N-acetylation of Aromatic Amines by One-pot Route

Page: [362 - 368] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

In this study, a simple one-pot synthesis of acetamides from aromatic amines and acetonitrile in the presence of H2O and K2S2O8 is presented. The reaction proceeds in a mixed solvent (CH3CN: DMSO, 3:1) without using metals or toxic reagents. Various N-acetanilides are obtained with 53-91% yields. The method is selective for aromatic amines, with aliphatic amines remaining intact. This represents a new, efficient, and economical method for the synthesis of a range of acetamides.

Graphical Abstract

[1]
Contente, M.L.; Farris, S.; Tamborini, L.; Molinari, F.; Paradisi, F. Green Chem., 2019, 21(12), 3263-3266.
[http://dx.doi.org/10.1039/C9GC01374A]
[2]
Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. Chem. Soc. Rev., 2014, 43(8), 2714-2742.
[http://dx.doi.org/10.1039/C3CS60345H] [PMID: 24430887]
[3]
Sanz Sharley, D.D.; Williams, J.M. J. Chem. Commun., 2017, 53(12), 2020-2023.
[http://dx.doi.org/10.1039/C6CC09023K] [PMID: 28124033]
[4]
de Figueiredo, R.M.; Suppo, J.S.; Campagne, J.M. Chem. Rev., 2016, 116(19), 12029-12122.
[http://dx.doi.org/10.1021/acs.chemrev.6b00237] [PMID: 27673596]
[5]
Saba, S.; Ciaccio, J.A. J. Chem. Educ., 2016, 93(5), 945-948.
[http://dx.doi.org/10.1021/acs.jchemed.5b00782]
[6]
Manske, C.; Schmiedtchen, M.; Gellhaar, S.; Kiesel, M.; Becker, J. ACS Sustain. Chem.& Eng., 2022, 10(16), 5307-5314.
[http://dx.doi.org/10.1021/acssuschemeng.2c00642]
[7]
Osawa, K.; Kobayashi, S.; Tanaka, M. Macromolecules, 2016, 49(21), 8154-8161.
[http://dx.doi.org/10.1021/acs.macromol.6b01829]
[8]
Ma, D.; Niu, S.; Zhao, J.; Jiang, X.; Jiang, Y.; Zhang, X.; Sun, T. Chin. J. Chem., 2017, 35(11), 1661-1664.
[http://dx.doi.org/10.1002/cjoc.201700477]
[9]
Hao, M.; Lv, M.; Zhou, L.; Li, H.; Xu, J.; Xu, H. J. Agric. Food Chem., 2022, 70(30), 9337-9345.
[http://dx.doi.org/10.1021/acs.jafc.2c02534] [PMID: 35857419]
[10]
Bayzidi, M.; Zeynizadeh, B. RSC Advances, 2022, 12(24), 15020-15037.
[http://dx.doi.org/10.1039/D2RA02293A] [PMID: 35702429]
[11]
Rasheed, S.; Rao, D.N.; Reddy, A.S.; Shankar, R.; Das, P. RSC Advances, 2015, 5(14), 10567-10574.
[http://dx.doi.org/10.1039/C4RA16571C]
[12]
Chikkulapalli, A.; Aavula, S.K.; Mona Np, R.C. K, C.H.; V, K.; Sulur, G.M.; Sumathi, S. Tetrahedron Lett., 2015, 56(24), 3799-3803.
[http://dx.doi.org/10.1016/j.tetlet.2015.04.077]
[13]
La Manna, P.; Talotta, C.; De Rosa, M.; Soriente, A.; Gaeta, C.; Neri, P. Org. Lett., 2020, 22(7), 2590-2594.
[http://dx.doi.org/10.1021/acs.orglett.0c00529] [PMID: 32176513]
[14]
You, T.; Wang, Z.; Chen, J.; Xia, Y. J. Org. Chem., 2017, 82(3), 1340-1346.
[http://dx.doi.org/10.1021/acs.joc.6b02222] [PMID: 28006105]
[15]
Zhu, Y.P.; Sergeyev, S.; Franck, P.; Orru, R.V.A.; Maes, B.U.W. Org. Lett., 2016, 18(18), 4602-4605.
[http://dx.doi.org/10.1021/acs.orglett.6b02247] [PMID: 27570902]
[16]
Peng, X. liu, Y.; Shen, Q.; Chen, D.; Chen, X.; Fu, Y.; Wang, J.; Zhang, X.; Jiang, H.; Li. J. J. Org. Chem., 2022, 87(18), 11958-11967.
[http://dx.doi.org/10.1021/acs.joc.2c00813] [PMID: 36044674]
[17]
Gao, Z.Z.; Xu, Y.Y.; Wang, Z.K.; Wang, H.; Zhang, D.W.; Li, Z.T. ACS Appl. Polym. Mater., 2020, 2(11), 4885-4892.
[http://dx.doi.org/10.1021/acsapm.0c00800]
[18]
Ta, L.; Sundén, H. Chem. Commun., 2018, 54(5), 531-534.
[http://dx.doi.org/10.1039/C7CC08672E] [PMID: 29266146]
[19]
Chen, J.; Jia, J.; Guo, Z.; Zhang, J.; Xie, M. Tetrahedron Lett., 2019, 60(21), 1426-1429.
[http://dx.doi.org/10.1016/j.tetlet.2019.04.040]
[20]
Theerthagiri, P.; Lalitha, A.; Arunachalam, P.N. Tetrahedron Lett., 2010, 51(21), 2813-2819.
[http://dx.doi.org/10.1016/j.tetlet.2010.03.057]
[21]
Piazzolla, F.; Temperini, A. Tetrahedron Lett., 2018, 59(27), 2615-2621.
[http://dx.doi.org/10.1016/j.tetlet.2018.05.065]
[22]
Montalbetti, C.A.G.N.; Falque, V. Tetrahedron, 2005, 61(46), 10827-10852.
[http://dx.doi.org/10.1016/j.tet.2005.08.031]
[23]
Garzón-Posse, F.; Quevedo-Acosta, Y.; Gamba-Sánchez, D. J. Chem. Educ., 2022, 99(6), 2385-2391.
[http://dx.doi.org/10.1021/acs.jchemed.2c00080]
[24]
Saikia, U.P.; Hussain, F.L.; Suri, M.; Pahari, P. Tetrahedron Lett., 2016, 57(10), 1158-1160.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.108]
[25]
Li, C.; Wang, M.; Lu, X.; Zhang, L.; Jiang, J.; Zhang, L. ACS Sustain. Chem. & Eng., 2020, 8(11), 4353-4361.
[http://dx.doi.org/10.1021/acssuschemeng.9b06591]
[26]
Orsy, G.; Fülöp, F.; Mándity, I.M. Molecules, 2020, 25(8), 1985.
[http://dx.doi.org/10.3390/molecules25081985] [PMID: 32340371]
[27]
Zeng, Y.F.; Li, Y.N.; Zhang, N.N.; Kang, H.; Duan, P.; Xiao, F.; Guo, Y.; Wen, X. Synlett, 2019, 30(19), 2169-2172.
[http://dx.doi.org/10.1055/s-0039-1690237]
[28]
Brahmayya, M.; Suen, S.Y.; Dai, S.A. J. Taiwan Inst. Chem. Eng., 2018, 83, 174-183.
[http://dx.doi.org/10.1016/j.jtice.2017.12.003]
[29]
Lian, P.; Li, R.; Wan, X.; Xiang, Z.; Liu, H.; Cao, Z.; Wan, X. Org. Chem. Front., 2022, 9(2), 311-319.
[http://dx.doi.org/10.1039/D1QO01613J]
[30]
Garad, D.N.; Tanpure, S.D.; Mhaske, S.B. Beilstein J. Org. Chem., 2015, 11, 1008-1016.
[http://dx.doi.org/10.3762/bjoc.11.113] [PMID: 26199655]