Current Materials Science

Author(s): Seema Lal and Shilpi Bhatnagar*

DOI: 10.2174/0126661454248025230919055029

DownloadDownload PDF Flyer Cite As
Chitosan Biopolymer As Sustainable Material For Chromium Removal From Waste Water Bodies

Page: [149 - 167] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

Rapid industrialization by humans is a dominant source of waste materials in water bodies and has created serious environmental problems, which has made the survival of life forms on land as well as in water bodies a challenge. Water gets contaminated by human waste, domestic sewage, wastewater discharges and effluents from industrial sites such as factories, refineries, and mines, accidental spills of chemicals, agricultural run-off, toxic metals and radioactive materials. The toxic nonbiodegradable chemicals in industrial waste are treated by various methods such as adsorption, coagulation, ozonation, membrane filtration, ion exchange, chemical oxidation and biological treatments. Biopolymers such as cellulose, chitosan, alginate and keratin proteins are the most sustainable, renewable and biocompatible polymers commonly used for wastewater purification. Chromium VI is one of the serious aquatic pollutants released as effluent from various industries and is considered a potentially toxic metal ion for humans and aquatic life. In the past decades, various conventional methods with their own merits and demerits have been explored for Cr decontamination from wastewater bodies. The present study highlights the application of Chitosan biopolymer as an effective and sustainable material for efficiently removing Cr VI metal ions from wastewater bodies.

Keywords: Waste water tratment, adsorption, chitosan, heavy metals, chromium, sustainable materials.

Graphical Abstract

[1]
Mishra, S.; Bhargava, R.N.; Chowdhary, P. Heavy metal contamination: An alarming threat to environment and human health.Environmental Biotechnology:For Sustainable future; Springer Nature Singapore Pte Ltd: Singapore, 2018, p. 1.
[2]
Pandey, G.; Madhuri, S. Heavy metals causing toxicity in animals and fishes. Res J Animal Veter Fis Sci, 2014, 2(2), 17-23.
[3]
Goel, P.K. Water Pollution CausesEffects and Control; New Age International, 2006.
[4]
Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol., 2014, 7(2), 60-72.
[http://dx.doi.org/10.2478/intox-2014-0009] [PMID: 26109881]
[5]
McNeill, L.S.; McLean, J.E.; Parks, J.L.; Edwards, M.A. Hexavalent chromium review, part 2: Chemistry, occurrence, and treatment. J. Am. Water Works Assoc., 2012, 104(7), E395-E405.
[http://dx.doi.org/10.5942/jawwa.2012.104.0092]
[6]
Lunk, H.J. Discovery, properties and applications of chromium and its compounds. ChemTexts., 2015, 1(1), 6.
[http://dx.doi.org/10.1007/s40828-015-0007-z]
[7]
Lewicki, S.; Zdanowski, R.; Krzyżowska, M. The role of Chromium III in the organism and its possible use in diabetes and obesity treatment. Ann. Agric. Environ. Med., 2014, 21(2), 331-335.
[http://dx.doi.org/10.5604/1232-1966.1108599] [PMID: 24959784]
[8]
McIver, D.J.; Grizales, A.M.; Brownstein, J.S.; Goldfine, A.B. Risk of type 2 diabetes is lower in US adults taking chromium-containing supplements. J. Nutr., 2015, 145(12), 2675-2682.
[http://dx.doi.org/10.3945/jn.115.214569] [PMID: 26446484]
[9]
Junaid, M.; Hashmi, M.Z.; Malik, R.N.; Pei, D.S. Toxicity and oxidative stress induced by chromium in workers exposed from different occupational settings around the globe: A review. Environ. Sci. Pollut. Res. Int., 2016, 23(20), 20151-20167.
[http://dx.doi.org/10.1007/s11356-016-7463-x] [PMID: 27562808]
[10]
Seidler, A.; Jähnichen, S.; Hegewald, J. Systematic review and quantification of respiratory cancer risk for occupational exposure to hexavalent chromium. Int. Arch. Occup. Environ. Health, 2013, 86(8), 943-955.
[http://dx.doi.org/10.1007/s00420-012-0822-0] [PMID: 23079792]
[11]
Shahid, M.; Shamshad, S.; Rafiq, M. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 2017, 178, 513-533.
[http://dx.doi.org/10.1016/j.chemosphere.2017.03.074] [PMID: 28347915]
[12]
DesMarias, T.L.; Costa, M. Mechanisms of chromium-induced toxicity. Curr. Opin. Toxicol., 2019, 14, 1-7.
[http://dx.doi.org/10.1016/j.cotox.2019.05.003] [PMID: 31511838]
[13]
Abbas, S.H.; Ismail, I.M.; Mostafa, T.M.; Sulaymon, A.H. Biosorption of heavy metals: A review. J Chem Sci Tech, 2014, 3, 74-102.
[14]
Shadreck, M.; Mugadza, T. Chromium, an essential nutrient and pollutant: A review. Afr J Pure and Applied Chem, 2013, 7(9), 310-317.
[15]
Pradhan, D.; Sukla, L.B.; Sawyer, M.; Rahman, P.K.S.M. Recent bioreduction of hexavalent chromium in wastewater treatment: A review. J. Ind. Eng. Chem., 2017, 55, 1-20.
[http://dx.doi.org/10.1016/j.jiec.2017.06.040]
[16]
Li, L.L.; Feng, X.Q.; Han, R.P.; Zang, S.Q.; Yang, G. Chromium (VI) removal via anion exchange on a silver triazolate MOF. J. Hazard. Mater., 2017, 321, 622-628.
[http://dx.doi.org/10.1016/j.jhazmat.2016.09.029] [PMID: 27694026]
[17]
Lin, L.; Xu, X.; Papelis, C.; Cath, T.Y. Sorption of metals and metalloids from reverse osmosis concentrate on drinking water treatment solids. Separ. Purif. Tech., 2014, 134, 37-45.
[18]
Ma, Y.; Liu, W-J.; Zhang, N.; Li, Y.S.; Jiang, H.; Sheng, G.P. Polyethylenimine modified biochar adsorbent for hexavalent Chromium removal from aqeous solution. Bioresour. Technol., 2014, 169, 403-408.
[http://dx.doi.org/10.1016/j.biortech.2014.07.014] [PMID: 25069094]
[19]
Basnet, P.; Gyawali, D.; Nath Ghimire, K.; Paudyal, H. An assessment of the lignocellulose-based biosorbents in removing Cr(VI) from contaminated water: A critical review. Results Chem, 2022, 4, 100406.
[http://dx.doi.org/10.1016/j.rechem.2022.100406]
[20]
Mohamed, H.S.; Soliman, N.K.; Abdelrheem, D.A.; Ramadan, A.A.; Elghandour, A.H. Adsorption of Cd2+ and Cr3+ ions from aqueous solutions by using residue of Padina gymnospora waste as promising low-cost adsorbent. Heliyon, 2019, 5(3), e01287.
[21]
Asanu, M.; Beyene, D.; Befekadu, A. Removal of hexavalent chromium from aqueous solutions using natural zeolite coated with magnetic nanoparticles: Optimization, kinetics and equibrium studies. Adsorpt. Sci. Technol., 2022, 2022, 8625489.
[http://dx.doi.org/10.1155/2022/8625489]
[22]
Mahvi, A.; Balarak, D.; Bazrafshan, E. Remarkable reusability of magnetic Fe3O4-graphene oxide composite: a highly effective adsorbent for Cr(VI) ions. Int. J. Environ. Anal. Chem., 2021, 103, 1-21.
[http://dx.doi.org/10.1080/03067319.2021.1910250]
[23]
Rezaei, H. Biosorption of chromium by using spirulina sp. Arab. J. Chem., 2016, 9(6), 846-853.
[http://dx.doi.org/10.1016/j.arabjc.2013.11.008]
[24]
Castañeda-Figueredo, J.S.; Torralba-Dotor, A.I.; Pérez-Rodríguez, C.C.; Moreno-Bedoya, A.M.; Mosquera-Vivas, C.S. Removal of lead and chromium from solution by organic peels: Effect of particle size and bio-adsorbent. Heliyon, 2022, 8(8), e10275.
[http://dx.doi.org/10.1016/j.heliyon.2022.e10275] [PMID: 36051267]
[25]
Ayele, A.; Godeto, Y.G. Bioremediation of chromium by microorganisms and its mechanisms related to functional groups. J. Chem., 2021, 2021, 1-21.
[http://dx.doi.org/10.1155/2021/7694157]
[26]
Kafilzadeh, F. Isolation and identification of chromium (VI)-resistant bacteria from Soltan Abad river sediments (Shiraz-Iran). Jundishapur J Health Sci, 2016, 8(1), e33576.
[27]
Malaviya, P.; Singh, A. Bioremediation of chromium solutions and chromium containing wastewaters. Crit. Rev. Microbiol., 2016, 42(4), 607-633.
[http://dx.doi.org/10.3109/1040841X.2014.974501] [PMID: 25358056]
[28]
Chhikara, S.; Hooda, A.; Rana, L.; Dhankhar, R. Chromium (VI) biosorption by immobilized Aspergillus niger in continuous flow system with special reference to FTIR analysis. J. Environ. Biol., 2010, 31(5), 561-566.
[PMID: 21387903]
[29]
Pakade, V.E.; Tavengwa, N.T.; Madikizela, L.M. Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Advances, 2019, 9(45), 26142-26164.
[http://dx.doi.org/10.1039/C9RA05188K] [PMID: 35531021]
[30]
Sarode, S.; Upadhyay, P.; Khosa, M.A. Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan. Int. J. Biol. Macromol., 2019, 121, 1086-1100.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.089] [PMID: 30342936]
[31]
Zhang, R.; Tian, Y. Characteristics of natural biopolymers and their derivative as sorbents for chromium adsorption: A review. J Lea Sc Eng, 2020, 2(1), 24.
[http://dx.doi.org/10.1186/s42825-020-00038-9]
[32]
Zia, Q. A review on chitosan for removal of heavy metal ions. J Fiber Bioeng Inform, 2019, 12(3), 103-128.
[33]
Gunawardana, D.; Gunawardena, S. Evaluating the effectiveness of chitosan for removal of hexavalent chromium from wastewater best. Int J Manag Inform TechEng, 2018, 6(9), 1-10.
[34]
Gopal Reddi, MR; Gomathi, T; Saranya, M; Sudha, PN Adsorption and kinetic studies on the removal of chromium and copper onto Chitosan-g-maliec anhydride-g-ethylene dimethacrylate. Int J Biol Macromol, 2017, 104(Pt B), 1578-1585.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.142] [PMID: 28174087]
[35]
Bhatt, R; Sreedhar, B; Padmaja, P Chitosan supramolecularly cross linked with trimesic acid – Facile synthesis, characterization and evaluation of adsorption potential for chromium(VI). Int J Biol Macromol, 2017, 104(Pt A), 1254-66.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.067] [PMID: 28655661]
[36]
Hena, S. Removal of chromium hexavalent ion from aqueous solutions using biopolymer chitosan coated with poly 3-methyl thiophene polymer. J. Hazard. Mater., 2010, 181(1-3), 474-479.
[http://dx.doi.org/10.1016/j.jhazmat.2010.05.037] [PMID: 20627405]
[37]
Ramasubramaniam, S.; Govindarajan, C.; Gomathi, T.; Sudha, P.N. Removal of Chromium (VI) from aqueous solution using chitosan: Starch blend. Scholars Research Library Der Pharm Lett, 2012, 4(1), 240-248.
[38]
Yang, R.; Li, H.; Huang, M.; Yang, H.; Li, A. A review on chitosan-based flocculants and their applications in water treatment. Water Res., 2016, 95, 59-89.
[http://dx.doi.org/10.1016/j.watres.2016.02.068] [PMID: 26986497]
[39]
Li, K.; Li, P.; Cai, J.; Xiao, S.; Yang, H.; Li, A. Efficient adsorption of both methyl orange and chromium from their aqueous mixtures using a quaternary ammonium salt modified chitosan magnetic composite adsorbent. Chemosphere, 2016, 154, 310-318.
[http://dx.doi.org/10.1016/j.chemosphere.2016.03.100] [PMID: 27060639]
[40]
Tao, X.; Li, K.; Yan, H.; Yang, H.; Li, A. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres. Environ. Pollut., 2016, 209, 21-29.
[http://dx.doi.org/10.1016/j.envpol.2015.11.020] [PMID: 26618263]
[41]
Rimu, S.H.; Rahman, M.M. Insight of chitosan-based nanocomposite for removal of hexavalent chromium from wastewater: A review. Int. J. Environ. Anal. Chem., 2022, 102(18), 6801-6818.
[http://dx.doi.org/10.1080/03067319.2020.1817426]
[42]
Huang, R.; Yang, B.; Liu, Q. Removal of chromium(VI) Ions from aqueous solutions with protonated crosslinked chitosan. J. Appl. Polym. Sci., 2013, 129(2), 908-915.
[http://dx.doi.org/10.1002/app.38685]
[43]
Sessarego, S.; Rodrigues, S.C.G.; Xiao, Y.; Lu, Q.; Hill, J.M. Phosphonium-enhanced chitosan for Cr(VI) adsorption in wastewater treatment. Carbohydr. Polym., 2019, 211, 249-256.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.003] [PMID: 30824086]
[44]
Rimu, S.H.; Rahman, M.M. Insight of chitosan-based nanocomposite for removal of hexavalent chromium from wastewater: A review. Int. J. Environ. Anal. Chem., 2022, 102(18), 6801-6818.
[http://dx.doi.org/10.1080/03067319.2020.1817426]
[45]
Dima, J.B.; Sequeiros, C.; Zaritzky, N.E. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes. Chemosphere, 2015, 141, 100-111.
[http://dx.doi.org/10.1016/j.chemosphere.2015.06.030] [PMID: 26151484]
[46]
Gokila, S; Gomathi, T; Sudha, PN; Anil, S Removal of the heavy metal ion chromiuim(VI) using Chitosan and Alginate nanocomposites. Int J Biol Macromol, 2017, 104(Pt B) ), 1459-68.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.117] [PMID: 28551438]
[47]
Murtaza, G.; Ahmed, Z.; Dai, D.Q. A review of mechanism and adsorption capacities of biochar-based engineered composites for removing aquatic pollutants from contaminated water. Front. Environ. Sci., 2022, 10, 1035865.
[http://dx.doi.org/10.3389/fenvs.2022.1035865]
[48]
Sun, P.; Wang, Z.; An, S. Biochar-supported nZVI for the removal of Cr(VI) from soil and water: Advances in experimental research and engineering applications. J. Environ. Manage., 2022, 316, 115211.
[http://dx.doi.org/10.1016/j.jenvman.2022.115211] [PMID: 35561491]
[49]
Chen, Y.; He, P.; Zhang, K. Enhanced Cr(VI) reduction using highly conductive material synthesized by modified chitosan coated with natural iron-manganese minerals. Appl. Surf. Sci., 2023, 611, 155635.
[50]
Luo, L.; Cheng, S.; Yue, L.; You, Z.; Cai, J. N-doped biochar from chitosan gel-like solution: Effect of hydrothermal temperature and superior aqueous Cr (VI) removal performance. Colloids Surf. A Physicochem. Eng. Asp., 2022, 641, 128426.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128426]
[51]
Yang, Y.; Zhang, Y.; Wang, G. Adsorption and reduction of Cr(VI) by a novel nanoscale FeS/chitosan/biochar composite from aqueous solution. J. Environ. Chem. Eng., 2021, 9(4), 105407.
[http://dx.doi.org/10.1016/j.jece.2021.105407]
[52]
Zhang, H.; Xiao, R.; Li, R.; Ali, A.; Chen, A.; Zhang, Z. Enhanced aqueous Cr(VI) removal using chitosan-modified magnetic biochars derived from bamboo residues. Chemosphere, 2020, 261, 127694.
[http://dx.doi.org/10.1016/j.chemosphere.2020.127694] [PMID: 32731018]
[53]
Qin, L.; He, L.; Yang, W.; Lin, A. Preparation of a novel iron-based biochar composite for removal of hexavalent chromium in water. Environ. Sci. Pollut. Res. Int., 2020, 27(9), 9214-9226.
[http://dx.doi.org/10.1007/s11356-019-06954-6] [PMID: 31916154]
[54]
Zhou, D.; Xie, G.; Hu, X. Coupling of Kenaf biochar and magnetic BiFeO3 onto cross-linked chitosan for enhancing separation performance and Cr(Vi) ions removal efficiency. Int. J. Environ. Res. Public Health, 2020, 17(3), 788.
[http://dx.doi.org/10.3390/ijerph17030788] [PMID: 32012702]
[55]
Chen, X.L.; Li, F.; Xie, X.J.; Li, Z.; Chen, L. Nanoscale zerovalent iron and chitosan functionalized eichhornia crassipes biochar for efficient hexavalent chromium removal. Int. J. Environ. Res. Public Health, 2019, 16(17), 3046.
[http://dx.doi.org/10.3390/ijerph16173046] [PMID: 31443402]
[56]
Liu, X.; Hu, Q.; Fang, Z.; Zhang, X.; Zhang, B. Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir, 2009, 25(1), 3-8.
[http://dx.doi.org/10.1021/la802754t] [PMID: 19032060]
[57]
Shaumbwa, V.R.; Liu, D.; Archer, B.; Li, J.; Su, F. Preparation and application of magnetic chitosan in environmental remediation and other fields: A review. J. Appl. Polym. Sci., 2021, 138(42), 51241.
[http://dx.doi.org/10.1002/app.51241]
[58]
Zahra, M.H.; Hamza, M.F.; El-Habibi, G. Synthesis of a novel adsorbent based on chitosan magnetite nanoparticles for the high sorption of Cr (VI) Ions: A study of photocatalysis and recovery on tannery effluents. Catalysts, 2022, 12(7), 678.
[http://dx.doi.org/10.3390/catal12070678]
[59]
Korde, S.; Tandekar, S.; Jeyaseelan, C.; Saravanan, D.; Jugade, R. Mesoporous magnetic chitosan-zirconia-iron oxide nanocomposite for adsorptive removal of Cr(VI) ions. Mater. Lett., 2022, 311, 131513.
[http://dx.doi.org/10.1016/j.matlet.2021.131513]
[60]
Park, J.; Shin, J.H.; Oh, W. Removal of hexavalent chromium(vi) from wastewater using chitosan-coated iron oxide nanocomposite membranes. Toxics, 2022, 10(2), 98.
[http://dx.doi.org/10.3390/toxics10020098] [PMID: 35202284]
[61]
Nkuna, C.N.; Sadiku, E.R.; Perry, G.; Oboirien, B.; Dludlu, M.K.; Thompson, C. Treatment of acid mine drainage and chromium (VI) removal using synthesised chitosan composites blended with kenaf fibre and γ-Fe2O3 nanoparticles. Int. J. Environ. Sci. Technol., 2022, 20, 3599-3612.
[62]
Liu, S.; Gao, J.; Zhang, L.; Yang, Y.; Liu, X. Diethylenetriaminepentaacetic acid–thiourea-modified magnetic chitosan for adsorption of hexavalent chromium from aqueous solutions. Carbohydr. Polym., 2021, 274, 118555.
[http://dx.doi.org/10.1016/j.carbpol.2021.118555] [PMID: 34702488]
[63]
Lu, J.; Li, B.; Li, W. Nano iron oxides impregnated chitosan beads towards aqueous Cr(VI) elimination: Components optimization and performance evaluation. Colloids Surf. A Physicochem. Eng. Asp., 2021, 625, 126902.
[http://dx.doi.org/10.1016/j.colsurfa.2021.126902]
[64]
Omer, A.M.; Abd El-Monaem, E.M.; Abd El-Latif, M.M.; El-Subruiti, G.M.; Eltaweil, A.S. Facile fabrication of novel magnetic ZIF-67 MOF@aminated chitosan composite beads for the adsorptive removal of Cr(VI) from aqueous solutions. Carbohydr. Polym., 2021, 265, 118084.
[http://dx.doi.org/10.1016/j.carbpol.2021.118084] [PMID: 33966848]
[65]
Shan, H.; Zeng, C.; Zhao, C.; Zhan, H. Iron oxides decorated graphene oxide/chitosan composite beads for enhanced Cr(VI) removal from aqueous solution. Int. J. Biol. Macromol., 2021, 172, 197-209.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.060] [PMID: 33453250]
[66]
Zuo, B.; Deng, Q.; Shao, H. Fe3O4 @Mesoporous-SiO2 @chitosan@polyaniline core-shell nanoparticles as recyclable adsorbents and reductants for hexavalent chromium. ACS Appl. Nano Mater., 2021, 4(2), 1831-1840.
[http://dx.doi.org/10.1021/acsanm.0c03235]
[67]
Khalil, T.E.; Elhusseiny, A.F.; Ibrahim, N.M.; El-dissouky, A. Unexpected effect of magnetic nanoparticles on the performance of aqueous removal of toxic Cr(VI) using modified biopolymer chitosan. Int. J. Biol. Macromol., 2021, 170, 768-779.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.188] [PMID: 33385450]
[68]
Alsaiari, N.S.; Amari, A.; Katubi, K.M.; Alzahrani, F.M.; Rebah, F.B.; Tahoon, M.A. Innovative magnetite based polymeric nanocomposite for simultaneous removal of methyl orange and hexavalent chromium from water. Processes , 2021, 9(4), 576.
[http://dx.doi.org/10.3390/pr9040576]
[69]
Fan, H.; Ren, H.; Ma, X. High-gravity continuous preparation of chitosan-stabilized nanoscale zerovalent iron towards Cr(VI) removal. Chem. Eng. J., 2020, 390, 124639.
[http://dx.doi.org/10.1016/j.cej.2020.124639]
[70]
Wang, X.; Liu, X.; Xiao, C. Triethylenetetramine-modified hollow Fe2O3/SiO2/chitosan magnetic nanocomposites for removal of Cr(VI) ions with high adsorption capacity and rapid rate. Microporous Mesoporous Mater., 2020, 297, 110041.
[http://dx.doi.org/10.1016/j.micromeso.2020.110041]
[71]
Zheng, C.; Zheng, H.; Sun, Y. Simultaneous adsorption and reduction of hexavalent chromium on the poly(4-vinyl pyridine) decorated magnetic chitosan biopolymer in aqueous solution. Bioresour. Technol., 2019, 293, 122038.
[http://dx.doi.org/10.1016/j.biortech.2019.122038] [PMID: 31454736]
[72]
Pourmortazavi, S.M.; Sahebi, H.; Zandavar, H.; Mirsadeghi, S. Fabrication of Fe2O3 nanoparticles coated by extracted shrimp peels chitosan as sustainable adsorbents for removal of chromium contaminates from wastewater: The design of experiment. Compos., Part B Eng., 2019, 175, 107130.
[http://dx.doi.org/10.1016/j.compositesb.2019.107130]
[73]
Matei, E.; Predescu, A.M.; Râpă, M. Removal of chromium(vi) from aqueous solution using a novel green magnetic nanoparticle: Chitosan adsorbent. Anal. Lett., 2019, 52(15), 2416-2438.
[http://dx.doi.org/10.1080/00032719.2019.1601734]
[74]
Subedi, N.; Lähde, A.; Abu-Danso, E.; Iqbal, J.; Bhatnagar, A. A comparative study of magnetic chitosan (Chi@Fe3O4) and graphene oxide modified magnetic chitosan (Chi@Fe3O4 GO) nanocomposites for efficient removal of Cr(VI) from water. Int. J. Biol. Macromol., 2019, 137, 948-959.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.151] [PMID: 31238072]
[75]
Chen, X.L.; Li, F.; Xie, X.J.; Li, Z.; Chen, L. Nanoscale zerovalent iron and chitosan functionalized eichhornia crassipes biochar for efficient hexavalent chromium removal. Int. J. Environ. Res. Public Health, 2019, 16(17), 3046.
[http://dx.doi.org/10.3390/ijerph16173046] [PMID: 31443402]
[76]
Chen, X.L.; Li, F.; Xie, X.J.; Li, Z.; Chen, L. Nanoscale zerovalent iron and chitosan functionalized eichhornia crassipes biochar for efficient hexavalent chromium removal. Int. J. Environ. Res. Public Health, 2019, 16(17), 3046.
[http://dx.doi.org/10.3390/ijerph16173046] [PMID: 31443402]
[77]
Zhang, H.; Peng, L.; Chen, A. Chitosan-stabilized FeS magnetic composites for chromium removal: Characterization, performance, mechanism, and stability. Carbohydr. Polym., 2019, 214, 276-285.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.056] [PMID: 30925998]
[78]
Chagas, P.M.B.; Caetano, A.A.; Rossi, M.A. Chitosan-iron oxide hybrid composite: mechanism of hexavalent chromium removal by central composite design and theoretical calculations. Environ. Sci. Pollut. Res. Int., 2019, 26(16), 15973-15988.
[http://dx.doi.org/10.1007/s11356-019-04545-z] [PMID: 30963426]
[79]
Arslan, G.; Sargin, I.; Kaya, M. Hexavalent chromium removal by magnetic particle-loaded micro-sized chitinous egg shells isolated from ephippia of water flea. Int. J. Biol. Macromol., 2019, 129, 23-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.180] [PMID: 30731166]
[80]
Cai, W.; Zhu, F.; Liang, H. Preparation of thiourea-modified magnetic chitosan composite with efficient removal efficiency for Cr(VI). Chem. Eng. Res. Des., 2019, 144, 150-158.
[http://dx.doi.org/10.1016/j.cherd.2019.01.031]
[81]
Feng, G.; Ma, J.; Zhang, X. Magnetic natural composite Fe3O4-chitosan@bentonite for removal of heavy metals from acid mine drainage. J. Colloid Interface Sci., 2019, 538, 132-141.
[http://dx.doi.org/10.1016/j.jcis.2018.11.087] [PMID: 30502534]
[82]
Zhang, B.; Wu, Y.; Fan, Y. Synthesis of novel magnetic nife2o4 nanocomposite grafted chitosan and the adsorption mechanism of Cr(VI). J. Inorg. Organomet. Polym. Mater., 2019, 29(1), 290-301.
[http://dx.doi.org/10.1007/s10904-018-0987-4]
[83]
Jiang, Y.; Cai, W.; Tu, W.; Zhu, M. Facile cross-link method to synthesize magnetic Fe3O4@SiO2 -Chitosan with high adsorption capacity toward hexavalent chromium. J. Chem. Eng. Data, 2019, 64(1), 226-233.
[http://dx.doi.org/10.1021/acs.jced.8b00738]
[84]
Bavasso, I.; Vuppala, S.; Cianfrini, C. Cr(VI) removal by chitosan-magnetite nano-composite in aqueous solution. Chem. Eng. Trans., 2019, 73, 163-168.
[85]
Vuppala, S.; Marchetti, A.; Cianfrini, C.; Stoller, M. Continuous removal of Cr(VI) by lab-scale fixed-bed column packed with chitosan-nanomagnetite particles. Chem. Eng. Trans., 2019, 73, 193-198.
[86]
Wang, T.; Yongchang, S.; Lu, B. Ultrafast removal of Cr(VI) by chitosan coated biochar-supported nano zerovalent iron aerogel from aqueous solution: Application performance and reaction mechanism. Separ. Purif. Tech., 2023, 306(1), 122631.
[87]
Liu, Y.; Shan, H.; Pang, Y.; Zhan, H.; Zeng, C. Iron modified chitosan/coconut shell activated carbon composite beads for Cr(VI) removal from aqueous solution. Int. J. Biol. Macromol., 2023, 224(1), 156-169.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.10.112] [PMID: 36265535]
[88]
Li, L.; Liao, Q.; Hou, B. Synchronous reduction and removal of hexavalent chromium from wastewater by modified magnetic chitosan beads. Separ. Purif. Tech., 2023, 304, 122363.
[http://dx.doi.org/10.1016/j.seppur.2022.122363]
[89]
Zhang, H.; Peng, L.; Chen, A. Chitosan-stabilized FeS magnetic composites for chromium removal: Characterization, performance, mechanism, and stability. Carbohydr. Polym., 2019, 214, 276-285.
[http://dx.doi.org/10.1016/j.carbpol.2019.03.056] [PMID: 30925998]
[90]
Silva, S.S.; Mano, J.F.; Reis, R.L. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem., 2017, 19(5), 1208-1220.
[http://dx.doi.org/10.1039/C6GC02827F]
[91]
Shamshina, J.L.; Berton, P. Use of ionic liquids in chitin biorefinery: A systematic review. Front. Bioeng. Biotechnol., 2020, 8, 11.
[http://dx.doi.org/10.3389/fbioe.2020.00011] [PMID: 32117907]
[92]
Lin, X.; He, X.; Lei, L.; Zhao, Y.; Cui, L.; Wu, G. Development of ionic liquid filled chitosan capsules to remove Cr(VI) from acidic solution: Adsorption properties and mechanism. J. Environ. Chem. Eng., 2022, 10(4), 108081.
[http://dx.doi.org/10.1016/j.jece.2022.108081]
[93]
Sheth, Y.; Dharaskar, S.; Khalid, M.; Walvekar, R. Investigating chromium Cr(VI) removal using imidazolium based ionic liquid-chitosan composite adsorptive film. J. Mol. Liq., 2022, 347, 118317.
[http://dx.doi.org/10.1016/j.molliq.2021.118317]
[94]
Eliodório, K.P.; Pereira, G.J.; Morandim-Giannetti, A. Functionalized chitosan with butylammonium ionic liquids for removal of Cr(VI) from aqueous solution. J. Appl. Polym. Sci., 2021, 138(9), 49912.
[http://dx.doi.org/10.1002/app.49912]
[95]
Biswas, S.; Fatema, J.; Debnath, T. Chitosan–clay composites for wastewater treatment: A State-of-the-art review. CS EST Water, 2021, 1(5), 1055-1085.
[96]
Darder, M.; Colilla, M.; Ruiz-Hitzky, E. Biopolymer−clay nanocomposites based on chitosan intercalated in montmorillonite. Chem. Mater., 2003, 15(20), 3774-3780.
[http://dx.doi.org/10.1021/cm0343047]
[97]
Khan, M.N.; Chowdhury, M.; Rahman, M.M. Biobased amphoteric aerogel derived from amine-modified clay-enriched chitosan/alginate for adsorption of organic dyes and chromium (VI) ions from aqueous solution. Materials Today Sustainability, 2021, 13, 100077.
[98]
Liu, D-M.; Dong, C.; Xu, B. Preparation of magnetic kaolin embedded chitosan beads for efficient removal of hexavalent chromium from aqueous solution. Chem. Eng. J., 2021, 9(4), 105438.
[99]
Jia, J.; Liu, Y.; Sun, S. Preparation and characterization of chitosan/bentonite composites for Cr (VI) removal from aqueous solutions. Adsorpt. Sci. Technol., 2021, 2021, 1-15.
[http://dx.doi.org/10.1155/2021/6681486]
[100]
Chen, M.; Guo, Q.; Pei, F. The role of Fe(III) in enhancement of interaction between chitosan and vermiculite for synergistic co-removal of Cr(VI) and Cd(II). Colloids Surf. A Physicochem. Eng. Asp., 2020, 606, 125356.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125356]
[101]
Altun, T. Preparation and application of glutaraldehyde cross-linked chitosan coated bentonite clay capsules: Chromium(VI) removal from aqueous solution. J. Chil. Chem. Soc., 2020, 65(2), 4790-4797.
[http://dx.doi.org/10.4067/S0717-97072020000204790]
[102]
Foroutan, R.; Peighambardoust, S.J.; Mohammadi, R.; Omidvar, M.; Sorial, G.A.; Ramavandi, B. Influence of chitosan and magnetic iron nanoparticles on chromium adsorption behavior of natural clay: Adaptive neuro-fuzzy inference modeling. Int. J. Biol. Macromol., 2020, 151, 355-365.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.202] [PMID: 32087228]
[103]
Yang, J.; Huang, B.; Lin, M. Adsorption of hexavalent chromium from aqueous solution by a chitosan/bentonite composite: Isotherm, kinetics, and thermodynamics studies. J. Chem. Eng. Data, 2020, 65(5), 2751-2763.
[http://dx.doi.org/10.1021/acs.jced.0c00085]
[104]
Abukhadra, M.R.; Adlii, A.; Bakry, B.M. Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr (VI) from water. Int. J. Biol. Macromol., 2019, 126, 402-413.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.225] [PMID: 30593802]
[105]
Laysandra, L.; Ondang, I.J.; Ju, Y.H. Highly adsorptive chitosan/saponin-bentonite composite film for removal of methyl orange and Cr(VI). Environ. Sci. Pollut. Res. Int., 2019, 26(5), 5020-5037.
[http://dx.doi.org/10.1007/s11356-018-4035-2] [PMID: 30600491]
[106]
Khan, M.N.; Chowdhury, M.; Rahman, M.M. Biobased amphoteric aerogel derived from amine-modified clay-enriched chitosan/alginate for adsorption of organic dyes and chromium (VI) ions from aqueous solution. Materials Today Sustainability, 2021, 13, 100077.
[http://dx.doi.org/10.1016/j.mtsust.2021.100077]
[107]
Liu, D.M.; Dong, C.; Xu, B. Preparation of magnetic kaolin embedded chitosan beads for efficient removal of hexavalent chromium from aqueous solution. J. Environ. Chem. Eng., 2021, 9(4), 105438.
[http://dx.doi.org/10.1016/j.jece.2021.105438]
[108]
Rajak, J.K.; Khandelwal, N.; Behera, M.P. Removal of chromate ions from leachate-contaminated groundwater samples of Khan Chandpur, India, using chitin modified iron-enriched hydroxyapatite nanocomposite. Environ. Sci. Pollut. Res. Int., 2021, 28(31), 41760-41771.
[http://dx.doi.org/10.1007/s11356-021-13549-7] [PMID: 33788088]
[109]
Jiang, C.; Wang, R.; Chen, X.; Zheng, L.; Cheng, H. Preparation of chitosan modified fly ash under acid condition and its adsorption mechanism for Cr(VI) in water. J. Cent. South Univ., 2021, 28(6), 1652-1664.
[http://dx.doi.org/10.1007/s11771-021-4724-8]
[110]
Jia, J.; Liu, Y.; Sun, S. Preparation and characterization of chitosan/bentonite composites for Cr (VI) removal from aqueous solutions. Adsorpt. Sci. Technol., 2021, 6681486.
[111]
Chen, M.; Guo, Q.; Pei, F. The role of Fe(III) in enhancement of interaction between chitosan and vermiculite for synergistic co-removal of Cr(VI) and Cd(II). Colloids Surf. A Physicochem. Eng. Asp., 2020, 606, 125356.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125356]
[112]
Oshagbemi, A.A.; Auta, M.; Kovo, A.S. Synthesized chitosan-zeolite composite matrix for the adsorption of chromium (VI) ions. Desalination Water Treat., 2020, 195, 377-388.
[http://dx.doi.org/10.5004/dwt.2020.25885]
[113]
Altun, T. Preparation and application of glutaraldehyde cross-linked chitosan coated bentonite clay capsules: Chromium(VI) removal from aqueous solution. J. Chil. Chem. Soc., 2020, 65(2), 4790-4797.
[http://dx.doi.org/10.4067/S0717-97072020000204790]
[114]
Foroutan, R.; Peighambardoust, S.J.; Mohammadi, R.; Omidvar, M.; Sorial, G.A.; Ramavandi, B. Influence of chitosan and magnetic iron nanoparticles on chromium adsorption behavior of natural clay: Adaptive neuro-fuzzy inference modeling. Int. J. Biol. Macromol., 2020, 151, 355-365.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.202] [PMID: 32087228]
[115]
Kyzas, G.Z.; Deliyanni, E.A.; Matis, K.A. Graphene oxide and its application as an adsorbent for wastewater treatment. J. Chem. Technol. Biotechnol., 2014, 89(2), 196-205.
[http://dx.doi.org/10.1002/jctb.4220]
[116]
Ramesha, G.K.; Vijaya Kumara, A.; Muralidhara, H.B.; Sampath, S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J. Colloid Interface Sci., 2011, 361(1), 270-277.
[http://dx.doi.org/10.1016/j.jcis.2011.05.050] [PMID: 21679961]
[117]
Anush, S.M.; Chandan, H.R.; Gayathri, B.H. Graphene oxide functionalized chitosan-magnetite nanocomposite for removal of Cu(II) and Cr(VI) from waste water. Int. J. Biol. Macromol., 2020, 164, 4391-4402.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.059] [PMID: 32931831]
[118]
Li, L.; Wei, Z.; Liu, X. Biomaterials cross-linked graphene oxide composite aerogel with a macro–nanoporous network structure for efficient Cr (VI) removal. Int. J. Biol. Macromol., 2020, 156, 1337-1346.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.174] [PMID: 31760030]
[119]
Parlayıcı, Ş.; Avcı, A.; Pehlivan, E. Fabrication of novel chitosan-humic acid-graphene oxide composite to improve adsorption properties for Cr(VI). Arab. J. Geosci., 2019, 12(19), 615.
[http://dx.doi.org/10.1007/s12517-019-4828-8]
[120]
Bandara, P.C.; Nadres, E.T.; Rodrigues, D.F. Use of response surface methodology to develop and optimize the composition of a chitosan–polyethyleneimine–graphene oxide nanocomposite membrane coating to more effectively remove Cr(VI) and Cu(II) from water. ACS Appl. Mater. Interfaces, 2019, 11(19), 17784-17795.
[http://dx.doi.org/10.1021/acsami.9b03601] [PMID: 31002237]
[121]
Anush, S.M.; Chandan, H.R.; Vishalakshi, B. Synthesis and metal ion adsorption characteristics of graphene oxide incorporated chitosan Schiff base. Int. J. Biol. Macromol., 2019, 126, 908-916.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.164] [PMID: 30578905]
[122]
Tran, H.V.; Tran, T.L.; Le, T.D.; Le, T.D.; Nguyen, H.M.T.; Dang, L.T. Graphene oxide enhanced adsorption capacity of chitosan/magnetite nanocomposite for Cr(VI) removal from aqueous solution. Mater. Res. Express, 2018, 6(2), 025018.
[http://dx.doi.org/10.1088/2053-1591/aae55c]
[123]
Omer, S.; Singh, A.; Upadhyay, S. Synthesis of chitosan-g-biomass ash/graphene oxide nanocomposite for the removal of copper and chromium from industrial waste water. Clay Res., 2019, 38(1), 19-28.
[124]
Samuel, M.S.; Bhattacharya, J.; Raj, S.; Santhanam, N.; Singh, H.; Pradeep Singh, N.D. Efficient removal of Chromium(VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. Int. J. Biol. Macromol., 2019, 121, 285-292.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.170] [PMID: 30267821]
[125]
Lemma, E.; Kiflie, Z.; Kassahun, S.K. Adsorption of Cr (VI) ion from aqueous solution on acrylamide: Grafted starch (Coccinia abyssinicca) – PVA/PVP/chitosan/graphene oxide blended hydrogel: isotherms, kinetics, and thermodynamics studies. Sep. Sci. Technol., 2023, 58(2), 241-256.
[http://dx.doi.org/10.1080/01496395.2022.2106441]
[126]
Han, C.; Liu, X.; Wang, T.; Sun, X.; Bai, L.; Sun, Y. The preparation of a lignosulfonate/chitosan–graphene oxide hydrogel biosorbent to effectively remove Cr(VI) from wastewater: Adsorption performance and mechanisms. Water, 2022, 14(22), 3684.
[127]
El Shahawy, A.; Mubarak, M.F.; El Shafie, M.; Abdulla, H.M. Fe(iii) and Cr(vi) ions’ removal using AgNPs/GO/chitosan nanocomposite as an adsorbent for wastewater treatment. RSC Advances, 2022, 12(27), 17065-17084.
[http://dx.doi.org/10.1039/D2RA01612E] [PMID: 35755594]
[128]
Shan, H.; Zeng, C.; Zhao, C.; Zhan, H. Iron oxides decorated graphene oxide/chitosan composite beads for enhanced Cr(VI) removal from aqueous solution. Int. J. Biol. Macromol., 2021, 172, 197-209.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.060] [PMID: 33453250]
[129]
Ramasubramaniam, S.; Govindarajan, C.; Gomathi, T.; Sudha, P.N. Removal of Chromium (VI) from aqueous solution using chitosan: Starch blend. Scholars Research Library Der Pharmacia Lettre, 2012, 4(1), 240-248.
[130]
Hassan, A.F.; El-Naggar, G.A.; Braish, A.G.; Amira, M.F.; Alshandoudi, L.M. Enhanced adsorption of chromium (VI) from aqueous medium by basic nanohydroxyapatite/chitosan composite based on egg shell. Desalination Water Treat., 2020, 206, 235-249.
[http://dx.doi.org/10.5004/dwt.2020.26306]
[131]
Gunawardana, D.; Gunawardena, S. Evaluating the effectiveness of chitosan for removal of hexavalent chromium from wastewater. BEST: Int J Manag Inform Tech Eng, 2018, 6(9), 1-10.
[132]
Hossain, K.F.B.; Sikder, M.T.; Rahman, M.M.; Uddin, M.K.; Kurasaki, M. Investigation of chromium removal efficacy from tannery effluent by synthesized chitosan from crab shell. Arab. J. Sci. Eng., 2017, 42(4), 1569-1577.
[http://dx.doi.org/10.1007/s13369-017-2435-0]
[133]
Tan, L.N.; Nguyen, N.C.T.; Trinh, A.M.H.; Do, N.H.N.; Le, K.A.; Le, P.K. Eco-friendly synthesis of durable aerogel composites from chitosan and pineapple leaf-based cellulose for Cr(VI) removal. Separ. Purif. Tech., 2023, 304, 122415.
[http://dx.doi.org/10.1016/j.seppur.2022.122415]
[134]
Lemma, E.; Kiflie, Z.; Kassahun, S.K. Adsorption of Cr (VI) ion from aqueous solution on acrylamide – grafted starch (Coccinia abyssinicca) – PVA/PVP/chitosan/graphene oxide blended hydrogel: Isotherms, kinetics, and thermodynamics studies. Sep. Sci. Technol., 2023, 58(2), 241-256.
[http://dx.doi.org/10.1080/01496395.2022.2106441]
[135]
Xu, C.; Xu, Y.; Zhong, D. Efficient adsorption and reduction of Cr(VI) by Zr4+ cross-linked magnetic chitosan/polyaniline composite. J. Environ. Chem. Eng., 2022, 10(6), 108977.
[http://dx.doi.org/10.1016/j.jece.2022.108977]
[136]
Liu, X; Zhang, Y; Liu, Y; Zhang, T. Removal of Cr(VI) and Ag(I) by grafted magnetic zeolite/chitosan for water purification: Synthesis and adsorption mechanism. Int J Biol Macromol , 2022, 222(Pt B), 2615-2627.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.10.044] [PMID: 36228821 ]
[137]
Eltaweil, AS; Hashem, OA; Abdel-Hamid, H; Abd El-Monaem, EM; Ayoup, MS Synthesis of a new magnetic Sulfacetamide-ethylacetoacetate hydrazone-chitosan Schiff -base for Cr(VI) removal. Int J Biol Macromol, 2022, 222(Pt A), 1465-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.081] [PMID: 36113599]
[138]
Nechita, P. Application of chitosan in waste water treatment, biological activities and application of marine polysaccharides. Intech opentech, 2017.
[http://dx.doi.org/10.5772/65289]