Current Perspective and Mechanistic Insights on Bioactive Plant Secondary Metabolites for the Prevention and Treatment of Cardiovascular Diseases

Page: [157 - 176] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Cardiovascular diseases (CVDs) are one of the most prevalent medical conditions of modern era and are one of the primary causes of adult mortality in both developing and developed countries. Conventional medications such as use of aspirin, beta-blockers, statins and angiotensin- converting enzyme inhibitors involve use of drugs with many antagonistic effects. Hence, alternative therapies which are safe, effective, and relatively cheap are increasingly being investigated for the treatment and prevention of CVDs. The secondary metabolites of medicinal plants contain several bioactive compounds which have emerged as alternatives to toxic modern medicines. The detrimental effects of CVDs can be mitigated via the use of various bioactive phytochemicals such as catechin, isoflavones, quercetin etc. present in medicinal plants. Current review intends to accumulate previously published data over the years using online databases concerning herbal plant based secondary metabolites that can help in inhibition and treatment of CVDs. An in-depth review of various phytochemical constituents with therapeutic actions such as antioxidant, anti-inflammatory, vasorelaxant, anti-hypertensive and cardioprotective properties has been delineated. An attempt has been made to provide a probable mechanistic overview for the pertinent phytoconstituent which will help in achieving a better prognosis and effective treatment for CVDs.

Graphical Abstract

[2]
Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M. Global burden of cardiovascular diseases and risk factors, 1990-2019 Update From the GBD 2019 Study. J. Am. Coll. Cardiol., 2020, 76, 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[4]
World Health Organization WHO global report on traditional and complementary medicine; Geneva, 2019.
[5]
Silva, E.A.P.; Carvalho, J.S.; Guimarães, A.G.; Barreto, R.S.S.; Santos, M.R.V.; Barreto, A.S.; Quintans-Júnior, L.J. The use of terpenes and derivatives as a new perspective for cardiovascular disease treatment: A patent review (2008-2018). Expert Opin. Ther. Pat., 2019, 29(1), 43-53.
[http://dx.doi.org/10.1080/13543776.2019.1558211] [PMID: 30583706]
[6]
Behl, T.; Bungau, S.; Kumar, K.; Zengin, G.; Khan, F.; Kumar, A.; Kaur, R.; Venkatachalam, T.; Tit, D.M.; Vesa, C.M.; Barsan, G.; Mosteanu, D.E. Pleotropic effects of polyphenols in cardiovascular system. Biomed. Pharmacother., 2020, 130, 110714.
[http://dx.doi.org/10.1016/j.biopha.2020.110714] [PMID: 34321158]
[7]
Quiñones, M.; Miguel, M.; Aleixandre, A. Beneficial effects of polyphenols on cardiovascular disease. Pharmacol. Res., 2013, 68(1), 125-131.
[http://dx.doi.org/10.1016/j.phrs.2012.10.018] [PMID: 23174266]
[8]
Rodríguez-Rodríguez, P.; Ramiro-Cortijo, D.; Reyes-Hernández, C.G.; López de Pablo, A.L.; González, M.C.; Arribas, S.M. Implication of oxidative stress in fetal programming of cardiovascular disease. Front. Physiol., 2018, 9, 602.
[http://dx.doi.org/10.3389/fphys.2018.00602] [PMID: 29875698]
[9]
Serban, M.C.; Sahebkar, A.; Zanchetti, A.; Mikhailidis, D.P.; Howard, G.; Antal, D.; Andrica, F.; Ahmed, A.; Aronow, W.S.; Muntner, P.; Lip, G.Y.H.; Graham, I.; Wong, N.; Rysz, J.; Banach, M. Effects of quercetin on blood pressure: A systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc., 2016, 5(7), e002713.
[http://dx.doi.org/10.1161/JAHA.115.002713] [PMID: 27405810]
[10]
Toth, P.P.; Patti, A.M.; Nikolic, D.; Giglio, R.V.; Castellino, G.; Biancucci, T.; Geraci, F.; David, S.; Montalto, G.; Rizvi, A.; Rizzo, M. Bergamot reduces plasma lipids, atherogenic small dense LDL, and subclinical atherosclerosis in subjects with moderate hypercholesterolemia: A 6 months prospective Study. Front. Pharmacol., 2016, 6, 299.
[http://dx.doi.org/10.3389/fphar.2015.00299] [PMID: 26779019]
[11]
Cianciosi, D.; Simal-Gándara, J.; Forbes-Hernández, T.Y. The importance of berries in the human diet. Med. J. Nutrition Metab., 2019, 12(4), 335-340.
[http://dx.doi.org/10.3233/MNM-190366]
[12]
Lu, Y.; Lu, X.; Wang, L.; Yang, W. Resveratrol attenuates high fat diet-induced mouse cardiomyopathy through upregulation of estrogen related receptor-α. Eur. J. Pharmacol., 2019, 843, 88-95.
[http://dx.doi.org/10.1016/j.ejphar.2018.10.018] [PMID: 30342030]
[13]
Maayah, Z.H.; Alam, A.S.; Takahara, S.; Soni, S.; Ferdaoussi, M.; Matsumura, N.; Zordoky, B.N.; Eisenstat, D.D.; Dyck, J.R.B. Resveratrol reduces cardiac NLRP3-inflammasome activation and systemic inflammation to lessen doxorubicin-induced cardiotoxicity in juvenile mice. FEBS Lett., 2021, 595(12), 1681-1695.
[http://dx.doi.org/10.1002/1873-3468.14091] [PMID: 33876420]
[14]
Matsumura, N.; Takahara, S.; Maayah, Z.H.; Parajuli, N.; Byrne, N.J.; Shoieb, S.M.; Soltys, C.L.M.; Beker, D.L.; Masson, G.; El-Kadi, A.O.S.; Dyck, J.R.B. Resveratrol improves cardiac function and exercise performance in MI-induced heart failure through the inhibition of cardiotoxic HETE metabolites. J. Mol. Cell. Cardiol., 2018, 125, 162-173.
[http://dx.doi.org/10.1016/j.yjmcc.2018.10.023] [PMID: 30381233]
[15]
Kazemirad, H.; Kazerani, H.R. The anti-arrhythmic effects of pomegranate (Punica granatum) are mainly mediated by nitric oxide. J. Berry Res., 2020, 10(4), 573-584.
[http://dx.doi.org/10.3233/JBR-200535]
[16]
Radan, M.; Dianat, M.; Badavi, M.; Mard, S.A.; Bayati, V.; Goudarzi, G. Gallic acid protects particulate matter (PM10) triggers cardiac oxidative stress and inflammation causing heart adverse events in rats. Environ. Sci. Pollut. Res. Int., 2019, 26(18), 18200-18207.
[http://dx.doi.org/10.1007/s11356-019-05223-w] [PMID: 31041709]
[17]
Hu, Y.; Li, Y.; Sampson, L.; Wang, M.; Manson, J.E.; Rimm, E.; Sun, Q. Lignan intake and risk of coronary heart disease. J. Am. Coll. Cardiol., 2021, 78(7), 666-678.
[http://dx.doi.org/10.1016/j.jacc.2021.05.049] [PMID: 34384548]
[18]
Eweda, S.M.; Newairy, A.S.A.; Abdou, H.M.; Gaber, A.S. Bisphenol A-induced oxidative damage in the hepatic and cardiac tissues of rats: The modulatory role of sesame lignans. Exp. Ther. Med., 2020, 19(1), 33-44.
[PMID: 31853270]
[19]
Zych, M.; Wojnar, W.; Borymski, S. Szałabska, K.; Bramora, P.; Kaczmarczyk-Sedlak, I. Effect of rosmarinic acid and sinapic acid on oxidative stress parameters in the cardiac tissue and serum of type 2 diabetic female rats. Antioxidants, 2019, 8(12), 579.
[http://dx.doi.org/10.3390/antiox8120579] [PMID: 31771099]
[20]
Tian, K.; Li, J.; Xu, S. Rutaecarpine: A promising cardiovascular protective alkaloid from Evodia rutaecarpa (Wu Zhu Yu). Pharmacol. Res., 2019, 141, 541-550.
[http://dx.doi.org/10.1016/j.phrs.2018.12.019] [PMID: 30616017]
[21]
Zhang, Y.; Li, M.; Li, X.; Zhang, T.; Qin, M.; Ren, L. Isoquinoline alkaloids and indole alkaloids attenuate aortic atherosclerosis in apolipoprotein E deficient mice: A systematic review and meta-analysis. Front. Pharmacol., 2018, 9, 602.
[http://dx.doi.org/10.3389/fphar.2018.00602] [PMID: 29922166]
[22]
Li, Q.; Wo, D.; Huang, Y.; Yu, N.; Zeng, J.; Chen, H.; Wang, H.; Bao, L.; Lin, S.; Chu, J.; Peng, J. Alkaloids from Nelumbinis Plumula (AFNP) ameliorate aortic remodeling via RhoA/ROCK pathway. Biomed. Pharmacother., 2019, 112, 108651.
[http://dx.doi.org/10.1016/j.biopha.2019.108651] [PMID: 30784931]
[23]
Boğa, M; Bingül, M.; Özkan, EE.; Şahin, H. Chemical and biological perspectives of monoterpene indole alkaloids from rauwolfia species. In: Studies in Natural Products Chemistry; Elsevier,, 2019, 61, pp. 251-299.
[24]
Meng, Y.; Liu, Y.; Hu, Z.; Zhang, Y.; Ni, J.; Ma, Z.; Liao, H.; Wu, Q.; Tang, Q. Sanguinarine attenuates lipopolysaccharide-induced inflammation and apoptosis by inhibiting the TLR4/NF-κB Pathway in H9c2 cardiomyocytes. Curr. Med. Sci., 2018, 38(2), 204-211.
[http://dx.doi.org/10.1007/s11596-018-1867-4] [PMID: 30074177]
[25]
Jiang, C.; Tong, Y.L.; Zhang, D.; Liu, L.Z.; Wang, J.F. Sinomenine prevents the development of cardiomyopathy in diabetic rats by inhibiting inflammatory responses and blocking activation of NF-κB. Gen. Physiol. Biophys., 2017, 36(1), 65-74.
[http://dx.doi.org/10.4149/gpb_2016033] [PMID: 27901470]
[26]
Kumar, A.; Aswal, S.; Semwal, R.B.; Chauhan, A.; Joshi, S.K.; Semwal, D.K. Role of plant-derived alkaloids against diabetes and diabetes-related complications: A mechanism-based approach. Phytochem. Rev., 2019, 18(5), 1277-1298.
[http://dx.doi.org/10.1007/s11101-019-09648-6]
[27]
Natella, F.; Scaccini, C. Role of coffee in modulation of diabetes risk. Nutr. Rev., 2012, 70(4), 207-217.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00470.x] [PMID: 22458694]
[28]
Hong, S.; Li, B.; Liu, Y.; Bu, H. Gingkgo active ingredient extraction and separation method and use of extracted active matters in medicines for treating cardiovascular and cerebrovascular diseases., Patent China CN102416027, 2012.
[29]
Cho, I.J.; Choung, S.Y.; Hwang, Y.C.; Ahn, K.J.; Chung, H.Y.; Jeong, I.K. Aster spathulifolius Maxim extract reduces body weight and fat mass in obese humans. Nutr. Res., 2016, 36(7), 671-678.
[http://dx.doi.org/10.1016/j.nutres.2016.03.001] [PMID: 27333958]
[30]
Gao, P.; Li, S.; Liu, K.; Sun, C.; Song, S.; Li, L. Antiplatelet aggregation and antithrombotic benefits of terpenes and flavones from hawthorn leaf extract isolated using the activity-guided method. Food Funct., 2019, 10(2), 859-866.
[http://dx.doi.org/10.1039/C8FO01862F] [PMID: 30681694]
[31]
Camargo, S.B.; Simões, L.O.; Medeiros, C.F.A.; de Melo Jesus, A.; Fregoneze, J.B.; Evangelista, A.; Villarreal, C.F.; Araújo, A.A.S.; Quintans-Júnior, L.J.; Silva, D.F. Antihypertensive potential of linalool and linalool complexed with β-cyclodextrin: Effects of subchronic treatment on blood pressure and vascular reactivity. Biochem. Pharmacol., 2018, 151, 38-46.
[http://dx.doi.org/10.1016/j.bcp.2018.02.014] [PMID: 29454617]
[32]
Vasconcelos, C.M.L.; Oliveira, I.S.N.; Santos, J.N.A.; Souza, A.A.; Menezes-Filho, J.E.R.; Silva Neto, J.A.; Lima, T.C.; de Sousa, D.P. Negative inotropism of terpenes on guinea pig left atrium: Structure-activity relationships. Nat. Prod. Res., 2018, 32(12), 1428-1431.
[http://dx.doi.org/10.1080/14786419.2017.1344658] [PMID: 28641448]
[33]
Ammon, H.; Müller, A. Forskolin: From an ayurvedic remedy to a modern agent. Planta Med., 1985, 51(6), 473-477.
[http://dx.doi.org/10.1055/s-2007-969566] [PMID: 17345261]
[34]
Lymperopoulos, A. Clinical pharmacology of cardiac cyclic AMP in human heart failure: Too much or too little? Expert Rev. Clin. Pharmacol., 2023, 16(7), 623-630.
[http://dx.doi.org/10.1080/17512433.2023.2233891] [PMID: 37403791]
[35]
Zhang, X.; Ke, P.X.; Yuan, X.; Zhang, G.P.; Chen, W.L.; Zhang, G.S. Forskolin protected against streptozotocin-induced diabetic cardiomyopathy via inhibition of oxidative stress and cardiac fibrosis in mice. BioMed Res. Int., 2021, 2021, 1-8.
[http://dx.doi.org/10.1155/2021/8881843] [PMID: 33564685]
[36]
Hao, H.; Ma, X.; Chen, H.; Zhu, L.; Xu, Z.; Li, Q.; Xu, C.; Zhang, Y.; Peng, Z.; Wang, M. The cyclic adenosine monophosphate elevating medicine, forskolin, reduces neointimal formation and atherogenesis in mice. J. Cell. Mol. Med., 2020, 24(17), 9638-9645.
[http://dx.doi.org/10.1111/jcmm.15476] [PMID: 32810369]
[37]
Mohammed, K.P.; Aarey, A.; Tamkeen, S.; Jahan, P. Forskolin: Genotoxicity assessment in Allium cepa. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2015, 777, 29-32.
[http://dx.doi.org/10.1016/j.mrgentox.2014.11.005] [PMID: 25726172]
[38]
Ruhee, R.T.; Roberts, L.A.; Ma, S.; Suzuki, K. Organosulfur compounds: A review of their anti-inflammatory effects in human health. Front. Nutr., 2020, 7, 64.
[http://dx.doi.org/10.3389/fnut.2020.00064] [PMID: 32582751]
[39]
Walag, A.M.P.; Ahmed, O.; Jeevanandam, J.; Akram, M.; Ephraim-Emmanuel, B.C.; Egbuna, C. Health benefits of organosulfur compounds.In: Functional Foods and Nutraceuticals; Springer: Cham, 2020, pp. 445-472.
[http://dx.doi.org/10.1007/978-3-030-42319-3_21]
[40]
Chang, X.; Zhang, T.; Zhang, W.; Zhao, Z.; Sun, J. Natural drugs as a treatment strategy for cardiovascular disease through the regulation of oxidative stress. Oxid. Med. Cell. Longev., 2020, 2020, 1-20.
[http://dx.doi.org/10.1155/2020/5430407] [PMID: 33062142]
[41]
Shaito, A.; Thuan, D.T.B.; Phu, H.T.; Nguyen, T.H.D.; Hasan, H.; Halabi, S.; Abdelhady, S.; Nasrallah, G.K.; Eid, A.H.; Pintus, G. Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety. Front. Pharmacol., 2020, 11, 422.
[http://dx.doi.org/10.3389/fphar.2020.00422] [PMID: 32317975]
[42]
Shah, S.M.A.; Akram, M.; Riaz, M.; Munir, N.; Rasool, G. Cardioprotective potential of plant-derived molecules: A scientific and medicinal approach. Dose Response, 2019, 17(2)
[http://dx.doi.org/10.1177/1559325819852243] [PMID: 31205459]
[43]
Liu, C.; Huang, Y. Chinese herbal medicine on cardiovascular diseases and the mechanisms of action. Front. Pharmacol., 2016, 7, 469.
[http://dx.doi.org/10.3389/fphar.2016.00469] [PMID: 27990122]
[44]
Ahmad, P.; Alvi, S.S.; Khan, M.S. Functioning of organosulfur compounds from garlic (allium sativum linn) in targeting risk factor-mediated atherosclerosis: A cross talk between alternative and modern medicine.In: Natural Bio-active Compounds; Springer: Singapore, 2019, pp. 561-585.
[45]
El-Sabe, B.; Magdy, B.A.; Wasef, G.L. Chemical constituents and pharmacological activities of Garlic Allium sativum L. Nutrients, 2020, 12, 872.
[http://dx.doi.org/10.3390/nu12030872] [PMID: 32213941]
[46]
Ho, X.L.; Tsen, S.Y.; Ng, M.Y.; Lee, W.N.; Low, A.; Loke, W.M. Aged garlic supplement protects against lipid peroxidation in hypercholesterolemic individuals. J. Med. Food, 2016, 19(10), 931-937.
[http://dx.doi.org/10.1089/jmf.2016.3693] [PMID: 27627579]
[47]
Ait Abderrahim, L.; Taibi, K.; Boussaid, M.; Al-Shara, B.; Ait Abderrahim, N.; Ait Abderrahim, S. Allium sativum mitigates oxidative damages induced by Microcystin-LR in heart and liver tissues of mice. Toxicon, 2021, 200, 30-37.
[http://dx.doi.org/10.1016/j.toxicon.2021.06.018] [PMID: 34217748]
[48]
Bradley, J.M.; Organ, C.L.; Lefer, D.J. Garlic-derived organic polysulfides and myocardial protection. J. Nutr., 2016, 146(2), 403S-409S.
[http://dx.doi.org/10.3945/jn.114.208066] [PMID: 26764335]
[49]
Morihara, N.; Hino, A.; Yamaguchi, T.; Suzuki, J. Aged garlic extract suppresses the development of atherosclerosis in apolipoprotein e-knockout mice. J. Nutr., 2016, 146(2), 460S-463S.
[http://dx.doi.org/10.3945/jn.114.206953] [PMID: 26764329]
[50]
Li, Z.; Xu, S.; Liu, P. Salvia miltiorrhizaBurge (Danshen): A golden herbal medicine in cardiovascular therapeutics. Acta Pharmacol. Sin., 2018, 39(5), 802-824.
[http://dx.doi.org/10.1038/aps.2017.193] [PMID: 29698387]
[51]
Chrysant, S.G.; Chrysant, G.S. Herbs used for the treatment of hypertension and their mechanism of action. Curr. Hypertens. Rep., 2017, 19(9), 77.
[http://dx.doi.org/10.1007/s11906-017-0775-5] [PMID: 28921053]
[52]
Zhu, J.; Xu, Y.; Ren, G.; Hu, X.; Wang, C.; Yang, Z.; Li, Z.; Mao, W.; Lu, D. Tanshinone IIA Sodium sulfonate regulates antioxidant system, inflammation, and endothelial dysfunction in atherosclerosis by downregulation of CLIC1. Eur. J. Pharmacol., 2017, 815, 427-436.
[http://dx.doi.org/10.1016/j.ejphar.2017.09.047] [PMID: 28970012]
[53]
Ren, J.; Fu, L.; Nile, S.H.; Zhang, J.; Kai, G. Salvia miltiorrhiza in treating cardiovascular diseases: A review on its pharmacological and clinical applications. Front. Pharmacol., 2019, 10, 753.
[http://dx.doi.org/10.3389/fphar.2019.00753] [PMID: 31338034]
[54]
Ghaffari, S.; Roshanravan, N. Saffron; An updated review on biological properties with special focus on cardiovascular effects. Biomed. Pharmacother., 2019, 109, 21-27.
[http://dx.doi.org/10.1016/j.biopha.2018.10.031] [PMID: 30391705]
[55]
Verma, T.; Sinha, M.; Bansal, N.; Yadav, S.R.; Shah, K.; Chauhan, N.S. Plants used as antihypertensive. Nat. Prod. Bioprospect., 2021, 11(2), 155-184.
[http://dx.doi.org/10.1007/s13659-020-00281-x] [PMID: 33174095]
[56]
Zeka, K.; Marrazzo, P.; Micucci, M.; Ruparelia, K.C.; Arroo, R.R.J.; Macchiarelli, G.; Annarita Nottola, S.; Continenza, M.A.; Chiarini, A.; Angeloni, C.; Hrelia, S.; Budriesi, R. Activity of antioxidants from crocus sativus l. petals: Potential preventive effects towards cardiovascular system. Antioxidants, 2020, 9(11), 1102.
[http://dx.doi.org/10.3390/antiox9111102] [PMID: 33182461]
[57]
Naveed, M.; Majeed, F.; Taleb, A.; Zubair, H.M.; Shumzaid, M.; Farooq, M.A.; Baig, M.M.F.A.; Abbas, M.; Saeed, M.; Changxing, L. A review of medicinal plants in cardiovascular disorders: Benefits and risks. Am. J. Chin. Med., 2020, 48(2), 259-286.
[http://dx.doi.org/10.1142/S0192415X20500147] [PMID: 32345058]
[58]
Modesto, P.N.; Polegato, B.F.; dos Santos, P.P.; Grassi, L.D.V.; Molina, L.C.C.; Bazan, S.G.Z.; Pereira, E.J.; Fernandes, A.A.H.; Fabro, A.T.; Androcioli, V.N.; Roscani, M.G.; de Paiva, S.A.R.; Zornoff, L.A.M.; Minicucci, M.F.; Azevedo, P.S. Green tea (camellia sinensis) extract increased topoisomerase IIβ improved antioxidant defense, and attenuated cardiac remodeling in an acute doxorubicin toxicity model. Oxid. Med. Cell. Longev., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/8898919] [PMID: 34035878]
[59]
Keller, A.; Wallace, T.C. Tea intake and cardiovascular disease: An umbrella review. Ann. Med., 2021, 53(1), 929-944.
[http://dx.doi.org/10.1080/07853890.2021.1933164] [PMID: 34396859]
[60]
Thangaraju, MM; Tamatam, A; Bhat, P V.; Deshetty, UM; Babusha, ST; Khanum, F. Terminalia arjuna extract attenuates isoproterenol-induced cardiac stress in wistar rats via an antiapoptotic pathway. Proc. Natl. Acad. Sci., India Sect. B, 2020, 90, 1101-1112.
[61]
Acharya, J.; Priya, N.; Mathur, K.C.; Sharma, A.; Agrawal, R.P.; Agarwal, V. Effect of Terminalia Arjuna on total platelet count and lipid profile in patients of coronary artery disease. Adv. Human Biol., 2019, 9(1), 98.
[http://dx.doi.org/10.4103/AIHB.AIHB_8_18]
[62]
Kumar, G.; Saleem, N.; Kumar, S.; Maulik, S.K.; Ahmad, S.; Sharma, M.; Goswami, S.K. Transcriptomic validation of the protective effects of aqueous bark extract of terminalia arjuna (Roxb.) on isoproterenol-induced cardiac hypertrophy in rats. Front. Pharmacol., 2019, 10, 1443.
[http://dx.doi.org/10.3389/fphar.2019.01443] [PMID: 31920643]
[63]
Majdalawieh, A.F.; Yousef, S.M.; Abu-Yousef, I.A. Thymoquinone, a major constituent in Nigella sativa seeds, is a potential preventative and treatment option for atherosclerosis. Eur. J. Pharmacol., 2021, 909, 174420.
[http://dx.doi.org/10.1016/j.ejphar.2021.174420] [PMID: 34391767]
[64]
Ahmad, M.F.; Ahmad, F.A.; Ashraf, S.A.; Saad, H.H.; Wahab, S.; Khan, M.I.; Ali, M.; Mohan, S.; Hakeem, K.R.; Athar, M.T. An updated knowledge of Black seed (Nigella sativa Linn.): Review of phytochemical constituents and pharmacological properties. J. Herb. Med., 2021, 25, 100404.
[http://dx.doi.org/10.1016/j.hermed.2020.100404] [PMID: 32983848]
[65]
Musharraf, M.H.; Saiful Islam, A.M. Prophetic medicine is the cheapest, safest and the best remedy in the prevention and treatment of hypertension (high blood pressure) - a mini review. Int. J. Mol. Biol., 2018, 3, 245-250.
[66]
Mollazadeh, H.; Mahdian, D.; Hosseinzadeh, H. Medicinal plants in treatment of hypertriglyceridemia: A review based on their mechanisms and effectiveness. Phytomedicine, 2019, 53, 43-52.
[http://dx.doi.org/10.1016/j.phymed.2018.09.024] [PMID: 30668411]
[67]
Kooshki, A.; Tofighiyan, T.; Rastgoo, N.; Rakhshani, M.H.; Miri, M. Effect of Nigella sativa oil supplement on risk factors for cardiovascular diseases in patients with type 2 diabetes mellitus. Phytother. Res., 2020, 34(10), 2706-2711.
[http://dx.doi.org/10.1002/ptr.6707] [PMID: 32510754]
[68]
Razali, N.N.M.; Ng, C.T.; Fong, L.Y. Cardiovascular protective effects of centella asiatica and its triterpenes: A review. Planta Med., 2019, 85(16), 1203-1215.
[http://dx.doi.org/10.1055/a-1008-6138] [PMID: 31539918]
[69]
Biswas, D.; Mandal, S.; Chatterjee Saha, S.; Tudu, C.K.; Nandy, S.; Batiha, G.E.S.; Shekhawat, M.S.; Pandey, D.K.; Dey, A. Ethnobotany, phytochemistry, pharmacology, and toxicity of Centella asiatica (L.) Urban: A comprehensive review. Phytother. Res., 2021, 35(12), 6624-6654.
[http://dx.doi.org/10.1002/ptr.7248] [PMID: 34463404]
[70]
Hesari, M.; Mohammadi, P.; Khademi, F.; Shackebaei, D.; Momtaz, S.; Moasefi, N.; Farzaei, M.H.; Abdollahi, M. Current advances in the use of nanophytomedicine therapies for human cardiovascular diseases. Int. J. Nanomedicine, 2021, 16, 3293-3315.
[http://dx.doi.org/10.2147/IJN.S295508] [PMID: 34007178]
[71]
Augusta Rosdah, A.; Lusiana, E.; Reagan, M.; Akib, A.; Khairunnisa, F.; Husna, A. A preliminary study: Centella asiatica extract modulates acetylcholine in the heart. J. Phys. Conf. Ser., 2019, 1246(1), 012048.
[http://dx.doi.org/10.1088/1742-6596/1246/1/012048]
[72]
Tan, S.C.; Bhattamisra, S.K.; Chellappan, D.K.; Candasamy, M. Actions and therapeutic potential of madecassoside and other major constituents of centella asiatica: A review. Appl. Sci., 2021, 11(18), 8475.
[http://dx.doi.org/10.3390/app11188475]
[73]
Shabab, S.; Gholamnezhad, Z.; Mahmoudabady, M. Protective effects of medicinal plant against diabetes induced cardiac disorder: A review. J. Ethnopharmacol., 2021, 265, 113328.
[http://dx.doi.org/10.1016/j.jep.2020.113328] [PMID: 32871233]
[74]
Wang, D.; Özen, C.; Abu-Reidah, I.M.; Chigurupati, S.; Patra, J.K.; Horbanczuk, J.O. Jóźwik, A.; Tzvetkov, N.T.; Uhrin, P.; Atanasov, A.G. Vasculoprotective effects of pomegranate (Punica granatum L.). Front. Pharmacol., 2018, 9, 544.
[http://dx.doi.org/10.3389/fphar.2018.00544] [PMID: 29881352]
[75]
Albarakti Ashraf, Y. Protective effects of pomegranate peel extract on cardiac muscle in streptozotocin-induced diabetes in rats. Int. J. Toxicol. Pharmacol. Res., 2016, 8, 379-383.
[76]
Kirichenko, T.V.; Sukhorukov, V.N.; Markin, A.M.; Nikiforov, N.G.; Liu, P.Y.; Sobenin, I.A.; Tarasov, V.V.; Orekhov, A.N.; Aliev, G. Medicinal plants as a potential and successful treatment option in the context of atherosclerosis. Front. Pharmacol., 2020, 11, 403.
[http://dx.doi.org/10.3389/fphar.2020.00403] [PMID: 32322201]
[77]
Rafieian-Kopaei, M.; Sedighi, M.; Bahmani, M.; Asgary, S.; Beyranvand, F. A review of plant-based compounds and medicinal plants effective on atherosclerosis. J. Res. Med. Sci., 2017, 22(1), 30.
[http://dx.doi.org/10.4103/1735-1995.202151] [PMID: 28461816]
[78]
Patel, I.B.; Atar, M.A.; Ali, S.A. Punica granatum peel extract ameliorates doxorubicin induced cardiotoxicity. Anal. Chem. Lett., 2019, 9(6), 835-844.
[http://dx.doi.org/10.1080/22297928.2019.1708789]
[79]
Fourati, M.; Smaoui, S.; Hlima, H.B.; Elhadef, K.; Braïek, O.B.; Ennouri, K.; Mtibaa, A.C.; Mellouli, L. Bioactive compounds and pharmacological potential of pomegranate (punica granatum) seeds - A review. Plant Foods Hum. Nutr., 2020, 75(4), 477-486.
[http://dx.doi.org/10.1007/s11130-020-00863-7] [PMID: 33040298]
[80]
Mahleyuddin, N.N.; Moshawih, S.; Ming, L.C.; Zulkifly, H.H.; Kifli, N.; Loy, M.J.; Sarker, M.M.R.; Al-Worafi, Y.M.; Goh, B.H.; Thuraisingam, S.; Goh, H.P. Coriandrum sativum L.: A review on ethnopharmacology, phytochemistry, and cardiovascular benefits. Molecules, 2021, 27(1), 209.
[http://dx.doi.org/10.3390/molecules27010209] [PMID: 35011441]
[81]
Dhyani, N.; Parveen, A.; Siddiqi, A.; Hussain, M.E.; Fahim, M. Cardioprotective efficacy of Coriandrum sativum (L.) seed extract in heart failure rats through modulation of endothelin receptors and antioxidant potential. J. Diet. Suppl., 2020, 17(1), 13-26.
[http://dx.doi.org/10.1080/19390211.2018.1481483] [PMID: 30299180]
[82]
Abbassi, A.; Mahmoudi, H.; Zaouali, W.; M’Rabet, Y.; Casabianca, H.; Hosni, K. Enzyme-aided release of bioactive compounds from coriander (Coriandrum sativum L.) seeds and their residue by-products and evaluation of their antioxidant activity. J. Food Sci. Technol., 2018, 55(8), 3065-3076.
[http://dx.doi.org/10.1007/s13197-018-3229-4] [PMID: 30065416]
[83]
Zhang, H.A.; Kitts, D.D. Turmeric and its bioactive constituents trigger cell signaling mechanisms that protect against diabetes and cardiovascular diseases. Mol. Cell. Biochem., 2021, 476(10), 3785-3814.
[http://dx.doi.org/10.1007/s11010-021-04201-6] [PMID: 34106380]
[84]
Li, C.; Miao, X.; Li, F.; Adhikari, B.K.; Liu, Y.; Sun, J.; Zhang, R.; Cai, L.; Liu, Q.; Wang, Y. Curcuminoids: Implication for inflammation and oxidative stress in cardiovascular diseases. Phytother. Res., 2019, 33(5), 1302-1317.
[http://dx.doi.org/10.1002/ptr.6324] [PMID: 30834628]
[85]
Pourbagher-Shahri, A.M.; Farkhondeh, T.; Ashrafizadeh, M.; Talebi, M.; Samargahndian, S. Curcumin and cardiovascular diseases: Focus on cellular targets and cascades. Biomed. Pharmacother., 2021, 136, 111214.
[http://dx.doi.org/10.1016/j.biopha.2020.111214] [PMID: 33450488]
[86]
Patonah, H.; Agus, S.; Arif, H.; Yani, M. Effect of Curcuma longa L. extract on noninvasive cardiovascular biomarkers in hypertension animal models. J. Appl. Pharm. Sci., 2021, 11, 85-89.
[http://dx.doi.org/10.7324/JAPS.2021.110812]
[87]
Abdel-Mageid, A.D.; Abou-Salem, M.E.S.; Salaam, N.M.H.A.; El-Garhy, H.A.S. The potential effect of garlic extract and curcumin nanoparticles against complication accompanied with experimentally induced diabetes in rats. Phytomedicine, 2018, 43, 126-134.
[http://dx.doi.org/10.1016/j.phymed.2018.04.039] [PMID: 29747745]
[88]
Smith, C.; Swart, A. Aspalathus linearis (Rooibos) - a functional food targeting cardiovascular disease. Food Funct., 2018, 9(10), 5041-5058.
[http://dx.doi.org/10.1039/C8FO01010B] [PMID: 30183052]
[89]
Sun, S.; Yang, S.; An, N.; Wang, G.; Xu, Q.; Liu, J.; Mao, Y. Astragalus polysaccharides inhibits cardiomyocyte apoptosis during diabetic cardiomyopathy via the endoplasmic reticulum stress pathway. J. Ethnopharmacol., 2019, 238, 111857.
[http://dx.doi.org/10.1016/j.jep.2019.111857] [PMID: 30959142]
[90]
Kulkarni, Y.A.; Laddha, A.P. Effect of bauhinia variegata leaf extract in diabetic cardiomyopathy. FASEB J., 2019, 33(S1), 33.
[http://dx.doi.org/10.1096/fasebj.2019.33.1_supplement.818.12]
[91]
Chen, T.S.; Liou, S.Y.; Lin, H.H.; Hung, M.Y.; Lin, C.C.; Lin, Y.M.; Lin, K.H.; Padma, V.V.; Yao, C.H.; Kuo, W.W.; Huang, C.Y. Oral administration of green tea Epigallocatechin-3-gallate reduces oxidative stress and enhances restoration of cardiac function in diabetic rats receiving autologous transplantation of adipose-derived stem cells. Arch. Physiol. Biochem., 2021, 127(1), 82-89.
[http://dx.doi.org/10.1080/13813455.2019.1614631] [PMID: 31112046]
[92]
Dong, X.; Fu, J.; Yin, X.; Yang, C.; Zhang, X.; Wang, W.; Du, X.; Wang, Q.; Ni, J. Cassiae semen: A review of its phytochemistry and pharmacology. Mol. Med. Rep., 2017, 16(3), 2331-2346.
[http://dx.doi.org/10.3892/mmr.2017.6880] [PMID: 28677746]
[93]
Feidantsis, K.; Mellidis, K.; Galatou, E.; Sinakos, Z.; Lazou, A. Treatment with crocin improves cardiac dysfunction by normalizing autophagy and inhibiting apoptosis in STZ-induced diabetic cardiomyopathy. Nutr. Metab. Cardiovasc. Dis., 2018, 28(9), 952-961.
[http://dx.doi.org/10.1016/j.numecd.2018.06.005] [PMID: 30017436]
[94]
Sudjarwo, A.; Anwar, S.; Eraiko, C.; Wardani, K.; Koerniasari, G. Cardioprotective activity of chitosan-pinus merkusii extract nanoparticles against lead acetate induced cardiac cell damage in rat. Rasayan J. Chem., 2019, 12, 184-191.
[http://dx.doi.org/10.31788/RJC.2019.1215049]
[95]
Ibrar, M.; Khan, M.A. Abdullah; Nisar, M.; Khan, M. Evaluation of Paeonia emodi for its cardioprotective potentials: An investigative study towards possible mechanism. J. Ethnopharmacol., 2019, 231, 57-65.
[http://dx.doi.org/10.1016/j.jep.2018.10.041] [PMID: 30391709]
[96]
Mridula, K.; Parthibhan, S.; Senthil Kumar, T.; Rao, M.V. In vitro organogenesis from Tinospora cordifolia (Willd.) Miers - A highly valuable medicinal plant. S. Afr. J. Bot., 2017, 113, 84-90.
[http://dx.doi.org/10.1016/j.sajb.2017.08.003]
[97]
Badore, N.S.; Das, P.K.; Pillai, S.; Thakur, A. Role of ginkgo biloba extract, against isoproterenol induced cardiac toxicity in rats. Indian J. Pharmaceut. Edu. Res., 2017, 51(4s), s691-s699.
[http://dx.doi.org/10.5530/ijper.51.4s.100]
[98]
Asgary, S.; Sahebkar, A.; Afshani, M.R.; Keshvari, M.; Haghjooyjavanmard, S.; Rafieian-Kopaei, M. Clinical evaluation of blood pressure lowering, endothelial function improving, hypolipidemic and anti-inflammatory effects of pomegranate juice in hypertensive subjects. Phytother. Res., 2014, 28(2), 193-199.
[http://dx.doi.org/10.1002/ptr.4977] [PMID: 23519910]
[99]
Kontogianni, M.D.; Panagiotakos, D.B.; Chrysohoou, C.; Pitsavos, C.; Zampelas, A.; Stefanadis, C. The impact of olive oil consumption pattern on the risk of acute coronary syndromes: The cardio2000 case-control study. Clin. Cardiol., 2007, 30(3), 125-129.
[http://dx.doi.org/10.1002/clc.20043] [PMID: 17385704]
[100]
Draijer, R.; de Graaf, Y.; Slettenaar, M.; de Groot, E.; Wright, C. Consumption of a polyphenol-rich grape-wine extract lowers ambulatory blood pressure in mildly hypertensive subjects. Nutrients, 2015, 7(5), 3138-3153.
[http://dx.doi.org/10.3390/nu7053138] [PMID: 25942487]
[101]
Wong, S.K.; Chin, K.Y.; Ima-Nirwana, S. A review on the molecular basis underlying the protective effects of Andrographis paniculata and andrographolide against myocardial injury. Drug Des. Devel. Ther., 2021, 15, 4615-4632.
[http://dx.doi.org/10.2147/DDDT.S331027] [PMID: 34785890]
[102]
Tan Maria Carmen, S.; Oyong Glenn, G. Chemical constituents of andrographis paniculata (Burm.f.). IJPSR, 2016, 8(8), 1398-1402.
[103]
Pacôme, O.A.; Souleymane, M.; Lydie, B.; Dodehe, Y.; Hilaire, K.T.; N’Guessan, J.D. Cardioprotective and anti-inflammatory activities of a polyphenols enriched extract of Hibiscus sabdariffa petal extracts in wistar rats. J. Pharmacogn. Phytochem., 2015, 4, 57-63.
[104]
Nandave, M.; Ojha, S.K.; Joshi, S.; Kumari, S.; Arya, D.S. Moringa oleifera leaf extract prevents isoproterenol-induced myocardial damage in rats: Evidence for an antioxidant, antiperoxidative, and cardioprotective intervention. J. Med. Food, 2009, 12(1), 47-55.
[http://dx.doi.org/10.1089/jmf.2007.0563] [PMID: 19298195]
[105]
Lapuente, M.; Estruch, R.; Shahbaz, M.; Casas, R. Relation of fruits and vegetables with major cardiometabolic risk factors, markers of oxidation, and inflammation. Nutrients, 2019, 11(10), 2381.
[http://dx.doi.org/10.3390/nu11102381] [PMID: 31590420]
[106]
Adab, Z.; Eghtesadi, S.; Vafa, M.R.; Heydari, I.; Shojaii, A.; Haqqani, H.; Arablou, T.; Eghtesadi, M. Effect of turmeric on glycemic status, lipid profile, hs‐CRP, and total antioxidant capacity in hyperlipidemic type 2 diabetes mellitus patients. Phytother. Res., 2019, 33(4), 1173-1181.
[http://dx.doi.org/10.1002/ptr.6312] [PMID: 30859660]
[107]
Yang, Y.; Li, X.; Peng, L.; An, L.; Sun, N.; Hu, X.; Zhou, P.; Xu, Y.; Li, P.; Chen, J. Tanshindiol C inhibits oxidized low-density lipoprotein induced macrophage foam cell formation via a peroxiredoxin 1 dependent pathway. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(3), 882-890.
[http://dx.doi.org/10.1016/j.bbadis.2017.12.033] [PMID: 29287777]
[108]
Akhtar, S.; Rauf, A.; Imran, M.; Qamar, M.; Riaz, M.; Mubarak, M.S. Black carrot (Daucus carota L.), dietary and health promoting perspectives of its polyphenols: A review. Trends Food Sci. Technol., 2017, 66, 36-47.
[http://dx.doi.org/10.1016/j.tifs.2017.05.004]
[109]
Hitit, M.; Corum, O.; Corum, D.D.; Donmez, H.; Cetin, G.; Dik, B.; Er, A. A cardioprotective role of nerium oleander with the expression of hypoxia inducible factor 2A mRNA by increasing antioxidant enzymes in rat heart tissue. Acta Sci. Vet., 2018, 46(1), 8.
[http://dx.doi.org/10.22456/1679-9216.82557]
[110]
Saravanan, G.; Ponmurugan, P.; Sathiyavathi, M.; Vadivukkarasi, S.; Sengottuvelu, S. Cardioprotective activity of Amaranthus viridis Linn: Effect on serum marker enzymes, cardiac troponin and antioxidant system in experimental myocardial infarcted rats. Int. J. Cardiol., 2013, 165(3), 494-498.
[http://dx.doi.org/10.1016/j.ijcard.2011.09.005] [PMID: 21962802]
[111]
Patel, S.S.; Verma, N.K.; Rathore, B.; Nayak, G.; Singhai, A.K.; Singh, P. Cardioprotective effect of Bombax ceiba flowers against acute adriamycin-induced myocardial infarction in rats. Rev. Bras. Farmacogn., 2011, 21(4), 704-709.
[http://dx.doi.org/10.1590/S0102-695X2011005000090]
[112]
Gimenes, R.; Gimenes, C.; Rosa, C.M.; Xavier, N.P.; Campos, D.H.S.; Fernandes, A.A.H.; Cezar, M.D.M.; Guirado, G.N.; Pagan, L.U.; Chaer, I.D.; Fernandes, D.C.; Laurindo, F.R.; Cicogna, A.C.; Okoshi, M.P.; Okoshi, K. Influence of apocynin on cardiac remodeling in rats with streptozotocin-induced diabetes mellitus. Cardiovasc. Diabetol., 2018, 17(1), 15.
[http://dx.doi.org/10.1186/s12933-017-0657-9] [PMID: 29343259]
[113]
Chen, L.; Lin, X.; Xu, X.; Wang, L.; Teng, H.; Cao, H. Anti-inflammatory effect of self-emulsifying delivery system containing Sonchus oleraceus Linn extract on streptozotocin-induced diabetic rats. Food Chem. Toxicol., 2020, 135, 110953.
[http://dx.doi.org/10.1016/j.fct.2019.110953] [PMID: 31707032]
[114]
Sathyanarayana, N.; Pittala, R.K.; Tripathi, P.K.; Chopra, R.; Singh, H.R.; Belamkar, V.; Bhardwaj, P.K.; Doyle, J.J.; Egan, A.N. Transcriptomic resources for the medicinal legume Mucuna pruriens: De novo transcriptome assembly, annotation, identification and validation of EST-SSR markers. BMC Genomics, 2017, 18(1), 409.
[http://dx.doi.org/10.1186/s12864-017-3780-9] [PMID: 28545396]
[115]
Kim, J.H. Pharmacological and medical applications of Panax ginseng and ginsenosides: A review for use in cardiovascular diseases. J. Ginseng Res., 2018, 42(3), 264-269.
[http://dx.doi.org/10.1016/j.jgr.2017.10.004] [PMID: 29983607]
[116]
Hemalatha, K.L.; Prince, P.S.M. Preventive effects of zingerone on altered lipid peroxides and nonenzymatic antioxidants in the circulation of isoproterenol-induced myocardial infarcted rats. J. Biochem. Mol. Toxicol., 2015, 29(2), 63-69.
[http://dx.doi.org/10.1002/jbt.21668] [PMID: 25271244]
[117]
Adaramoye, O.A.; Lawal, S.O. Kolaviron, a biflavonoid fraction from Garcinia kola, protects against isoproterenol-induced injury by mitigating cardiac dysfunction and oxidative stress in rats. J. Basic Clin. Physiol. Pharmacol., 2015, 26(1), 65-72.
[http://dx.doi.org/10.1515/jbcpp-2013-0139] [PMID: 24620014]
[118]
Haleagrahara, N.; Varkkey, J.; Chakravarthi, S. Cardioprotective effects of glycyrrhizic acid against isoproterenol-induced myocardial ischemia in rats. Int. J. Mol. Sci., 2011, 12(10), 7100-7113.
[http://dx.doi.org/10.3390/ijms12107100] [PMID: 22072938]
[119]
Alare, K.; Alare, T. Review of toxicity of allicin from garlic. J. Toxicol. Clin. Toxicol., 2020, 4, 555647.
[120]
Rocha, K.K.R.; Souza, G.A.; Ebaid, G.X.; Seiva, F.R.F.; Cataneo, A.C.; Novelli, E.L.B. Resveratrol toxicity: Effects on risk factors for atherosclerosis and hepatic oxidative stress in standard and high-fat diets. Food Chem. Toxicol., 2009, 47(6), 1362-1367.
[http://dx.doi.org/10.1016/j.fct.2009.03.010] [PMID: 19298841]
[121]
Suh, K.S.; Chon, S.; Oh, S.; Kim, S.W.; Kim, J.W.; Kim, Y.S.; Woo, J.T. Prooxidative effects of green tea polyphenol (-)-epigallocatethin-3-gallate on the HIT-T15 pancreatic beta cell line. Cell Biol. Toxicol., 2010, 26(3), 189-199.
[http://dx.doi.org/10.1007/s10565-009-9137-7] [PMID: 19757103]
[122]
Satia, J.A.; Littman, A.; Slatore, C.G.; Galanko, J.A.; White, E. Long-term use of β-carotene, retinol, lycopene, and lutein supplements and lung cancer risk: Results from the VITamins And Lifestyle (VITAL) study. Am. J. Epidemiol., 2009, 169(7), 815-828.
[http://dx.doi.org/10.1093/aje/kwn409] [PMID: 19208726]
[123]
Ratnasinghe, D.; Forman, M.R.; Tangrea, J.A.; Qiao, Y.; Yao, S.X.; Gunter, E.W.; Barrett, M.J.; Giffen, C.A.; Erozan, Y.; Tockman, M.S.; Taylor, P.R. Serum carotenoids are associated with increased lung cancer risk among alcohol drinkers, but not among non-drinkers in a cohort of tin miners. Alcohol Alcohol., 2000, 35(4), 355-360.
[http://dx.doi.org/10.1093/alcalc/35.4.355] [PMID: 10906000]
[124]
Mikkelsen, C.S.; Mikkelsen, D.B.; Lindegaard, H.M. [Carotinaemia in patient with excessive beta-carotene food-intake and dysregulated diabetes mellitus]. Ugeskr. Laeger, 2009, 171(5), 315-316.
[PMID: 19176161]
[125]
Das, S.; Tyagi, A.K.; Kaur, H. Cancer modulation by glucosinolates: A review. Curr. Sci., 2000, 79, 1665-1671.