Pharmacological Potential of Sulindac and Its Active Metabolite: A Comprehensive Review

Page: [765 - 779] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

In this review, we describe and discuss the pharmaceutical aspects, pharmacokinetic profile, and preclinical and clinical studies of sulindac and its active metabolite and emphasise their potential activity not only in anti-inflammation strategies but also as chemoprevention drug candidates. Though they are widely validated through in vitro and in vivo models, to date, no efforts have been made to compile in a single review on their pharmacologically potential, pharmacokinetics and toxicity profiles. Key databases such as PubMed, Science Direct, Scopus, and Google Scholar, among others, were probed for a systematic search using keywords to retrieve relevant publications. An exhaustive electronic survey of the related literature on the pharmacologically potential activity and the pharmacokinetic and toxicity profiles of sulindac resulted in around 200 articles (1975 and 2023) being included. The studies conducted on sulindac sulphide and sulindac sulfone metabolites reported a varied range of biological effects deployed in this review. The review concluded that there is scope for repurposing sulindac using computer-aided drug design and biological study to find out possible new targets for strengthening the potency and selectivity of the metabolites.

Graphical Abstract

[1]
Xie G, Nie T, Mackenzie GG, et al. The metabolism and pharmacokinetics of phospho-sulindac (OXT-328) and the effect of difluoromethylornithine. Br J Pharmacol 2012; 165(7): 2152-66.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01705.x] [PMID: 21955327]
[2]
Davies NM, Watson MS. Clinical pharmacokinetics of sulindac. A dynamic old drug. Clin Pharmacokinet 1997; 32(6): 437-59.
[http://dx.doi.org/10.2165/00003088-199732060-00002] [PMID: 9195115]
[3]
Brogden RN, Heel RC, Speight TM, et al. Sulindac: A Review of its Pharmacological Properties and Therapeutic Efficacy in Rheumatic Diseases. Drugs 1978; 16: 97-114.
[http://dx.doi.org/10.2165/00003495-197816020-00001]
[4]
Kitamura S, Tatsumi K. In vitro metabolism of sulindac and sulindac sulfide: enzymatic formation of sulfoxide and sulfone. Jpn J Pharmacol 1982; 32(5): 833-8.
[http://dx.doi.org/10.1016/S0021-5198(19)52619-1] [PMID: 7176218]
[5]
Miller MJ, Bednar MM, McGiff JC. Renal metabolism of sulindac: functional implications. J Pharmacol Exp Ther 1984; 231(2): 449-56.
[PMID: 6436473]
[6]
Davis PJ, Guenthner LE. Sulindac oxidation/reduction by microbial cultures; microbial models of mammalian metabolism. Xenobiotica 1985; 15(10): 845-57.
[http://dx.doi.org/10.3109/00498258509045036] [PMID: 4072250]
[7]
Strong HA, Renwick AG, George CF, Liu YF, Hill MJ. The reduction of sulphinpyrazone and sulindac by intestinal bacteria. Xenobiotica 1987; 17(6): 685-96.
[http://dx.doi.org/10.3109/00498258709043976] [PMID: 3630204]
[8]
Lin JH, Yeh KC, Duggan DE. Effect of uremia and anephric state on the pharmacokinetics of sulindac and its metabolites in rats. II. Differential effects on the biliary excretion. Drug Metab Dispos 1985; 13(5): 608-13.
[PMID: 2865112]
[9]
Lin JH, Yeh KC, Duggan DE. Effect of uremia and anephric state on the pharmacokinetics of sulindac and its metabolites in rats. I. An application of pharmacokinetic model for reversible metabolism. Drug Metab Dispos 1985; 13(5): 602-7.
[PMID: 2865111]
[10]
Lee SC, Renwick AG. Sulphoxide reduction by rat intestinal flora and by Escherichia coli in vitro. Biochem Pharmacol 1995; 49(11): 1567-76.
[http://dx.doi.org/10.1016/0006-2952(95)00093-F] [PMID: 7786297]
[11]
Zou W, Beggs KM, Sparkenbaugh EM, et al. Sulindac metabolism and synergy with tumor necrosis factor-α in a drug-inflammation interaction model of idiosyncratic liver injury. J Pharmacol Exp Ther 2009; 331(1): 114-21.
[http://dx.doi.org/10.1124/jpet.109.156331] [PMID: 19638570]
[12]
Brunell D, Sagher D, Kesaraju S, Brot N, Weissbach H. Studies on the metabolism and biological activity of the epimers of sulindac. Drug Metab Dispos 2011; 39(6): 1014-21.
[http://dx.doi.org/10.1124/dmd.110.037663] [PMID: 21383205]
[13]
Bolder U, Trang NV, Hagey LR, et al. Sulindac is excreted into bile by a canalicular bile salt pump and undergoes a cholehepatic circulation in rats. Gastroenterology 1999; 117(4): 962-71.
[http://dx.doi.org/10.1016/S0016-5085(99)70356-2] [PMID: 10500080]
[14]
Etienne F, Resnick L, Sagher D, Brot N, Weissbach H. Reduction of Sulindac to its active metabolite, sulindac sulfide: assay and role of the methionine sulfoxide reductase system. Biochem Biophys Res Commun 2003; 312(4): 1005-10.https://www.sciencedirect.com/science/article/pii/S0006291X03023520
[http://dx.doi.org/10.1016/j.bbrc.2003.10.203] [PMID: 14651971]
[15]
Swanson BN, Boppana VK. Measurement of sulindac and its metabolites in human plasma and urine by high-performance liquid chromatography. J Chromatogr, Biomed Appl 1981; 225(1): 123-30.
[http://dx.doi.org/10.1016/S0378-4347(00)80251-0] [PMID: 7298740]
[16]
Wen Z, Muratomi N, Huang W, et al. The ocular pharmacokinetics and biodistribution of phospho-sulindac (OXT-328) formulated in nanoparticles: Enhanced and targeted tissue drug delivery. Int J Pharm 2019; 557: 273-9.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.057] [PMID: 30597269]
[17]
Swanson BN, Mojaverian P, Boppana VK. Inhibition of sulindac metabolism by dimethyl sulfoxide in the rat. J Toxicol Environ Health 1983; 12(2-3): 213-22.
[http://dx.doi.org/10.1080/15287398309530420] [PMID: 6655731]
[18]
Lee SC, Renwick AG. Sulphoxide reduction by rat and rabbit tissues in vitro. Biochem Pharmacol 1995; 49(11): 1557-65.
[http://dx.doi.org/10.1016/0006-2952(95)00092-E] [PMID: 7786296]
[19]
Mattila J, Mäntylä R, Vuorela A, Lamminsivu U, Männistö P. Pharmacokinetics of graded oral doses of sulindac in man. Arzneimittelforschung 1984; 34(2): 226-9.
[PMID: 6539116]
[20]
Bayley N, Warne RW, Moulds RFW, Bury RW. A kinetic study of sulindac in the elderly. Aust N Z J Med 1987; 17(1): 39-42.
[http://dx.doi.org/10.1111/j.1445-5994.1987.tb05047.x] [PMID: 3476045]
[21]
Sitar DS, Owen JA, MacDougall B, Hunter T, Mitenko PA. Effects of age and disease on the pharmacokinetics and pharmacodynamics of sulindac. Clin Pharmacol Ther 1985; 38(2): 228-34.
[http://dx.doi.org/10.1038/clpt.1985.163] [PMID: 4017423]
[22]
Ravis WR, Diskin CJ, Campagna KD, Clark CR, McMillian CL. Pharmacokinetics and dialyzability of sulindac and metabolites in patients with end-stage renal failure. J Clin Pharmacol 1993; 33(6): 527-34.
[http://dx.doi.org/10.1002/j.1552-4604.1993.tb04699.x] [PMID: 8366178]
[23]
Gibson TP, Dobrinska MR, Lin JH, Entwistle LA, Davies RO. Biotransformation of sulindac in end-stage renal disease. Clin Pharmacol Ther 1987; 42(1): 82-8.
[http://dx.doi.org/10.1038/clpt.1987.112] [PMID: 3595070]
[24]
Juhl RP, Van Thiel DH, Dittert LW, Albert KS, Smith RB. Ibuprofen and sulindac kinetics in alcoholic liver disease. Clin Pharmacol Ther 1983; 34(1): 104-9.
[http://dx.doi.org/10.1038/clpt.1983.137] [PMID: 6861431]
[25]
Mignot A, Lefebvre MA, Couet W, Dourthe C, Marechaud R, Fourtillan JB. [Pharmacokinetics of sulindac in aged patients presenting with inflammatory joint disease]. Therapie 1989; 44(4): 253-6.
[PMID: 2595642]
[26]
Sung JW, Yun H, Park S, et al. Population Pharmacokinetics of Sulindac and Genetic Polymorphisms of FMO3 and AOX1 in Women with Preterm Labor. Pharm Res 2020; 37(3): 44.
[http://dx.doi.org/10.1007/s11095-020-2765-6] [PMID: 31993760]
[27]
Park S, Lee NR, Lee KE, Park JY, Kim YJ, Gwak HS. Effects of single-nucleotide polymorphisms of FMO3 and FMO6 genes on pharmacokinetic characteristics of sulindac sulfide in premature labor. Drug Metab Dispos 2014; 42(1): 40-3.
[http://dx.doi.org/10.1124/dmd.113.054106] [PMID: 24173915]
[28]
Tang Y-J, Hu K, Huang W-H, Wang C-Z, Liu Z, Chen Y, et al. Effects of FMO3 polymorphisms on pharmacokinetics of sulindac in Chinese healthy male volunteers. Biomed Res Int 2017; 2017: 4189678.
[http://dx.doi.org/10.1155/2017/4189678]
[29]
Higby K, Elliott B, King TS, Frasier D, Langer O. Human placental transfer of the prostaglandin inhibitor sulindac using an in vitro model. J Soc Gynecol Investig 1995; 2(3): 526-30.
[http://dx.doi.org/10.1016/1071-5576(94)00058-9] [PMID: 9420854]
[30]
Lampela ES, Nuutinen LH, Ala-Kokko TI, et al. Placental transfer of sulindac, sulindac sulfide, and indomethacin in a human placental perfusion model. Am J Obstet Gynecol 1999; 180(1): 174-80.
[http://dx.doi.org/10.1016/S0002-9378(99)70171-7] [PMID: 9914600]
[31]
Kramer WB, Saade G, Ou CN, et al. Placental transfer of sulindac and its active sulfide metabolite in humans. Am J Obstet Gynecol 1995; 172(3): 886-90.
[http://dx.doi.org/10.1016/0002-9378(95)90016-0] [PMID: 7892880]
[32]
Strong HA, Warner NJ, Renwick AG, George CF. Sulindac metabolism: The importance of an intact colon. Clin Pharmacol Ther 1985; 38(4): 387-93.
[http://dx.doi.org/10.1038/clpt.1985.192] [PMID: 4042521]
[33]
Brandli DW, Sarkissian E, Ng SC, Paulus HE. Individual variability in concentrations of urinary sulindac sulfide. Clin Pharmacol Ther 1991; 50(6): 650-5.
[http://dx.doi.org/10.1038/clpt.1991.203] [PMID: 1752108]
[34]
Dobrinska MR, Furst DE, Spiegel T, et al. Biliary secretion of sulindac and metabolites in man. Biopharm Drug Dispos 1983; 4(4): 347-58.
[http://dx.doi.org/10.1002/bdd.2510040407] [PMID: 6661513]
[35]
Dujovne CA, Pitterman A, Vincek WC, Dobrinska MR, Davies RO, Duggan DE. Enterohepatic circulation of sulindac and metabolites. Clin Pharmacol Ther 1983; 33(2): 172-7.
[http://dx.doi.org/10.1038/clpt.1983.26] [PMID: 6822030]
[36]
Swanson BN, Boppana VK, Vlasses PH, Rotmensch HH, Ferguson RK. Dimethyl sulfoxide inhibits bioactivation of sulindac. J Lab Clin Med 1983; 102(1): 95-101.
[PMID: 6854139]
[37]
Duggan DE, Hare LE, Ditzler CA, Lei BW, Kwan KC. The disposition of sulindac. Clin Pharmacol Ther 1977; 21(3): 326-35.
[http://dx.doi.org/10.1002/cpt1977213326] [PMID: 300048]
[38]
Lemmens G, Brouwers J, Snoeys J, Augustijns P, Vanuytsel T. Insight into the colonic disposition of sulindac in humans. J Pharm Sci 2021; 110(1): 259-67.
[http://dx.doi.org/10.1016/j.xphs.2020.09.034] [PMID: 33002468]
[39]
Huang W, Huang L, Tsioulias A, et al. Hydrogel formulation of phosphosulindac allows once-a-day ocular dosing and limits its biodistribution to the anterior chamber: Application to dry eye disease treatment. J Drug Deliv Sci Technol 2022; 67: 102961.
[http://dx.doi.org/10.1016/j.jddst.2021.102961]
[40]
Bowers LW, Glenny EM, Punjala A, et al. Weight loss and/or sulindac mitigate obesity-associated transcriptome, microbiome, and protumor effects in a murine model of colon cancer. Cancer Prev Res 2022; 15(8): 481-95.
[http://dx.doi.org/10.1158/1940-6207.CAPR-21-0531] [PMID: 35653548]
[41]
Angeles ML, Reid ME, Yacob UA, Cash KL, Fetten JV. Sulindac-induced immune hemolytic anemia. Transfusion 1994; 34(3): 255-8.
[http://dx.doi.org/10.1046/j.1537-2995.1994.34394196626.x] [PMID: 8146901]
[42]
Haroon M, Abdulazeez I, Saleh TA, Al-Saadi AA. SERS-based trace-level quantification of sulindac: Spectroscopic and molecular modeling evaluation. J Mol Liq 2020; 312: 113402.
[http://dx.doi.org/10.1016/j.molliq.2020.113402]
[43]
Xie G, Cheng KW, Huang L, Rigas B. The in vitro metabolism of phospho-sulindac amide, a novel potential anticancer agent. Biochem Pharmacol 2014; 91(2): 249-55.
[http://dx.doi.org/10.1016/j.bcp.2014.07.007] [PMID: 25044307]
[44]
Mattheolabakis G, Mackenzie GG, Huang L, Ouyang N, Cheng KW, Rigas B. Topically applied phospho-sulindac hydrogel is efficacious and safe in the treatment of experimental arthritis in rats. Pharm Res 2013; 30(6): 1471-82.
[http://dx.doi.org/10.1007/s11095-012-0953-8] [PMID: 23483440]
[45]
Hwu JR, Tsay SC, Chuang KS, et al. Syntheses of platinum–sulindac complexes and their nanoparticles as targeted anticancer drugs. Chemistry 2016; 22(6): 1926-30.
[http://dx.doi.org/10.1002/chem.201504915] [PMID: 26752423]
[46]
Fan SS, Shen TY. Membrane effects of antiinflammatory agents. 1. Interaction of sulindac and its metabolites with phospholipid membrane, a magnetic resonance study. J Med Chem 1981; 24(10): 1197-202.
[http://dx.doi.org/10.1021/jm00142a015] [PMID: 6276543]
[47]
Santos F, Teixeira L, Lúcio M, et al. Interactions of sulindac and its metabolites with phospholipid membranes: An explanation for the peroxidation protective effect of the bioactive metabolite. Free Radic Res 2008; 42(7): 639-50.
[http://dx.doi.org/10.1080/10715760802270326] [PMID: 18654879]
[48]
Leite S, Martins NM, Dorta DJ, Curti C, Uyemura SA, Cardozo dos Santos A. Mitochondrial uncoupling by the sulindac metabolite, sulindac sulfide. Basic Clin Pharmacol Toxicol 2006; 99(4): 294-9.
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_490.x] [PMID: 17040214]
[49]
Shams-Eldeen MA, Vallner JJ, Needham TE. Interaction of sulindac and metabolite with human serum albumin. J Pharm Sci 1978; 67(8): 1077-80.
[http://dx.doi.org/10.1002/jps.2600670814] [PMID: 671241]
[50]
Zuniga FI, Loi D, Ling KHJ, Tang-Liu DDS. Idiosyncratic reactions and metabolism of sulfur-containing drugs. Expert Opin Drug Metab Toxicol 2012; 8(4): 467-85.
[http://dx.doi.org/10.1517/17425255.2012.668528] [PMID: 22394356]
[51]
Coleman MD. Human drug metabolism. John Wiley & Sons 2020.
[http://dx.doi.org/10.1002/9781119658016]
[52]
Alzarieni KZ, Max JP, Easton M, et al. Identification of the carboxylic acid functionality in protonated drug metabolite model compounds by using tandem mass spectrometry based on ion-molecule reactions coupled with high performance liquid chromatography. Int J Mass Spectrom 2021; 463: 116551.
[http://dx.doi.org/10.1016/j.ijms.2021.116551]
[53]
Bjerrum JT. Bjerrum Metabonomics. Springer 2015.
[http://dx.doi.org/10.1007/978-1-4939-2377-9]
[54]
Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: A platform for studying drug toxicity and gene function. Nat Rev Drug Discov 2002; 1(2): 153-61.
[http://dx.doi.org/10.1038/nrd728] [PMID: 12120097]
[55]
Robertson DG. Metabonomics in toxicology: A review. Toxicol Sci 2005; 85(2): 809-22.
[http://dx.doi.org/10.1093/toxsci/kfi102] [PMID: 15689416]
[56]
Alothman Z, Rahman N, Siddiqui MR. Review on pharmaceutical impurities, stability studies and degradation products: An analytical approach. Rev Adv Sci Eng 2013; 2(2): 155-66.
[http://dx.doi.org/10.1166/rase.2013.1039]
[57]
Sheng H, Williams PE, Tang W, Riedeman JS, Zhang M, Kenttämaa HI. Identification of the sulfone functionality in protonated analytes via ion/molecule reactions in a linear quadrupole ion trap mass spectrometer. J Org Chem 2014; 79(7): 2883-9.
[http://dx.doi.org/10.1021/jo402645a] [PMID: 24571420]
[58]
Zhang D, Jiang Y, Chu S, Dai X, Fang X. Extending the mass-to-charge scannable range of a linear ion trap mass spectrometer through quadrupolar direct current scan. Int J Mass Spectrom 2022; 471: 116760.
[http://dx.doi.org/10.1016/j.ijms.2021.116760]
[59]
Blaudeau L, Kenttämaa HI. Tandem mass spectrometric characterization of the molecular radical cations of asphaltenes. Energy Fuels 2022; 36(16): 8684-91.
[http://dx.doi.org/10.1021/acs.energyfuels.2c01425]
[60]
Kanazawa H, Okada A, Matsushima Y, et al. Determination of omeprazole and its metabolites in human plasma by liquid chromatography–mass spectrometry. J Chromatogr A 2002; 949(1-2): 1-9.
[http://dx.doi.org/10.1016/S0021-9673(01)01508-4] [PMID: 11999727]
[61]
Guo J, Zhang M, Elmore CS, Vishwanathan K. An integrated strategy for in vivo metabolite profiling using high-resolution mass spectrometry based data processing techniques. Anal Chim Acta 2013; 780: 55-64.
[http://dx.doi.org/10.1016/j.aca.2013.04.012] [PMID: 23680551]
[62]
Ma S, Zhu M. Recent advances in applications of liquid chromatography–tandem mass spectrometry to the analysis of reactive drug metabolites. Chem Biol Interact 2009; 179(1): 25-37.
[http://dx.doi.org/10.1016/j.cbi.2008.09.014] [PMID: 18848531]
[63]
Liu JK, Niyonsaba E, Alzarieni KZ, Boulos VM, Yerabolu R, Kenttämaa HI. Determination of the compound class and functional groups in protonated analytes via diagnostic gas‐phase ion‐molecule reactions. Mass Spectrom Rev 2021.
[PMID: 34435381]
[64]
Sheng H, Williams PE, Tang W, Zhang M, Kenttämaa HI. Identification of the sulfoxide functionality in protonated analytes via ion/molecule reactions in linear quadrupole ion trap mass spectrometry. Analyst 2014; 139(17): 4296-302.
[http://dx.doi.org/10.1039/C4AN00677A] [PMID: 24968187]
[65]
Tang W, Sheng H, Kong JY, et al. Gas-phase ion-molecule reactions for the identification of the sulfone functionality in protonated analytes in a linear quadrupole ion trap mass spectrometer. Rapid Commun Mass Spectrom 2016; 30(12): 1435-41.
[http://dx.doi.org/10.1002/rcm.7569] [PMID: 27197036]
[66]
Kong JY. Development of Tandem Mass Spectrometric Methods And Instrumentation for the Structural Elucidation of Unknown Drug Metabolites Based on Ion/Molecule Reactions. Purdue University 2018.