Nosocomial Urinary Tract Infections in a Tertiary Hospital; Preliminary Study of Antibiotics Susceptibility Testing and Pathogen Types

Article ID: e251023222696 Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Introduction: Nosocomial urinary tract infections (NUTIs) are the most frequently acquired infection worldwide. This retrospective study aimed to determine the type of pathogens and antibiotic susceptibility testing in hospital-acquired UTIs.

Methods: Information from the recorded official database of the Alzahra, Isfahan/Iran tertiary specialist hospital was obtained. Urine was collected based on two methods: 1) central stream and 2) with a urinary catheter in place. The incidence of acquired infections (NUTIs-SUTI; Code 55) was described as a percentage. The statistical calculations were conducted using the statistical software. There were 2210 recorded NUTIs comprised of 1115 males and 1095 females. Among the total recorded data with NUTIs, 251 records were associated with deaths. The distribution of hospital stays in 57% was between 2-30 days. Available data showed that Candida (23%), Escherichia coli (22%), Klebsiella pneumonia (17%), and Enterococcus (faeciumfecalis; 12%) were the most ranked microorganisms in patients with NUTIs.

Results: Sensitivity tests for Escherichia coli associated with different antibiotics were ranked as; 1) Meropenem (n= 160; S= 66%), 2) Vancomycin (n= 53; S= 64%), 3) Piperacillin/Tazobactam (n= 144; S= 58%), 4) Amikacin (n= 146; S= 44%), 5) Co-trimoxazole (n= 153; S=42%), 6) Penicillin (n=79; S=41%), 7) Cefepime (n=143; S=31%), 8) Ceftazidime (n=142; S=31%), 9) Ciprofloxacin (n=204; S=25%). Sensitivity tests for Klebsiella pneumonia associated with different antibiotics were ranked as; 1) Piperacillin/Tazobactam (n= 110; S= 55%), 2) Amikacin (n= 125; S= 55%), and 3) Ciprofloxacin (n=177; S=23%). Sensitivity tests for Enterococcus (faecium-fecalis) associated with different antibiotics were ranked as; 1) Piperacillin/Tazobactam (n= 79; S= 62%), 2) Amikacin (n= 83; S= 64%) and 3) Ciprofloxacin (n=120; S=30%).

Conclusion: Within the population studied, while Ciprofloxacin showed less than 30% sensitivity, Piperacillin/Tazobactam and Amikacin exhibited a sensitivity of more than 50% regarding Escherichia coli, Klebsiella pneumonia, and Enterococcus (faecium-fecalis) need further evidence- based investigations.

Graphical Abstract

[1]
Lauridsen, S.V.; Averbeck, M.A.; Krassioukov, A.; Vaabengaard, R.; Athanasiadou, S. UTI assessment tool for intermittent catheter users: A way to include user perspectives and enhance quality of UTI management. BMC Nurs., 2022, 21(1), 272.
[http://dx.doi.org/10.1186/s12912-022-01033-7] [PMID: 36199133]
[2]
Okamoto, I.; Prieto, J.; Avery, M.; Moore, K.; Fader, M.; Sartain, S.; Clancy, B. Intermittent catheter users’ symptom identification, description and management of urinary tract infection: A qualitative study. BMJ Open, 2017, 7(9), e016453.
[http://dx.doi.org/10.1136/bmjopen-2017-016453] [PMID: 28871020]
[3]
Mohammed, O.; Gedamu, S.; Birrie, E.; Seid, A.; Dires, A.; Goshiye, D. Knowledge, practice and associated factors of health care workers on prevention of catheter-associated urinary tract infections in south wollo zone public hospitals, northeast ethiopia. Infect. Drug Resist., 2022, 15, 5729-5739.
[http://dx.doi.org/10.2147/IDR.S380980] [PMID: 36199817]
[4]
Zagaglia, C.; Grazia Ammendolia, M.; Maurizi, L.; Nicoletti, M.; Longhi, C. Urinary tract infections caused by uropathogenic Escherichia coli strains-new strategies for an old pathogen. Microorganisms, 2022, 10(7), 1425.
[http://dx.doi.org/10.3390/microorganisms10071425]
[5]
Hsiao, C.Y.; Yang, H.Y.; Hsiao, M.C.; Hung, P.H.; Wang, M.C. Risk factors for development of acute kidney injury in patients with urinary tract infection. PLoS One, 2015, 10(7), e0133835.
[http://dx.doi.org/10.1371/journal.pone.0133835] [PMID: 26213991]
[6]
Medina-Polo, J.; Naber, K.G.E.; Bjerklund Johansen, T.E. Healthcare-associated urinary tract infections in urology. GMS Infect. Dis., 2021, 9, Doc05.
[http://dx.doi.org/10.3205/id000074] [PMID: 34540531]
[7]
Storme, O.; Tirán Saucedo, J.; Garcia-Mora, A.; Dehesa-Dávila, M.; Naber, K.G. Risk factors and predisposing conditions for urinary tract infection. Ther. Adv. Urol., 2019, 11, 1756287218814382.
[http://dx.doi.org/10.1177/1756287218814382] [PMID: 31105772]
[8]
Chu, C.M.; Lowder, J.L. Diagnosis and treatment of urinary tract infections across age groups. Am. J. Obstet. Gynecol., 2018, 219(1), 40-51.
[http://dx.doi.org/10.1016/j.ajog.2017.12.231] [PMID: 29305250]
[9]
Medina, M.; Castillo-Pino, E. An introduction to the epidemiology and burden of urinary tract infections. Ther. Adv. Urol., 2019, 11, 1756287219832172.
[http://dx.doi.org/10.1177/1756287219832172] [PMID: 31105774]
[10]
Renard, J.; Ballarini, S.; Mascarenhas, T.; Zahran, M.; Quimper, E.; Choucair, J.; Iselin, C.E. Recurrent lower urinary tract infections have a detrimental effect on patient quality of life: A prospective, observational study. Infect. Dis. Ther., 2015, 4(1), 125-135.
[http://dx.doi.org/10.1007/s40121-014-0054-6] [PMID: 25519161]
[11]
Milan, P.B.; Ivan, I.M. Catheter-associated and nosocomial urinary tract infections: Antibiotic resistance and influence on commonly used antimicrobial therapy. Int. Urol. Nephrol., 2009, 41(3), 461-464.
[http://dx.doi.org/10.1007/s11255-008-9468-y] [PMID: 18787972]
[12]
Cek, M.; Tandoğdu, Z.; Wagenlehner, F.; Tenke, P.; Naber, K.; Bjerklund-Johansen, T.E. Healthcare-associated urinary tract infections in hospitalized urological patients-a global perspective: Results from the GPIU studies 2003–2010. World J. Urol., 2014, 32(6), 1587-1594.
[http://dx.doi.org/10.1007/s00345-013-1218-9] [PMID: 24452449]
[13]
Rezai, M.S.; Bagheri-Nesami, M.; Nikkhah, A. Catheter-related urinary nosocomial infections in intensive care units: An epidemiologic study in North of Iran. Caspian J. Intern. Med., 2017, 8(2), 76-82.
[http://dx.doi.org/10.22088/cjim.8.2.76] [PMID: 28702145]
[14]
Iacovelli, V.; Gaziev, G.; Topazio, L.; Bove, P.; Vespasiani, G.; Agrò, E.F. Nosocomial urinary tract infections: A review. Urologia, 2014, 81(4), 222-227.
[http://dx.doi.org/10.5301/uro.5000092] [PMID: 25451882]
[15]
Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[16]
Trześniewska-Ofiara, Z.; Mendrycka, M.; Cudo, A.; Szmulik, M.; Woźniak-Kosek, A. Hospital urinary tract infections in healthcare units on the example of mazovian specialist hospital Ltd. Front. Cell. Infect. Microbiol., 2022, 12, 891796.
[http://dx.doi.org/10.3389/fcimb.2022.891796] [PMID: 35899043]
[17]
Mandell, G.L.; Bennett, J.E.; Dolin, R. Principles and practice of infectious diseases, 7th ed; Elsevier: USA, 2010, pp. 3669-3717.
[18]
Izadi, N.; Eshrati, B.; Etemad, K.; Mehrabi, Y.; Hashemi-Nazari, S.S. Rate of the incidence of hospital-acquired infections in Iran based on the data of the national nosocomial infections surveillance. New Microbes New Infect., 2020, 38, 100768.
[http://dx.doi.org/10.1016/j.nmni.2020.100768] [PMID: 33093962]
[19]
Rowe, T.A.; Juthani-Mehta, M. Urinary tract infection in older adults. Aging Health, 2013, 9(5), 10.
[http://dx.doi.org/10.2217/ahe.13.38]
[20]
Nuckchady, D.C.; Adler, J.R.; Nuckchady, D.C. Incidence, risk factors, and mortality from hospital-acquired infections at a hospital in mauritius. Cureus, 2021, 13(11), e19962.
[http://dx.doi.org/10.7759/cureus.19962] [PMID: 34976541]
[21]
Koch, A.M.; Nilsen, R.M.; Eriksen, H.M.; Cox, R.J.; Harthug, S. Mortality related to hospital-associated infections in a tertiary hospital; repeated cross-sectional studies between 2004-2011. Antimicrob. Resist. Infect. Control, 2015, 4(1), 57.
[http://dx.doi.org/10.1186/s13756-015-0097-9] [PMID: 26719795]
[22]
Odabasi, Z.; Mert, A. Candida urinary tract infections in adults. World J. Urol., 2020, 38(11), 2699-2707.
[http://dx.doi.org/10.1007/s00345-019-02991-5] [PMID: 31654220]
[23]
Li, J.; Jiang, F.; Xie, A.; Jiang, Y. Analysis of the distribution and drug resistance of pathogens in patients with urinary tract infection in the eastern chongming area of shanghai from 2018 to 2020. Infect. Drug Resist., 2022, 15, 6413-6422.
[http://dx.doi.org/10.2147/IDR.S384515] [PMID: 36345539]
[24]
Hu, W.; Xie, S.; Yu, F.; Hao, W. Characteristics of pathogens and mortality predictors of older Chinese patients with nosocomial urinary tract infections. Geriatr. Gerontol. Int., 2019, 19(6), 541-546.
[http://dx.doi.org/10.1111/ggi.13661] [PMID: 30950159]
[25]
Banfalvi, G.; McPhee, D.J. Antifungal activity of gentamicin B1 against systemic plant mycoses. Molecules, 2020, 25(10), 2401.
[http://dx.doi.org/10.3390/molecules25102401] [PMID: 32455775]
[26]
Lu, M.; Yu, C.; Cui, X.; Shi, J.; Lei, Yuan Sun, S. S. Gentamicin synergises with azoles against drug-resistant Candida Albicans. Int. J. Antimicrob. Agents, 2018, 51(1), 107-114.
[27]
Edward, E.A.; Mohamed, N.M.; Zakaria, A.S. Resensitization of fluconazole-resistant urinary Candida spp. isolates by amikacin through downregulation of efflux pump genes. Pol. J. Microbiol., 2020, 69(1), 73-84.
[http://dx.doi.org/10.33073/pjm-2020-010] [PMID: 32189482]
[28]
Lin, Y-R. Increased involvement of Klebsiella pneumoniae and Enterococcus faecium in healthcare-associated infections of intensive care units in taiwan. Health Care, 2021, 9(10), 1349.
[http://dx.doi.org/10.3390/healthcare9101349] [PMID: 34683029]
[29]
Alexyuk, P.; Bogoyavlenskiy, A.; Alexyuk, M.; Akanova, K.; Moldakhanov, Y.; Berezin, V. Isolation and characterization of lytic bacteriophages active against clinical strains of E. coli and development of a phage antimicrobial cocktail. Viruses, 2022, 14(11), 2381.
[http://dx.doi.org/10.3390/v14112381]
[30]
Wanke-Rytt, M.; Sobierajski, T.; Lachowicz, D.; Seliga-Gąsior, D.; Podsiadły, E. Analysis of etiology of community-acquired and nosocomial urinary tract infections and antibiotic resistance of isolated strains: Results of a 3-year surveillance (2020-2022) at the pediatric teaching hospital in warsaw. Microorganisms, 2023, 11(6), 1438.
[http://dx.doi.org/10.3390/microorganisms11061438]
[31]
Onori, R.; Gaiarsa, S.; Comandatore, F.; Pongolini, S.; Brisse, S.; Colombo, A.; Cassani, G.; Marone, P.; Grossi, P.; Minoja, G.; Bandi, C.; Sassera, D.; Toniolo, A. Tracking nosocomial Klebsiella pneumoniae infections and outbreaks by whole-genome analysis: Small-scale italian scenario within a single hospital. J. Clin. Microbiol., 2015, 53(9), 2861-2868.
[http://dx.doi.org/10.1128/JCM.00545-15] [PMID: 26135860]
[32]
Álvarez-Artero, E.; Campo-Nuñez, A.; García-García, I.; García-Bravo, M.; Cores-Calvo, O.; Galindo-Pérez, I.; Pendones-Ulerio, J.; López-Bernus, A.; Belhassen-García, M.; Pardo-Lledías, J. Urinary tract infection caused by Enterococcus spp.: Risk factors and mortality. An observational study. Rev. Clin. Esp., 2021, 221(7), 375-383.
[http://dx.doi.org/10.1016/j.rceng.2020.09.004] [PMID: 34074626]
[33]
Edwards, T.; Heinz, E.; van Aartsen, J.; Howard, A.; Roberts, P.; Corless, C.; Fraser, A.J.; Williams, C.T.; Bulgasim, I.; Cuevas, L.E.; Parry, C.M.; Roberts, A.P.; Adams, E.R.; Mason, J.; Hubbard, A.T.M. Piperacillin/tazobactam-resistant, cephalosporin-susceptible Escherichia coli bloodstream infections are driven by multiple acquisition of resistance across diverse sequence types. Microb. Genom., 2022, 8(4), 000789.
[http://dx.doi.org/10.1099/mgen.0.000789] [PMID: 35404783]
[34]
Zhang, H.; Liang, B.; Wang, J.; Cai, Y. Non-carbapenem β-lactam/β-lactamase inhibitors versus carbapenems for urinary tract infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae: A systematic review. Int. J. Antimicrob. Agents, 2021, 58(4), 106410.
[http://dx.doi.org/10.1016/j.ijantimicag.2021.106410] [PMID: 34339776]
[35]
Zha, L.; Li, X.; Ren, Z.; Zhang, D.; Zou, Y.; Pan, L.; Li, S.; Chen, S.; Tefsen, B. Pragmatic comparison of piperacillin/tazobactam versus carbapenems in treating patients with nosocomial pneumonia caused by extended-spectrum β-lactamase-producing Klebsiella pneumoniae. Antibiotics, 2022, 11(10), 1384.
[http://dx.doi.org/10.3390/antibiotics11101384]
[36]
Hansen-Jones, C.L.; Hill, K.E.; Cogger, N. Feline urinary tract pathogens in western Canada: Prevalence of bacterial species and antimicrobial resistance from 2012 to 2018. Can. Vet. J., 2023, 64(6), 558-564.
[PMID: 37265812]
[37]
Zhang, J.; Xie, L.; Cao, Y.; Wang, R.; Shang, Z.; Yang, Y.; Ren, H.; Liu, C. Characteristics of and antibiotic resistance in urinary tract pathogens isolated from patients with upper urinary tract stones. Pak. J. Pharm. Sci., 2023, 36(1), 23-29.
[PMID: 36967493]