5-Aminolevulinic Acid Tautomers: Theoretical Elucidation of pKa’s, Species Distribution and Dimerization Constants

Page: [1704 - 1710] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

5-aminolevulinic acid (5-ALA) applications in medicine and agriculture face the challenge of stability. In aqueous solutions, concentration, pH, and temperature have an effect on the loss of activity. Computational chemistry helps to determine tautomerization, formation of derivatives and the stability, in different conditions, in a short time and reducing the cost of analysis. This work aimed to model the 5-ALA molecule and its tautomers in aqueous solution, determine its pKa and molar fractions at different pH, determine its thermodynamic and kinetic parameters, and predict the degree of dimerization under different conditions. Gaussian 16 program, Density Functional Theory, and the M05-2X functional were used to obtain the stationary state frequencies. From the difference in Gibbs free energy (ΔGs) between each acid/base conjugate, pKa values and molar fractions at different pH's were determined. Equilibrium constants were calculated from the ΔGr at different temperatures. Using data from the literature, the activation energy was optimized and the rate constants were obtained. A model was obtained to approximate the half-life, t0.5, and shelf-life, t0.9, values for 5-ALA solutions. pKa values obtained, 4.40 and 7.87, coincide with the potentiometric determinations reported in the literature. The thermodynamic and kinetics parameters calculated in this study correctly predict the percentage of 5-ALA dimerization at concentrations ≤ 0.075M (1.25%) and 15°C-50°C. This work integrates quantum chemistry and literature data to generate a model for the degree of decomposition of 5-ALA at different pH, temperature and concentration. It will be useful in applications in medicine, agriculture and other fields.

Graphical Abstract

[1]
Sasaki, K.; Watanabe, M.; Tanaka, T.; Tanaka, T. (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol., 2002, (58), 23-29.
[http://dx.doi.org/10.1007/s00253-001-0858-7]
[2]
Maodzeka, A.; Wang, Q.; Chen, X.; Hussain, N.; Wu, D.; Jiang, L. Effects of 5-aminolevulinic acid on the bioactive compounds and seedling growth of oilseed rape (Brassica napus L.). J. Plant Biol., 2019, 62, 181-194.
[http://dx.doi.org/10.1007/s12374-018-0299-9]
[3]
Jiang, M.; Hong, K.; Mao, Y.; Ma, H.; Chen, T.; Wang, Z. Natural 5-aminolevulinic acid: Sources, biosynthesis, detection and applications. Front. Bioeng. Biotechnol., 2022, 10, 117.
[http://dx.doi.org/10.3389/fbioe.2022.841443]
[4]
Rebeiz, C.A.; Montazer-Zouhoor, A.; Hopen, H.J.; Wu, S.M. Photodynamic herbicides: 1. Concept and phenomenology. Enzyme Microb. Technol., 1984, 6, 390-396.
[http://dx.doi.org/10.1016/0141-0229(84)90012-7]
[5]
Wu, Y.; Liao, W.B.; Dawuda, M.M.; Hu, L.; Yu, J.H. 5-Aminolevulinic Acid (ALA) Biosynthetic and metabolic pathways and its role in higher plants: A review. Plant Growth Regul., 2019, 87(2), 357-374.
[http://dx.doi.org/10.1007/s10725-018-0463-8]
[6]
Wu, Y.; Hu, L.; Liao, W.; Dawuda, M.M.; Lyu, J.; Xie, J.; Yu, J. Foliar application of 5-aminolevulinic acid (ALA) alleviates NaCl stress in cucumber (Cucumis sativus L.) seedlings through the enhancement of ascorbate-glutathione cycle. Sci. hortic. , 2019, 257, 108761.
[http://dx.doi.org/10.1016/j.scienta.2019.108761]
[7]
Collaud, S.; Juzeniene, A.; Moan, J.; Lange, N. On the selectivity of 5-aminolevulinic acid-induced protoporphyrin IX formation. Curr. Med. Chem. Anti Cancer Agents, 2004, 4, 301-316.
[http://dx.doi.org/10.2174/1568011043352984]
[8]
Miletto, I.; Bottinelli, E.; Siviero, A.; Fabbri, D.; Calza, P.; Berlier, G. Mesoporous nanocarriers for the loading and stabilization of 5-aminolevulinic acid. J. Nanopart. Res., 2016, 18, 1-10.
[http://dx.doi.org/10.1007/s11051-016-3535-6]
[9]
Yi, Y.C.; Shih, I.T.; Yu, T.H.; Lee, Y.J.; Ng, I.S. Challenges and opportunities of bioprocessing 5-aminolevulinic acid using genetic and metabolic engineering: a critical review. Bioresour. Bioprocess., 2021, 8(100), 1-18.
[http://dx.doi.org/10.1186/s40643-021-00455-6]
[10]
Bunke, A.; Zerbe, O.; Schmid, H.; Burmeister, G.; Merkle, H.P.; Gander, B. Degradation mechanism and stability of 5-aminolevulinic acid. J. Pharm. Sci., 2000, 89(10), 1335-1341.
[11]
Li, K.; Dong, W.; Qiu, L.; Liu, Q.; Lv, G.; Peng, Y.; Xie, M.; Lin, J. A new GSH-responsive prodrug of 5-aminolevulinic acid for photodiagnosis and photodynamic therapy of tumors. Eur. J. Med. Chem., 2019, 181, 111582.
[http://dx.doi.org/10.1016/j.ejmech.2019.111582]
[12]
Tewari, K.M.; Eggleston, I.M. Chemical approaches for the enhancement of 5-aminolevulinic acid-based photodynamic therapy and photodiagnosis. Photochem. Photobiol. Sci., 2018, 17(11), 1553-1572.
[http://dx.doi.org/10.1039/c8pp00362a]
[13]
Jaffe, E.K.; Rajagopalan, J.S. Nuclear magnetic resonance studies of 5-aminolevulinate demonstrate multiple forms in aqueous solution. Bioorg. Chem., 1990, 18(4), 381-394.
[http://dx.doi.org/10.1016/0045-2068(90)90022-W]
[14]
Butler, A.R.; George, S. The nonenzymatic cyclic dimerisation of 5-aminolevulinic acid. Tetrahedron, 1992, 48(37), 7879-7886.
[http://dx.doi.org/10.1016/S0040-4020(01)80465-8]
[15]
Novo Rodriguez, M.; Huttmann, G.; Diddens, H.C. Chemical instability of 5-aminolevulinic acid (ALA) in aqueous solution. 5th International Photodynamic Association Biennial Meeting, 1995, 204-209.
[http://dx.doi.org/10.1117/12.203450]
[16]
Novo Rodriguez, M.; Hüttmann, G.; Diddens, H.C. Chemical instability of 5-aminolevulinic acid used in the fluorescence diagnosis of bladder tumours. J. Photochem. Photobiol. B. Biol., 1996, 34(2-3), 143-148.
[http://dx.doi.org/10.1016/1011-1344(96)07285-5]
[17]
McCarron, P.A.; Donnelly, R.F.; Woolfson, A.D.; Andrews, G.P. Analysis of pyrazine 2, 5-dipropionic acid in 5-aminolevulinic acid-loaded urological and topical delivery vehicles: Methodology and assay validation. J. Pharm. Biomed. Anal., 2005, 36(5), 1099-1105.
[http://dx.doi.org/10.1016/j.jpba.2004.09.004]
[18]
Kaliszewski, M.; Kwasny, M.; Juzeniene, A.; Juzenas, P.; Graczyk, A.; Ma, L.W.; Iani, V. Mikolajewska, p.; Moan, J. Biological activity of 5-aminolevulinic acid and its methyl ester after storage under different conditions. J. Photochem. Photobiol. B. Biol., 2007, 87(2), 67-72.
[http://dx.doi.org/10.1016/j.jphotobiol.2007.01.003]
[19]
Elfsson, B.; Wallin, I.; Eksborg, S.; Rudaeus, K.; Ros, A.M.; Ehrsson, H. Stability of 5-aminolevulinic acid in aqueous solution. Eur. J. Pharm. Sci., 1999, 7(2), 87-91.
[http://dx.doi.org/10.1016/S0928-0987(98)00009-8]
[20]
Galano, A.; Pérez-González, A.; Castañeda-Arriaga, R.; Muñoz-Rugeles, L.; Mendoza-Sarmiento, G.; Romero-Silva, A.; Ibarra-Escutia, A.; Rebollar-Zepeda, A.M.; León-Carmona, J.R.; Hernández-Olivares, M.A.; Alvarez-Idaboy, J.R. Empirically fitted parameters for calculating pKa values with small deviations from experiments using a simple computational strategy. J. Chem. Inf. Model., 2016, 56(9), 1714-1724.
[http://dx.doi.org/10.1021/acs.jcim.6b00310]
[21]
Gadmar, Ø.B.; Moan, J.; Scheie, E.; Ma, L.W.; Peng, Q. The stability of 5-aminolevulinic acid in solution. J. Photochem. Photobiol. B. Biol., 2002, 67(3), 187-193.
[http://dx.doi.org/10.1016/S1011-1344(02)00278-6]
[22]
Pérez-González, A.; Castañeda-Arriaga, R.; Verastegui, B.; Carreón-González, M.; Alvarez-Idaboy, J.R.; Galano, A. Estimation of empirically fitted parameters for calculating pKa values of thiols in a fast and reliable way. Theor. Chem. Acc., 2018, 137(1), 5.
[http://dx.doi.org/10.1007/s00214-017-2179-7]
[23]
Sigma Aldrich documents. Sigma-aldrich.com. NDH,PHC 01/05-1
[24]
de Blois, A. W.; Grouls, R. J. E.; Ackerman, E. W.; Wijdeven, W. J. A. Development of a stable solution of 5-aminolaevulinic acid for intracutaneous injection in photodynamic therapy Lasers Med. Sci.,, 2002, 17(3), 208-215.
[http://dx.doi.org/10.1007/s101030200030]
[25]
Shchavlev, A.E.; Pankratov, A.N.; Borodulin, V.B.; Chaplygina, O.A. DFT study of the monomers and dimers of 2-pyrrolidone: equilibrium structures, vibrational, orbital, topological, and NBO analysis of hydrogen-bonded interactions. J. Phys. Chem. A, 2005, 109(48), 10982-10996.
[http://dx.doi.org/10.1021/jp053753m]
[26]
Gaussian 16, Revision B.01Frisch, M. J.; Trucks, G. W.; Schlegel, H. B Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT; , 2016.
[27]
Zhao, Y.; Truhlar, D.G. How well can new-generation density functionals describe the energetics of bond-dissociation reactions producing radicals? J. Phys. Chem. A, 2008, 112(6), 1095-1099.
[http://dx.doi.org/10.1021/jp7109127]
[28]
Zhao, Y.; Schultz, N.E.; Truhlar, D.G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput., 2006, 2(2), 364-382.
[http://dx.doi.org/10.1021/ct0502763]
[29]
Zavala-Oseguera, C.; Alvarez-Idaboy, J.R.; Merino, G.; Galano, A. OH radical gas phase reactions with aliphatic ethers: A variational transition state theory study. J. Phys. Chem. A, 2009, 113(50), 13913-13920.
[http://dx.doi.org/10.1021/jp906144d]
[30]
Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B, 2009, 113(18), 6378-6396.
[http://dx.doi.org/10.1021/jp810292n]