Current Nanomaterials

Author(s): Vajagathali Mohammed* and Nikitha Shalom Richard

DOI: 10.2174/0124054615273067231011110436

DownloadDownload PDF Flyer Cite As
Revolutionizing Medicine: The Promise of Camouflage Nanoparticles - A Review

Page: [22 - 33] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Camouflage nanoparticles (CNPs) have emerged as a promising paradigm in the realm of disease therapy, offering a distinctive set of properties and versatile applications. These nanoparticles, characterized by their size, typically falling within the range of 1 to 100 nm, hold significant promise for the realms of targeted drug delivery, diagnostics, and imaging. Diverse categories of camouflage nanoparticles, encompassing liposomes, polymeric nanoparticles, and dendrimers, have been under intensive scrutiny for their potential to combat a spectrum of diseases, including neurological disorders, cardiovascular ailments, genetic anomalies, and cancer. These nanoparticles exhibit the remarkable ability to surmount biological barriers, including the formidable blood-brain barrier, thereby facilitating the precise delivery of therapeutic agents to specific cells or tissues. This precision augments drug efficacy while simultaneously mitigating systemic side effects. Nevertheless, challenges persist in the refinement of nanoparticle design, the assurance of long-term safety, and the pursuit of scalability and cost-effectiveness. Looking ahead, future prospects encompass expanding the purview of diseasespecific applications, advancing cutting-edge imaging modalities, crafting multifunctional nanoparticles, and seamlessly integrating nascent technologies. With relentless dedication to research and innovation, CNPs hold the potential to metamorphose the landscape of disease therapy, ushering in a new era marked by heightened drug efficacy, diminished side effects, and the realization of personalized medicine paradigms. This review aims to illuminate the burgeoning arena of CNPs in disease therapy, casting a spotlight on their latent potential as a conduit for targeted drug delivery. Through an exploration of their unique attributes, applications, and extant challenges, this review seeks to galvanize further research and development within this propitious domain, ultimately striving to revolutionize disease therapy by aligning it with the tenets of enhanced efficacy, attenuated side effects, and the realization of personalized medicine aspirations.

Keywords: Camouflage nanoparticles, liposomes, disease therapy, carbon nanotubes, cell-membrane nanoparticles, heightened drug efficacy.

Graphical Abstract

[1]
Caldas M, Santos AC, Veiga F, Rebelo R, Reis RL, Correlo VM. Melanin nanoparticles as a promising tool for biomedical applications – a review. Acta Biomater 2020; 105: 26-43.
[http://dx.doi.org/10.1016/j.actbio.2020.01.044] [PMID: 32014585]
[2]
Hojjati-Najafabadi A, Aygun A, Tiri RNE, et al. Bacillus thuringiensis based ruthenium/nickel Co-doped zinc as a green nanocatalyst: enhanced photocatalytic activity, mechanism, and efficient H2 production from sodium borohydride methanolysis. Ind Eng Chem Res 2023; 62(11): 4655-64.
[http://dx.doi.org/10.1021/acs.iecr.2c03833]
[3]
Alrushaid N, Khan FA, Al-Suhaimi EA, Elaissari A. Nanotechnology in cancer diagnosis and treatment. Pharmaceutics 2023; 15(3): 1025.
[http://dx.doi.org/10.3390/pharmaceutics15031025] [PMID: 36986885]
[4]
Hojjati-Najafabadi A, Nasr Esfahani P, Davar F, Aminabhavi TM, Vasseghian Y. Adsorptive removal of malachite green using novel GO@ZnO-NiFe2O4-αAl2O3 nanocomposites. Chem Eng J 2023; 471: 144485.
[http://dx.doi.org/10.1016/j.cej.2023.144485]
[5]
Rahman MM, Islam MR, Akash S, et al. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance. Biomed Pharmacother 2022; 153: 113305.
[http://dx.doi.org/10.1016/j.biopha.2022.113305] [PMID: 35717779]
[6]
Anitha G. Deep learning for the encounter of inorganic nanomaterial for efficient photochemical hydrogen production. Int J Hydrogen Energy 2023.
[7]
Chandrakala V, Aruna V, Angajala G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Materials 2022; 5(6): 1593-615.
[http://dx.doi.org/10.1007/s42247-021-00335-x] [PMID: 35005431]
[8]
Luo Y, Yang H, Zhou YF, Hu B. Dual and multi-targeted nanoparticles for site-specific brain drug delivery. J Control Release 2020; 317: 195-215.
[http://dx.doi.org/10.1016/j.jconrel.2019.11.037] [PMID: 31794799]
[9]
Shrestha B, Tang L, Romero G. Nanoparticles‐mediated combination therapies for cancer treatment. Adv Ther 2019; 2(11): 1900076.
[http://dx.doi.org/10.1002/adtp.201900076]
[10]
Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol 2023; 20(1): 33-48.
[http://dx.doi.org/10.1038/s41571-022-00699-x] [PMID: 36307534]
[11]
Han X, Alu A, Liu H, et al. Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy. Bioact Mater 2022; 17: 29-48.
[http://dx.doi.org/10.1016/j.bioactmat.2022.01.011] [PMID: 35386442]
[12]
Tazwar MF. Inorganic Nanofiller-Incorporated Polymeric Nanocomposites for Biomedical Applications. CRC Press 2023.
[http://dx.doi.org/10.1201/9781003279389-6]
[13]
Yang J, Zhang X, Liu C, et al. Biologically modified nanoparticles as theranostic bionanomaterials. Prog Mater Sci 2021; 118: 100768.
[http://dx.doi.org/10.1016/j.pmatsci.2020.100768]
[14]
Shetty K, Bhandari A, Yadav KS. Nanoparticles incorporated in nanofibers using electrospinning: A novel nano-in-nano delivery system. J Control Release 2022; 350: 421-34.
[http://dx.doi.org/10.1016/j.jconrel.2022.08.035] [PMID: 36002053]
[15]
Wang S, Liu R, Fu Y, Kao WJ. Release mechanisms and applications of drug delivery systems for extended-release. Expert Opin Drug Deliv 2020; 17(9): 1289-304.
[http://dx.doi.org/10.1080/17425247.2020.1788541] [PMID: 32619149]
[16]
Yoo J, Park C, Yi G, Lee D, Koo H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 2019; 11(5): 640.
[http://dx.doi.org/10.3390/cancers11050640] [PMID: 31072061]
[17]
Cook AB, Clemons TD. Bottom‐up versus top‐down strategies for morphology control in polymer‐based biomedical materials. Adv NanoBiomed Res 2022; 2(1): 2100087.
[http://dx.doi.org/10.1002/anbr.202100087]
[18]
Sharifi E, Bigham A, Yousefiasl S, et al. Mesoporous bioactive glasses in cancer diagnosis and therapy: Stimuli‐responsive, toxicity, immunogenicity, and clinical translation. Adv Sci 2022; 9(2): 2102678.
[http://dx.doi.org/10.1002/advs.202102678] [PMID: 34796680]
[19]
Shegokar R, Nakach M. Large-scale manufacturing of nanoparticles—An industrial outlook. In: Drug Delivery Aspects. Elsevier 2020; pp. 57-77.
[http://dx.doi.org/10.1016/B978-0-12-821222-6.00004-X]
[20]
Tiwari A, Panda SK, Shaw SK. Experimental characterization optimizing the alignment parameter for GNP epoxy base nanocomposite via a weak DC magnetic field. Polym Adv Technol 2023; 34(10): 3164-82.
[http://dx.doi.org/10.1002/pat.6137]
[21]
Alavi M, et al. Conventional and novel methods for the preparation of micro and nanoliposomes. Micro Nano Bio Aspects 2022; 1(1): 18-29.
[22]
Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022; 8(5): e09394.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09394] [PMID: 35600452]
[23]
Nkanga CI. General perception of liposomes: Formation, manufacturing and applications. In: Liposomes intechopen. 2019.
[24]
Ghaferi M, Raza A, Koohi M, et al. Impact of PEGylated liposomal doxorubicin and carboplatin combination on glioblastoma. Pharmaceutics 2022; 14(10): 2183.
[http://dx.doi.org/10.3390/pharmaceutics14102183] [PMID: 36297618]
[25]
Arnett LP, Liu J, Zhang Y, et al. Biotinylated lipid-coated NaLnF 4 nanoparticles: Demonstrating the use of lanthanide nanoparticle-based reporters in suspension and imaging mass cytometry. Langmuir 2022; 38(8): 2525-37.
[http://dx.doi.org/10.1021/acs.langmuir.1c03002] [PMID: 35167296]
[26]
Dutta B, Barick KC, Hassan PA. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci 2021; 296: 102509.
[http://dx.doi.org/10.1016/j.cis.2021.102509] [PMID: 34455211]
[27]
Khalili L, Dehghan G, Sheibani N, Khataee A. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges. Int J Biol Macromol 2022; 213: 166-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.05.156] [PMID: 35644315]
[28]
Titus D, Samuel EJJ, Roopan SM. Nanoparticle characterization techniques.In: Green synthesis, characterization and applications of nanoparticles. Elsevier 2019; pp. 303-19.
[http://dx.doi.org/10.1016/B978-0-08-102579-6.00012-5]
[29]
Modena MM, Rühle B, Burg TP, Wuttke S. Nanoparticle characterization: what to measure? Adv Mater 2019; 31(32): 1901556.
[http://dx.doi.org/10.1002/adma.201901556] [PMID: 31148285]
[30]
Yuan CS, Teng Z, Yang S, et al. Reshaping hypoxia and silencing CD73 via biomimetic gelatin nanotherapeutics to boost immunotherapy. J Control Release 2022; 351: 255-71.
[http://dx.doi.org/10.1016/j.jconrel.2022.09.029] [PMID: 36165836]
[31]
Thakuria A, Kataria B, Gupta D. Nanoparticle-based methodologies for targeted drug delivery—an insight. J Nanopart Res 2021; 23(4): 87.
[http://dx.doi.org/10.1007/s11051-021-05190-9]
[32]
Wang L, Lai R, Zhang L, Zeng M, Fu L. Emerging liquid metal biomaterials: From design to application. Adv Mater 2022; 34(37): 2201956.
[http://dx.doi.org/10.1002/adma.202201956] [PMID: 35545821]
[33]
Lynch MJ, Gobbo OL. Advances in non-animal testing approaches towards accelerated clinical translation of novel nanotheranostic therapeutics for central nervous system disorders. Nanomaterials 2021; 11(10): 2632.
[http://dx.doi.org/10.3390/nano11102632] [PMID: 34685073]
[34]
Ferreira-Faria I, Yousefiasl S, Macário-Soares A, et al. Stem cell membrane-coated abiotic nanomaterials for biomedical applications. J Control Release 2022; 351: 174-97.
[http://dx.doi.org/10.1016/j.jconrel.2022.09.012] [PMID: 36103910]
[35]
Bagheri B, Surwase SS, Lee SS, et al. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B Mater Biol Med 2022; 10(48): 9944-67.
[http://dx.doi.org/10.1039/D2TB01741E] [PMID: 36415922]
[36]
Machtakova M, Thérien-Aubin H, Landfester K. Polymer nano-systems for the encapsulation and delivery of active biomacromolecular therapeutic agents. Chem Soc Rev 2022; 51(1): 128-52.
[http://dx.doi.org/10.1039/D1CS00686J] [PMID: 34762084]
[37]
Jiang X, Wu L, Zhang M, et al. Biomembrane nanostructures: Multifunctional platform to enhance tumor chemoimmunotherapy via effective drug delivery. J Control Release 2023; 361: 510-33.
[http://dx.doi.org/10.1016/j.jconrel.2023.08.002] [PMID: 37567505]
[38]
Prabhakar PK. Revolutionizing herbal medicine: Exploring nano drug delivery systems. Sumat Med J 2023; 6(3)
[39]
Yao X, Qi C, Sun C, Huo F, Jiang X. Poly(ethylene glycol) alternatives in biomedical applications. Nano Today 2023; 48: 101738.
[http://dx.doi.org/10.1016/j.nantod.2022.101738]
[40]
Lee NH, You S, Taghizadeh A, Taghizadeh M, Kim HS. Cell membrane-cloaked nanotherapeutics for targeted drug delivery. Int J Mol Sci 2022; 23(4): 2223.
[http://dx.doi.org/10.3390/ijms23042223] [PMID: 35216342]
[41]
Kohout VR, Wardzala CL, Kramer JR. Synthesis and biomedical applications of mucin mimic materials. Adv Drug Deliv Rev 2022; 191: 114540.
[http://dx.doi.org/10.1016/j.addr.2022.114540] [PMID: 36228896]
[42]
Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Tan WS. Stealth coating of nanoparticles in drug-delivery systems. Nanomaterials 2020; 10(4): 787.
[http://dx.doi.org/10.3390/nano10040787] [PMID: 32325941]
[43]
Azizi M, Jahanban-Esfahlan R, Samadian H, et al. Multifunctional nanostructures: Intelligent design to overcome biological barriers. Mater Today Bio 2023; 20: 100672.
[http://dx.doi.org/10.1016/j.mtbio.2023.100672] [PMID: 37273793]
[44]
Zheng C, Zhang J, Chan HF, et al. Engineering nano‐therapeutics to boost adoptive cell therapy for cancer treatment. Small Methods 2021; 5(5): 2001191.
[http://dx.doi.org/10.1002/smtd.202001191] [PMID: 34928094]
[45]
Di J. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo. Asian J Pharm Sci 2021; 16(4): 444-58.
[46]
Wani TU, Raza SN, Khan NA. Nanoparticle opsonization: Forces involved and protection by long chain polymers. Polym Bull 2020; 77(7): 3865-89.
[http://dx.doi.org/10.1007/s00289-019-02924-7]
[47]
Palmieri V, Caracciolo G. Tuning the immune system by nanoparticle–biomolecular corona. Nanoscale Adv 2022; 4(16): 3300-8.
[http://dx.doi.org/10.1039/D2NA00290F] [PMID: 36131704]
[48]
Yang C, Feng J, Liu Z, et al. Lubricant-entrenched slippery surface-based nanocarriers to avoid macrophage uptake and improve drug utilization. J Adv Res 2023; 48: 61-74.
[http://dx.doi.org/10.1016/j.jare.2022.08.015] [PMID: 36041690]
[49]
Gautam M, Gupta B, Soe ZC, et al. Stealth polymer-coated graphene oxide decorated mesoporous titania nanoplatforms for in vivo chemo-photodynamic cancer therapy. Pharm Res 2020; 37(8): 162.
[http://dx.doi.org/10.1007/s11095-020-02900-1] [PMID: 32749542]
[50]
Jan N, Madni A, Khan S, et al. Biomimetic cell membrane‐coated poly(lactic‐CO ‐glycolic acid) nanoparticles for biomedical applications. Bioeng Transl Med 2023; 8(2): e10441.
[http://dx.doi.org/10.1002/btm2.10441] [PMID: 36925703]
[51]
Shreffler JW, Pullan JE, Dailey KM, Mallik S, Brooks AE. Overcoming hurdles in nanoparticle clinical translation: The influence of experimental design and surface modification. Int J Mol Sci 2019; 20(23): 6056.
[http://dx.doi.org/10.3390/ijms20236056] [PMID: 31801303]
[52]
Pacheco C, Baião A, Ding T, Cui W, Sarmento B. Recent advances in long-acting drug delivery systems for anticancer drug. Adv Drug Deliv Rev 2023; 194: 114724.
[http://dx.doi.org/10.1016/j.addr.2023.114724] [PMID: 36746307]
[53]
Bora NS. Nanotechnology in preventive and emergency healthcare. In: Nanotechnology. CRC Press 2019; pp. 221-72.
[http://dx.doi.org/10.1201/9781351111874-9]
[54]
Dilliard SA, Siegwart DJ. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat Rev Mater 2023; 8(4): 282-300.
[http://dx.doi.org/10.1038/s41578-022-00529-7] [PMID: 36691401]
[55]
Pal S, de la Fuente IF, Sawant SS, Cannata JN, He W, Rouge JL. Cellular uptake mechanism of nucleic acid nanocapsules and their DNA-surfactant building blocks. Bioconjug Chem 2023; 34(6): 1004-13.
[http://dx.doi.org/10.1021/acs.bioconjchem.3c00104] [PMID: 37231780]
[56]
Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell 2020; 181(1): 151-67.
[http://dx.doi.org/10.1016/j.cell.2020.02.001] [PMID: 32243788]
[57]
Mohammed V, Kalarani IB, Veerabathiran R. Nanomedicine in neuroscience: An application towards the treatment of various neurological diseases. Curr Nanomed 2022; 12(2): 84-92.
[58]
Shi D, Beasock D, Fessler A, et al. To PEGylate or not to PEGylate: Immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev 2022; 180: 114079.
[http://dx.doi.org/10.1016/j.addr.2021.114079] [PMID: 34902516]
[59]
Li J, Zhang Z, Zhang B, Yan X, Fan K. Transferrin receptor 1 targeted nanomedicine for brain tumor therapy. Biomater Sci 2023; 11(10): 3394-413.
[http://dx.doi.org/10.1039/D2BM02152H] [PMID: 36847174]
[60]
Mishra A, Kumar R, Mishra J, et al. Strategies facilitating the permeation of nanoparticles through blood-brain barrier: An insight towards the development of brain-targeted drug delivery system. J Drug Deliv Sci Technol 2023; 86: 104694.
[http://dx.doi.org/10.1016/j.jddst.2023.104694]
[61]
Zhang G, Yao M, Ma S, et al. Application of cell membrane-functionalized biomimetic nanoparticles in the treatment of glioma. J Mater Chem B Mater Biol Med 2023; 11(30): 7055-68.
[http://dx.doi.org/10.1039/D3TB00605K]
[62]
Eskandani R, Kazempour M, Farahzadi R, et al. Engineered nanoparticles as emerging gene/drug delivery systems targeting the nuclear factor-κB protein and related signaling pathways in cancer. Biomed Pharmacother 2022; 156: 113932.
[http://dx.doi.org/10.1016/j.biopha.2022.113932] [PMID: 36411621]
[63]
Ouyang C, Zhang S, Xue C, et al. Precision-guided missile-like DNA nanostructure containing warhead and guidance control for aptamer-based targeted drug delivery into cancer cells in vitro and in vivo. J Am Chem Soc 2020; 142(3): 1265-77.
[http://dx.doi.org/10.1021/jacs.9b09782] [PMID: 31895985]
[64]
Halder J, Pradhan D, Biswasroy P, et al. Trends in iron oxide nanoparticles: A nano-platform for theranostic application in breast cancer. J Drug Target 2022; 30(10): 1-21.
[http://dx.doi.org/10.1080/1061186X.2022.2095389] [PMID: 35786242]
[65]
Girigoswami A, Girigoswami K. Potential applications of nanoparticles in improving the outcome of lung cancer treatment. Genes 2023; 14(7): 1370.
[http://dx.doi.org/10.3390/genes14071370] [PMID: 37510275]
[66]
Chang H, Yhee JY, Jeon S, et al. In vivo toxicity evaluation of tumor targeted glycol chitosan nanoparticles in healthy mice: repeated high-dose of glycol chitosan nanoparticles potentially induce cardiotoxicity. J Nanobiotechnology 2023; 21(1): 82.
[http://dx.doi.org/10.1186/s12951-023-01824-3] [PMID: 36894943]
[67]
Vanić Ž, Jøraholmen MW, Škalko-Basnet N. Nanomedicines for the topical treatment of vulvovaginal infections: Addressing the challenges of antimicrobial resistance. Adv Drug Deliv Rev 2021; 178: 113855.
[http://dx.doi.org/10.1016/j.addr.2021.113855] [PMID: 34214638]
[68]
Klausen M, Ucuncu M, Bradley M. Design of photosensitizing agents for targeted antimicrobial photodynamic therapy. Molecules 2020; 25(22): 5239.
[http://dx.doi.org/10.3390/molecules25225239] [PMID: 33182751]
[69]
Parasuraman P. R y T, Shaji C, et al. Biogenic silver nanoparticles decorated with methylene blue potentiated the photodynamic inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Pharmaceutics 2020; 12(8): 709.
[http://dx.doi.org/10.3390/pharmaceutics12080709] [PMID: 32751176]
[70]
Delshadi R, Bahrami A, McClements DJ, Moore MD, Williams L. Development of nanoparticle-delivery systems for antiviral agents: A review. J Control Release 2021; 331: 30-44.
[http://dx.doi.org/10.1016/j.jconrel.2021.01.017] [PMID: 33450319]
[71]
Meagher RB, Lewis ZA, Ambati S, Lin X. DectiSomes: C-type lectin receptor-targeted liposomes as pan-antifungal drugs. Adv Drug Deliv Rev 2023; 196: 114776.
[http://dx.doi.org/10.1016/j.addr.2023.114776] [PMID: 36934519]
[72]
Vajagathali M, Ramakrishnan V. Genetic predisposition of BDNF (rs6265) gene is susceptible to Schizophrenia: A prospective study and updated meta-analysis. Neurologia 2022.
[http://dx.doi.org/10.1016/j.nrl.2021.10.006]
[73]
Hassan NA, Alshamari AK, Hassan AA, et al. Advances on therapeutic strategies for Alzheimer’s disease: From medicinal plant to nanotechnology. Molecules 2022; 27(15): 4839.
[http://dx.doi.org/10.3390/molecules27154839] [PMID: 35956796]
[74]
Elkouzi A, Vedam-Mai V, Eisinger RS, Okun MS. Emerging therapies in Parkinson disease — repurposed drugs and new approaches. Nat Rev Neurol 2019; 15(4): 204-23.
[http://dx.doi.org/10.1038/s41582-019-0155-7] [PMID: 30867588]
[75]
Kemp JA, Kwon YJ. Cancer nanotechnology: Current status and perspectives. Nano Converg 2021; 8(1): 34.
[http://dx.doi.org/10.1186/s40580-021-00282-7] [PMID: 34727233]
[76]
Letko Khait N, Ho E, Shoichet MS. Wielding the double‐edged sword of inflammation: Building biomaterial‐based strategies for immunomodulation in ischemic stroke treatment. Adv Funct Mater 2021; 31(44): 2010674.
[http://dx.doi.org/10.1002/adfm.202010674]
[77]
Singh N, Sherin GR, Mugesh G. Antioxidant and prooxidant nanozymes: From cellular redox regulation to next‐generation therapeutics. Angew Chem Int Ed 2023; 62(33): e202301232.
[http://dx.doi.org/10.1002/anie.202301232] [PMID: 37083312]
[78]
Wang Y, Pisapati AV, Zhang XF, Cheng X. Recent developments in nanomaterial‐based shear‐sensitive drug delivery systems. Adv Healthc Mater 2021; 10(13): 2002196.
[http://dx.doi.org/10.1002/adhm.202002196] [PMID: 34076369]
[79]
George TA, Hsu CC, Meeson A, Lundy DJ. Nanocarrier-based targeted therapies for myocardial infarction. Pharmaceutics 2022; 14(5): 930.
[http://dx.doi.org/10.3390/pharmaceutics14050930] [PMID: 35631516]
[80]
Kaviarasan V, Mohammed V, Veerabathiran R. Genetic predisposition study of heart failure and its association with cardiomyopathy. Egypt Heart J 2022; 74(1): 5.
[http://dx.doi.org/10.1186/s43044-022-00240-6] [PMID: 35061126]
[81]
Palazzolo JS. Targeting nanotechnologies for the treatment of thrombosis and cardiovascular disease.In: Seminars in Thrombosis and Hemostasis. Thieme Medical Publishers 2020.
[http://dx.doi.org/10.1055/s-0039-1697946]
[82]
Yan J, Wang Y, Song X, et al. The advancement of gas‐generating nanoplatforms in biomedical fields: Current frontiers and future perspectives. Small Methods 2022; 6(7): 2200139.
[http://dx.doi.org/10.1002/smtd.202200139] [PMID: 35587774]
[83]
Imam SS, Al-Abbasi FA, Hosawi S, et al. Role of platelet rich plasma mediated repair and regeneration of cell in early stage of cardiac injury. Regen Ther 2022; 19: 144-53.
[http://dx.doi.org/10.1016/j.reth.2022.01.006] [PMID: 35229012]
[84]
Zhuang J, Zhang X, Liu Q, Zhu M, Huang X. Targeted delivery of nanomedicines for promoting vascular regeneration in ischemic diseases. Theranostics 2022; 12(14): 6223-41.
[http://dx.doi.org/10.7150/thno.73421] [PMID: 36168632]
[85]
Yi W, Xiao P, Liu X, et al. Recent advances in developing active targeting and multi-functional drug delivery systems via bioorthogonal chemistry. Signal Transduct Target Ther 2022; 7(1): 386.
[http://dx.doi.org/10.1038/s41392-022-01250-1] [PMID: 36460660]
[86]
Vora LK, Moffatt K, Tekko IA, et al. Microneedle array systems for long-acting drug delivery. Eur J Pharm Biopharm 2021; 159: 44-76.
[http://dx.doi.org/10.1016/j.ejpb.2020.12.006] [PMID: 33359666]
[87]
Thorp EB, Boada C, Jarbath C, Luo X. Nanoparticle platforms for antigen-specific immune tolerance. Front Immunol 2020; 11: 945.
[http://dx.doi.org/10.3389/fimmu.2020.00945] [PMID: 32508829]
[88]
Bruno MC, Cristiano MC, Celia C, et al. Injectable drug delivery systems for osteoarthritis and rheumatoid arthritis. ACS Nano 2022; 16(12): 19665-90.
[http://dx.doi.org/10.1021/acsnano.2c06393] [PMID: 36512378]
[89]
Lee NK, Kim SN, Park CG. Immune cell targeting nanoparticles: a review. Biomater Res 2021; 25(1): 44.
[http://dx.doi.org/10.1186/s40824-021-00246-2] [PMID: 34930494]
[90]
Chen Y, Tandon I, Heelan W, Wang Y, Tang W, Hu Q. Proteolysis-targeting chimera (PROTAC) delivery system: Advancing protein degraders towards clinical translation. Chem Soc Rev 2022; 51(13): 5330-50.
[http://dx.doi.org/10.1039/D1CS00762A] [PMID: 35713468]
[91]
Gao H, Wu N, Wang N, Li J, Sun J, Peng Q. Chitosan-based therapeutic systems and their potentials in treatment of oral diseases. Int J Biol Macromol 2022; 222(Pt B): 3178-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.10.090 ] [PMID: 36244538 ]
[92]
Kazemian P, Yu SY, Thomson SB, Birkenshaw A, Leavitt BR, Ross CJD. Lipid-nanoparticle-based delivery of CRISPR/Cas9 genome-editing components. Mol Pharm 2022; 19(6): 1669-86.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00916] [PMID: 35594500]
[93]
Dhas N. Intranasal gene therapy for the treatment of neurological disorders. In: Direct Nose-to-Brain Drug Delivery. Elsevier 2021; pp. 351-87.
[http://dx.doi.org/10.1016/B978-0-12-822522-6.00017-5]
[94]
Ahmed Z, Qaisar R. Nanomedicine for treating muscle dystrophies: Opportunities, challenges, and future perspectives. Int J Mol Sci 2022; 23(19): 12039.
[http://dx.doi.org/10.3390/ijms231912039] [PMID: 36233338]
[95]
Chariou PL. Engineering virus-based nanocarriers for human and plant health. San Diego: University of California 2020.
[96]
Arishi WA, Alhadrami HA, Zourob M. Techniques for the detection of sickle cell disease: A review. Micromachines 2021; 12(5): 519.
[http://dx.doi.org/10.3390/mi12050519] [PMID: 34063111]
[97]
Mukherjee S, Madamsetty VS, Bhattacharya D, Roy Chowdhury S, Paul MK, Mukherjee A. Recent advancements of nanomedicine in neurodegenerative disorders theranostics. Adv Funct Mater 2020; 30(35): 2003054.
[http://dx.doi.org/10.1002/adfm.202003054]
[98]
Zhang X, Wei P, Yang Z, et al. Current progress and outlook of nano-based hydrogel dressings for wound healing. Pharmaceutics 2022; 15(1): 68.
[http://dx.doi.org/10.3390/pharmaceutics15010068] [PMID: 36678696]
[99]
Mei H, Cai S, Huang D, Gao H, Cao J, He B. Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification. Bioact Mater 2022; 8: 220-40.
[http://dx.doi.org/10.1016/j.bioactmat.2021.06.035] [PMID: 34541398]
[100]
Kim E, Lim EK, Park G, et al. Advanced nanomaterials for preparedness against (Re‐)emerging viral diseases. Adv Mater 2021; 33(47): 2005927.
[http://dx.doi.org/10.1002/adma.202005927] [PMID: 33586180]
[101]
Gupta T, Kumar A, Seshadri S. Bioprocess challenges in purification of therapeutic protein charge variants. Biotechnol Bioprocess Eng; BBE 2023; 28(4): 493-506.
[http://dx.doi.org/10.1007/s12257-023-0078-4]
[102]
Saraswat AL, Vartak R, Hegazy R, Patel A, Patel K. Drug delivery challenges and formulation aspects of proteolysis targeting chimera (PROTACs). Drug Discov Today 2023; 28(1): 103387.
[http://dx.doi.org/10.1016/j.drudis.2022.103387] [PMID: 36184017]
[103]
Dasgupta A, Biancacci I, Kiessling F, Lammers T. Imaging-assisted anticancer nanotherapy. Theranostics 2020; 10(3): 956-67.
[http://dx.doi.org/10.7150/thno.38288] [PMID: 31938045]
[104]
Govindan B, Sabri MA, Hai A, Banat F, Haija MA. A review of advanced multifunctional magnetic nanostructures for cancer diagnosis and therapy integrated into an artificial intelligence approach. Pharmaceutics 2023; 15(3): 868.
[http://dx.doi.org/10.3390/pharmaceutics15030868] [PMID: 36986729]
[105]
Soltani M, Moradi Kashkooli F, Souri M, et al. Enhancing clinical translation of cancer using nanoinformatics. Cancers 2021; 13(10): 2481.
[http://dx.doi.org/10.3390/cancers13102481] [PMID: 34069606]
[106]
Cao T, Liu K, Lu L, Chui HC, Simpson RE. Large-area broadband near-perfect absorption from a thin chalcogenide film coupled to gold nanoparticles. ACS Appl Mater Interfaces 2019; 11(5): 5176-82.
[http://dx.doi.org/10.1021/acsami.8b21452] [PMID: 30632371]
[107]
Salah M, Ahmed F, Hanaa A. Thermal radiations mitigation and stealth using egyptians cotton fabrics treated with ZnO nanoparticles and chlorophyll. Int J Adv Sci Eng Inf Technol 2022; 8: 2314-22.
[108]
Zhang M, Cheng S, Jin Y, Zhang N, Wang Y. Membrane engineering of cell membrane biomimetic nanoparticles for nanoscale therapeutics. Clin Transl Med 2021; 11(2): e292.
[http://dx.doi.org/10.1002/ctm2.292] [PMID: 33635002]
[109]
Chen Y, Cheng K. Advances of biological-camouflaged nanoparticles delivery system. Nano Res 2020; 13(10): 2617-24.
[http://dx.doi.org/10.1007/s12274-020-2931-5]
[110]
Yan J, Wang Y, Mu Z, et al. Gold nanobipyramid‐mediated apoptotic camouflage of adipocytes for obesity immunotherapy. Adv Mater 2023; 35(8): 2207686.
[http://dx.doi.org/10.1002/adma.202207686] [PMID: 36502507]
[111]
Arman A, Sağlam Ş, Üzer A, Apak R. Electrochemical determination of nitroaromatic explosives using glassy carbon/multi walled carbon nanotube/polyethyleneimine electrode coated with gold nanoparticles. Talanta 2022; 238(Pt 1): 122990.
[http://dx.doi.org/10.1016/j.talanta.2021.122990] [PMID: 34857323]
[112]
Ren Y, Miao C, Tang L, et al. Homotypic cancer cell membranes camouflaged nanoparticles for targeting drug delivery and enhanced chemo-photothermal therapy of glioma. Pharmaceuticals 2022; 15(2): 157.
[http://dx.doi.org/10.3390/ph15020157] [PMID: 35215270]
[113]
Zhang T, Liu H, Li L, et al. Leukocyte/platelet hybrid membrane-camouflaged dendritic large pore mesoporous silica nanoparticles co-loaded with photo/chemotherapeutic agents for triple negative breast cancer combination treatment. Bioact Mater 2021; 6(11): 3865-78.
[http://dx.doi.org/10.1016/j.bioactmat.2021.04.004] [PMID: 33937590]
[114]
Liu Z, Wang F, Liu X, et al. Cell membrane–camouflaged liposomes for tumor cell–selective glycans engineering and imaging in vivo. Proc Natl Acad Sci 2021; 118(30): e2022769118.
[http://dx.doi.org/10.1073/pnas.2022769118] [PMID: 34301864]
[115]
Zhang N, Cheng H, Han W, Ge F, Yin Y, Wang C. Electrical‐triggered multicolor reversible color‐changing Ag nanoparticles/reduced graphene oxide/polyurethane conductive fibers. Macromol Mater Eng 2023; 308(1): 2200438.
[http://dx.doi.org/10.1002/mame.202200438]
[116]
Manuja A, Kumar B, Chhabra D, et al. Synergistic effect of zinc-chitosan nanoparticles and hydroxychloroquine to inhibit buffalo coronavirus. Polymers 2023; 15(13): 2949.
[http://dx.doi.org/10.3390/polym15132949] [PMID: 37447594]
[117]
Atta AM, Abomelka HM. Multifunctional finishing of cotton fibers using silver nanoparticles via microwave-assisted reduction of silver alkylcarbamate. Mater Chem Phys 2021; 260: 124137.
[http://dx.doi.org/10.1016/j.matchemphys.2020.124137]