., 2013, 69(2), 313-319.
[http://dx.doi.org/10.1016/j.ympev.2012.08.023] [PMID: 22982435]
[46]
Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res., 1997, 25(5), 955-964.
[http://dx.doi.org/10.1093/nar/25.5.955] [PMID: 9023104]
[47]
Laslett, D.; Canbäck, B. ARWEN: A program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics, 2008, 24(2), 172-175.
[http://dx.doi.org/10.1093/bioinformatics/btm573] [PMID: 18033792]
[48]
Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res., 2019, 47(W1), W59-W64.
[http://dx.doi.org/10.1093/nar/gkz238] [PMID: 30949694]
[49]
Lobry, J.R. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol., 1996, 13(5), 660-665.
[http://dx.doi.org/10.1093/oxfordjournals.molbev.a025626] [PMID: 8676740]
[50]
Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol., 1995, 41(3), 353-358.
[http://dx.doi.org/10.1007/BF01215182] [PMID: 7563121]
[51]
Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 2018, 35(6), 1547-1549.
[http://dx.doi.org/10.1093/molbev/msy096] [PMID: 29722887]
[52]
Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 2009, 25(11), 1451-1452.
[http://dx.doi.org/10.1093/bioinformatics/btp187] [PMID: 19346325]
[53]
Kan, X.Z.; Li, X.F.; Zhang, L.Q.; Chen, L.; Qian, C.J.; Zhang, X.W.; Wang, L. Characterization of the complete mitochondrial genome of the Rock pigeon, Columba livia (Columbiformes: Columbidae). Genet. Mol. Res., 2010, 9(2), 1234-1249.
[http://dx.doi.org/10.4238/vol9-2gmr853] [PMID: 20603809]
[54]
Miao, Y-W.; Peng, M-S.; Wu, G-S.; Ouyang, Y-N.; Yang, Z-Y.; Yu, N.; Liang, J-P.; Pianchou, G.; Beja-Pereira, A.; Mitra, B.; Palanichamy, M.G.; Baig, M.; Chaudhuri, T.K.; Shen, Y-Y.; Kong, Q-P.; Murphy, R.W.; Yao, Y-G.; Zhang, Y-P. Chicken domestication: An updated perspective based on mitochondrial genomes. Heredity, 2013, 110(3), 277-282.
[http://dx.doi.org/10.1038/hdy.2012.83] [PMID: 23211792]
[55]
Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol., 2017, 34(3), 772-773.
[PMID: 28013191]
[56]
Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003, 19(12), 1572-1574.
[http://dx.doi.org/10.1093/bioinformatics/btg180] [PMID: 12912839]
[57]
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 2014, 30(9), 1312-1313.
[http://dx.doi.org/10.1093/bioinformatics/btu033] [PMID: 24451623]
[58]
Rambaut, A. FigTree., 2018. Available From: http://tree.bio.ed.ac.uk/software/figtree/
[59]
Yoon, K.B.; Cho, C.U.; Park, Y.C. The mitochondrial genome of the Saunders’s gull Chroicocephalus saundersi (Charadriiformes: Laridae) and a higher phylogeny of shorebirds (Charadriiformes). Gene, 2015, 572(2), 227-236.
[http://dx.doi.org/10.1016/j.gene.2015.07.022] [PMID: 26165451]
[60]
Li, X.; Huang, Y.; Lei, F. Comparative mitochondrial genomics and phylogenetic relationships of the Crossoptilon species (Phasianidae, Galliformes). BMC Genomics, 2015, 16(1), 42.
[http://dx.doi.org/10.1186/s12864-015-1234-9] [PMID: 25652939]
[61]
Li, X.; Lin, L.; Cui, A.; Bai, J.; Wang, X.; Xin, C.; Zhang, Z.; Yang, C.; Gao, R.; Huang, Y.; Lei, F. Taxonomic status and phylogenetic relationship of tits based on mitogenomes and nuclear segments. Mol. Phylogenet. Evol., 2016, 104, 14-20.
[http://dx.doi.org/10.1016/j.ympev.2016.07.022] [PMID: 27444707]
[62]
Hassanin, A. Phylogeny of Arthropoda inferred from mitochondrial sequences: Strategies for limiting the misleading effects of multiple changes in pattern and rates of substitution. Mol. Phylogenet. Evol., 2006, 38(1), 100-116.
[http://dx.doi.org/10.1016/j.ympev.2005.09.012] [PMID: 16290034]
[63]
Hassanin, A.; Léger, N.; Deutsch, J. Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences. Syst. Biol., 2005, 54(2), 277-298.
[http://dx.doi.org/10.1080/10635150590947843] [PMID: 16021696]
[64]
Lavrov, D.V.; Boore, J.L.; Brown, W.M. Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: Duplication and nonrandom loss. Mol. Biol. Evol., 2002, 19(2), 163-169.
[http://dx.doi.org/10.1093/oxfordjournals.molbev.a004068] [PMID: 11801744]
[65]
Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.L.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; Schreier, P.H.; Smith, A.J.H.; Staden, R.; Young, I.G. Sequence and organization of the human mitochondrial genome. Nature, 1981, 290(5806), 457-465.
[http://dx.doi.org/10.1038/290457a0] [PMID: 7219534]
[66]
Ojala, D.; Montoya, J.; Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature, 1981, 290(5806), 470-474.
[http://dx.doi.org/10.1038/290470a0] [PMID: 7219536]
[67]
Yang, C.; Du, X.; Liu, Y.; Yuan, H.; Wang, Q.; Hou, X.; Gong, H.; Wang, Y.; Huang, Y.; Li, X.; Ye, H. Comparative mitogenomics of the genus Motacilla (Aves, Passeriformes) and its phylogenetic implications. ZooKeys, 2022, 1109, 49-65.
[http://dx.doi.org/10.3897/zookeys.1109.81125] [PMID: 36762344]
[68]
Pacheco, M.A.; Battistuzzi, F.U.; Lentino, M.; Aguilar, R.F.; Kumar, S.; Escalante, A.A. Evolution of modern birds revealed by mitogenomics: Timing the radiation and origin of major orders. Mol. Biol. Evol., 2011, 28(6), 1927-1942.
[http://dx.doi.org/10.1093/molbev/msr014] [PMID: 21242529]
[69]
Quach, T.; Brooks, D.M.; Miranda, H.C. Jr Complete mitochondrial genome of Palawan peacock-pheasant Polyplectron napoleonis (Galliformes, Phasianidae). Mitochondrial DNA, 2016, 27(2), 1066-1067.
[http://dx.doi.org/10.3109/19401736.2014.928870] [PMID: 24971623]
[70]
Li, B.; Zhou, L.; Liu, G.; Gu, C. Complete mitochondrial genome of Naumann’s thrush Turdus naumanni (Passeriformes: Turdidae). Mitochondrial DNA, 2016, 27(2), 1117-1118.
[http://dx.doi.org/10.3109/19401736.2014.933327] [PMID: 24983147]
[71]
Ericson, P.G.P.; Envall, I.; Irestedt, M.; Norman, J.A. Inter-familial relationships of the shorebirds (Aves: Charadriiformes) based on nuclear DNA sequence data. BMC Evol. Biol., 2003, 3(1), 16.
[http://dx.doi.org/10.1186/1471-2148-3-16] [PMID: 12875664]
[72]
Zhai, H.; Meng, D.; Si, Y.; Li, Z.; Cui, Z.; Yu, H.; Teng, L.; Liu, Z. Complete mitochondrial genome of the gray-headed lapwing (Vanellus cinereus) from Ningxia Hui Autonomous Region, China. Mitochondrial DNA B Resour., 2021, 6(2), 701-702.
[http://dx.doi.org/10.1080/23802359.2021.1882911] [PMID: 33763555]
[73]
Burleigh, J.G.; Kimball, R.T.; Braun, E.L. Building the avian tree of life using a large-scale, sparse supermatrix. Mol. Phylogenet. Evol., 2015, 84, 53-63.
[http://dx.doi.org/10.1016/j.ympev.2014.12.003] [PMID: 25550149]