Exosomal Non-coding RNAs: A New Approach to Melanoma Diagnosis and Therapeutic Strategy

Page: [6084 - 6109] Pages: 26

  • * (Excluding Mailing and Handling)

Abstract

Malignant melanoma (MM) is a highly aggressive cancer with a poor prognosis. Currently, although a variety of therapies are available for treating melanoma, MM is still a serious threat to the patient’s life due to numerous factors, such as the recurrence of tumors, the emergence of drug resistance, and the lack of effective therapeutic agents. Exosomes are biologically active lipid-bilayer extracellular vesicles secreted by diverse cell types that mediate intercellular signal communication. Studies found that exosomes are involved in cancer by carrying multiple bioactive molecules, including non-- coding RNAs (ncRNAs). The ncRNAs have been reported to play an important role in regulating proliferation, angiogenesis, immune regulation, invasion, metastasis, and treatment resistance of tumors. However, the functional role of exosomal ncRNAs in MM remains unknown. Therefore, this review summarizes the current state of melanoma diagnosis, treatment, and the application of exosomal ncRNAs in MM patients, which may provide new insights into the mechanisms involved in melanoma progression and serve as biomarkers for diagnosis and therapeutic targets.

[1]
Karimkhani, C.; Green, A.C.; Nijsten, T.; Weinstock, M.A.; Dellavalle, R.P.; Naghavi, M.; Fitzmaurice, C. The global burden of melanoma: Results from the global burden of disease study 2015. Br. J. Dermatol., 2017, 177(1), 134-140.
[http://dx.doi.org/10.1111/bjd.15510] [PMID: 28369739]
[2]
Conforti, C.; Zalaudek, I. Epidemiology and risk factors of melanoma: A review. Dermatol. Pract. Concept., 2021, 11(Suppl. 1), 2021161S.
[http://dx.doi.org/10.5826/dpc.11S1a161S] [PMID: 34447610]
[3]
Fonseca, A.; Xia, C.; Lorenzo, A.J.; Krailo, M.; Olson, T.A.; Pashankar, F.; Malogolowkin, M.H.; Amatruda, J.F.; Billmire, D.F.; Rodriguez-Galindo, C.; Frazier, A.L.; Shaikh, F. Detection of relapse by tumor markers versus imaging in children and adolescents with nongerminomatous malignant germ cell tumors: A report from the children’s oncology group. J. Clin. Oncol., 2019, 37(5), 396-402.
[http://dx.doi.org/10.1200/JCO.18.00790] [PMID: 30576269]
[4]
Quinodoz, S.; Guttman, M. Long noncoding RNAs: An emerging link between gene regulation and nuclear organization. Trends Cell Biol., 2014, 24(11), 651-663.
[http://dx.doi.org/10.1016/j.tcb.2014.08.009] [PMID: 25441720]
[5]
Wang, J.; Zhu, S.; Meng, N.; He, Y.; Lu, R.; Yan, G.R. ncRNA-encoded peptides or proteins and cancer. Mol. Ther., 2019, 27(10), 1718-1725.
[http://dx.doi.org/10.1016/j.ymthe.2019.09.001] [PMID: 31526596]
[6]
Rebecca, V.W.; Sondak, V.K.; Smalley, K.S.M. A brief history of melanoma. Melanoma Res., 2012, 22(2), 114-122.
[http://dx.doi.org/10.1097/CMR.0b013e328351fa4d] [PMID: 22395415]
[7]
Saranga-Perry, V.; Ambe, C.; Zager, J.S.; Kudchadkar, R.R. Recent developments in the medical and surgical treatment of melanoma. CA Cancer J. Clin., 2014, 64(3), 171-185.
[http://dx.doi.org/10.3322/caac.21224] [PMID: 24676837]
[8]
Curtin, J.A.; Fridlyand, J.; Kageshita, T.; Patel, H.N.; Busam, K.J.; Kutzner, H.; Cho, K.H.; Aiba, S.; Bröcker, E.B.; LeBoit, P.E.; Pinkel, D.; Bastian, B.C. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med., 2005, 353(20), 2135-2147.
[http://dx.doi.org/10.1056/NEJMoa050092] [PMID: 16291983]
[9]
Gandini, S.; Sera, F.; Cattaruzza, M.S.; Pasquini, P.; Picconi, O.; Boyle, P.; Melchi, C.F. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur. J. Cancer, 2005, 41(1), 45-60.
[http://dx.doi.org/10.1016/j.ejca.2004.10.016] [PMID: 15617990]
[10]
Bataille, V.; Bykov, V.J.; Sasieni, P.; Harulow, S.; Cuzick, J.; Hemminki, K. Photoadaptation to ultraviolet (UV) radiation in vivo : Photoproducts in epidermal cells following UVB therapy for psoriasis. Br. J. Dermatol., 2000, 143(3), 477-483.
[http://dx.doi.org/10.1111/j.1365-2133.2000.03698.x] [PMID: 10971317]
[11]
Newton-Bishop, J.A.; Chang, Y.M.; Elliott, F.; Chan, M.; Leake, S.; Karpavicius, B.; Haynes, S.; Fitzgibbon, E.; Kukalizch, K.; Randerson-Moor, J.; Elder, D.E.; Bishop, D.T.; Barrett, J.H. Relationship between sun exposure and melanoma risk for tumours in different body sites in a large case-control study in a temperate climate. Eur. J. Cancer, 2011, 47(5), 732-741.
[http://dx.doi.org/10.1016/j.ejca.2010.10.008] [PMID: 21084183]
[12]
Joshua, A.M. Melanoma prevention: Are we doing enough? A Canadian perspective. Curr. Oncol., 2012, 19(6), 462-467.
[http://dx.doi.org/10.3747/co.19.1222] [PMID: 23300369]
[13]
Bevona, C.; Goggins, W.; Quinn, T.; Fullerton, J.; Tsao, H. Cutaneous melanomas associated with nevi. Arch. Dermatol., 2003, 139(12), 1620-1624.
[http://dx.doi.org/10.1001/archderm.139.12.1620] [PMID: 14676081]
[14]
Holly, E.A.; Kelly, J.W.; Shpall, S.N.; Chiu, S.H. Number of melanocytic nevi as a major risk factor for malignant melanoma. J. Am. Acad. Dermatol., 1987, 17(3), 459-468.
[http://dx.doi.org/10.1016/S0190-9622(87)70230-8] [PMID: 3655025]
[15]
Grob, J.J.; Gouvernet, J.; Aymar, D.; Mostaque, A.; Romano, M.H.; Collet, A.M.; Noe, M.C.; Diconstanzo, M.P.; Bonerandi, J.J. Count of benign melanocytic nevi as a major indicator of risk for nonfamilial nodular and superficial spreading melanoma. Cancer, 1990, 66(2), 387-395.
[http://dx.doi.org/10.1002/1097-0142(19900715)66:2<387::AID-CNCR2820660232>3.0.CO;2-J] [PMID: 2369719]
[16]
Halpern, A.C.; Guerry, D., IV; Elder, D.E.; Clark, W.H., Jr; Synnestvedt, M.; Norman, S.; Ayerle, R. Dysplastic nevi as risk markers of sporadic (nonfamilial) melanoma. A case-control study. Arch. Dermatol., 1991, 127(7), 995-999.
[http://dx.doi.org/10.1001/archderm.1991.01680060069006] [PMID: 2064418]
[17]
Ford, D.; Bliss, J.M.; Swerdlow, A.J.; Armstrong, B.K.; Franceschi, S.; Green, A.; Holly, E.A.; Mack, T.; Mackie, R.M.; Østerlind, A.; Walter, S.D.; Peto, J.; Easton, D.F. Risk of cutaneous melanoma associated with a family history of the disease. Int. J. Cancer, 1995, 62(4), 377-381.
[http://dx.doi.org/10.1002/ijc.2910620403] [PMID: 7635561]
[18]
Hahn, A.W.; Menk, A.V.; Rivadeneira, D.B.; Augustin, R.C.; Xu, M.; Li, J.; Wu, X.; Mishra, A.K.; Gide, T.N.; Quek, C.; Zang, Y.; Spencer, C.N.; Menzies, A.M.; Daniel, C.R.; Hudgens, C.W.; Nowicki, T.; Haydu, L.E.; Khan, M.A.W.; Gopalakrishnan, V.; Burton, E.M.; Malke, J.; Simon, J.M.; Bernatchez, C.; Putluri, N.; Woodman, S.E.; Vashisht Gopal, Y.N.; Guerrieri, R.; Fischer, G.M.; Wang, J.; Wani, K.M.; Thompson, J.F.; Lee, J.E.; Hwu, P.; Ajami, N.; Gershenwald, J.E.; Long, G.V.; Scolyer, R.A.; Tetzlaff, M.T.; Lazar, A.J.; Schadendorf, D.; Wargo, J.A.; Kirkwood, J.M.; DeBerardinis, R.J.; Liang, H.; Futreal, A.; Zhang, J.; Wilmott, J.S.; Peng, W.; Davies, M.A.; Delgoffe, G.M.; Najjar, Y.G.; McQuade, J.L. Obesity is associated with altered tumor metabolism in metastatic melanoma. Clin. Cancer Res., 2023, 29(1), 154-164.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-2661] [PMID: 36166093]
[19]
Dobrică, E.C.; Banciu, M.L.; Kipkorir, V.; Khazeei Tabari, M.A.; Cox, M.J.; Simhachalam Kutikuppala, L.V.; Găman, M.A. Diabetes and skin cancers: Risk factors, molecular mechanisms and impact on prognosis. World J. Clin. Cases, 2022, 10(31), 11214-11225.
[http://dx.doi.org/10.12998/wjcc.v10.i31.11214] [PMID: 36387789]
[20]
Rollan, M.P.; Cabrera, R.; Schwartz, R.A. Current knowledge of immunosuppression as a risk factor for skin cancer development. Crit. Rev. Oncol. Hematol., 2022, 177, 103754.
[http://dx.doi.org/10.1016/j.critrevonc.2022.103754] [PMID: 35803453]
[21]
Asgari, M.M.; Warton, E.M.; Whittemore, A.S. Family history of skin cancer is associated with increased risk of cutaneous squamous cell carcinoma. Dermatol. Surg., 2015, 41(4), 481-486.
[http://dx.doi.org/10.1097/DSS.0000000000000292] [PMID: 25760557]
[22]
Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.; Hall, S.; Hawes, R.; Hughes, J.; Kosmidou, V.; Menzies, A.; Mould, C.; Parker, A.; Stevens, C.; Watt, S.; Hooper, S.; Wilson, R.; Jayatilake, H.; Gusterson, B.A.; Cooper, C.; Shipley, J.; Hargrave, D.; Pritchard-Jones, K.; Maitland, N.; Chenevix-Trench, G.; Riggins, G.J.; Bigner, D.D.; Palmieri, G.; Cossu, A.; Flanagan, A.; Nicholson, A.; Ho, J.W.C.; Leung, S.Y.; Yuen, S.T.; Weber, B.L.; Seigler, H.F.; Darrow, T.L.; Paterson, H.; Marais, R.; Marshall, C.J.; Wooster, R.; Stratton, M.R.; Futreal, P.A. Mutations of the BRAF gene in human cancer. Nature, 2002, 417(6892), 949-954.
[http://dx.doi.org/10.1038/nature00766] [PMID: 12068308]
[23]
Pratilas, C.A.; Taylor, B.S.; Ye, Q.; viale, A.; Sander, C.; Solit, D.B.; Rosen, N. V600E BRAF is associated with disabled feedback inhibition of RAF–MEK signaling and elevated transcriptional output of the pathway. Proc. Natl. Acad. Sci. USA, 2009, 106(11), 4519-4524.
[http://dx.doi.org/10.1073/pnas.0900780106] [PMID: 19251651]
[24]
Turski, M.L.; Vidwans, S.J.; Janku, F.; Garrido-Laguna, I.; Munoz, J.; Schwab, R.; Subbiah, V.; Rodon, J.; Kurzrock, R. Genomically driven tumors and actionability across histologies: BRAF -mutant cancers as a paradigm. Mol. Cancer Ther., 2016, 15(4), 533-547.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0643] [PMID: 27009213]
[25]
Bauer, J.; Büttner, P.; Murali, R.; Okamoto, I.; Kolaitis, N.A.; Landi, M.T.; Scolyer, R.A.; Bastian, B.C. BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site. Pigment Cell Melanoma Res., 2011, 24(2), 345-351.
[http://dx.doi.org/10.1111/j.1755-148X.2011.00837.x] [PMID: 21324100]
[26]
Heppt, M.V.; Siepmann, T.; Engel, J.; Schubert-Fritschle, G.; Eckel, R.; Mirlach, L.; Kirchner, T.; Jung, A.; Gesierich, A.; Ruzicka, T.; Flaig, M.J.; Berking, C. Prognostic significance of BRAF and NRAS mutations in melanoma: A German study from routine care. BMC Cancer, 2017, 17(1), 536.
[http://dx.doi.org/10.1186/s12885-017-3529-5] [PMID: 28797232]
[27]
Shtivelman, E.; Davies, M.A.; Hwu, P.; Yang, J.; Lotem, M.; Oren, M.; Flaherty, K.T.; Fisher, D.E. Pathways and therapeutic targets in melanoma. Oncotarget, 2014, 5(7), 1701-1752.
[http://dx.doi.org/10.18632/oncotarget.1892] [PMID: 24743024]
[28]
He, J.; Huang, W.; Li, X.; Wang, J.; Nie, Y.; Li, G.; Wang, X.; Cao, H.; Chen, X.; Wang, X. A new ferroptosis-related genetic mutation risk model predicts the prognosis of skin cutaneous melanoma. Front. Genet., 2023, 13, 988909.
[http://dx.doi.org/10.3389/fgene.2022.988909] [PMID: 36685905]
[29]
Smalley, K.S.M.; Xiao, M.; Villanueva, J.; Nguyen, T.K.; Flaherty, K.T.; Letrero, R.; Van Belle, P.; Elder, D.E.; Wang, Y.; Nathanson, K.L.; Herlyn, M. CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene, 2009, 28(1), 85-94.
[http://dx.doi.org/10.1038/onc.2008.362] [PMID: 18794803]
[30]
Wang, W.; Wang, S. The prognostic value of immune-related genes AZGP1, SLCO5A1, and CTF1 in Uveal melanoma. Front. Oncol., 2022, 12, 918230.
[http://dx.doi.org/10.3389/fonc.2022.918230] [PMID: 36052234]
[31]
Prade, M.; Sancho-Garnier, H.; Cesarini, J.P.; Cochran, A. Difficulties encountered in the application of clark classification and the Breslow thickness measurement in cutaneous malignant melanoma. Int. J. Cancer, 1980, 26(2), 159-163.
[http://dx.doi.org/10.1002/ijc.2910260206] [PMID: 7009438]
[32]
Gerami, P.; Busam, K.; Cochran, A.; Cook, M.G.; Duncan, L.M.; Elder, D.E.; Fullen, D.R.; Guitart, J.; LeBoit, P.E.; Mihm, M.C., Jr; Prieto, V.G.; Rabkin, M.S.; Scolyer, R.A.; Xu, X.; Yun, S.J.; Obregon, R.; Yazdan, P.; Cooper, C.; Weitner, B.B.; Rademaker, A.; Barnhill, R.L. Histomorphologic assessment and interobserver diagnostic reproducibility of atypical spitzoid melanocytic neoplasms with long-term follow-up. Am. J. Surg. Pathol., 2014, 38(7), 934-940.
[http://dx.doi.org/10.1097/PAS.0000000000000198] [PMID: 24618612]
[33]
Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther., 2019, 20(11), 1366-1379.
[http://dx.doi.org/10.1080/15384047.2019.1640032] [PMID: 31366280]
[34]
Kucher, C.; Zhang, P.J.; Pasha, T.; Elenitsas, R.; Wu, H.; Ming, M.E.; Elder, D.E.; Xu, X. Expression of Melan-A and Ki-67 in desmoplastic melanoma and desmoplastic nevi. Am. J. Dermatopathol., 2004, 26(6), 452-457.
[http://dx.doi.org/10.1097/00000372-200412000-00002] [PMID: 15618925]
[35]
Willis, B.C.; Johnson, G.; Wang, J.; Cohen, C. SOX10: A useful marker for identifying metastatic melanoma in sentinel lymph nodes. Appl. Immunohistochem. Mol. Morphol., 2015, 23(2), 109-112.
[http://dx.doi.org/10.1097/PAI.0000000000000097] [PMID: 25356946]
[36]
Nielsen, P.S.; Riber-Hansen, R.; Steiniche, T. Immunohistochemical double stains against Ki67/MART1 and HMB45/MITF: Promising diagnostic tools in melanocytic lesions. Am. J. Dermatopathol., 2011, 33(4), 361-370.
[http://dx.doi.org/10.1097/DAD.0b013e3182120173] [PMID: 21610457]
[37]
Biernacka, A.; Linos, K.D.; DeLong, P.A.; Suriawinata, A.A.; Padmanabhan, V.; Liu, X. A case of S-100 negative melanoma: A diagnostic pitfall in the workup of a poorly differentiated metastatic tumor of unknown origin. Cytojournal, 2016, 13, 21.
[http://dx.doi.org/10.4103/1742-6413.190914] [PMID: 27729935]
[38]
Muzumdar, S.; Argraves, M.; Kristjansson, A.; Ferenczi, K.; Dadras, S.S. A quantitative comparison between SOX10 and MART-1 immunostaining to detect melanocytic hyperplasia in chronically sun-damaged skin. J. Cutan. Pathol., 2018, 45(4), 263-268.
[http://dx.doi.org/10.1111/cup.13115] [PMID: 29377259]
[39]
Harpio, R.; Einarsson, R. S100 proteins as cancer biomarkers with focus on S100B in malignant melanoma. Clin. Biochem., 2004, 37(7), 512-518.
[http://dx.doi.org/10.1016/j.clinbiochem.2004.05.012] [PMID: 15234232]
[40]
Desai, A.D.; Chinta, S.; Yeh, C.; Shah, V.P.; Shah, R.; Paskhover, B.; Schwartz, R.A. An analysis of lactate dehydrogenase (LDH) levels in advanced stage IV melanoma of the skin: Prognostic capabilities and demographic variability. Arch. Dermatol. Res., 2022, 315(4), 799-806.
[http://dx.doi.org/10.1007/s00403-022-02425-0] [PMID: 36318305]
[41]
Strojan, P. Role of radiotherapy in melanoma management. Radiol. Oncol., 2010, 44(1), 1-12.
[http://dx.doi.org/10.2478/v10019-010-0008-x] [PMID: 22933884]
[42]
Amaria, R.N.; Reddy, S.M.; Tawbi, H.A.; Davies, M.A.; Ross, M.I.; Glitza, I.C.; Cormier, J.N.; Lewis, C.; Hwu, W.J.; Hanna, E.; Diab, A.; Wong, M.K.; Royal, R.; Gross, N.; Weber, R.; Lai, S.Y.; Ehlers, R.; Blando, J.; Milton, D.R.; Woodman, S.; Kageyama, R.; Wells, D.K.; Hwu, P.; Patel, S.P.; Lucci, A.; Hessel, A.; Lee, J.E.; Gershenwald, J.; Simpson, L.; Burton, E.M.; Posada, L.; Haydu, L.; Wang, L.; Zhang, S.; Lazar, A.J.; Hudgens, C.W.; Gopalakrishnan, V.; Reuben, A.; Andrews, M.C.; Spencer, C.N.; Prieto, V.; Sharma, P.; Allison, J.; Tetzlaff, M.T.; Wargo, J.A. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med., 2018, 24(11), 1649-1654.
[http://dx.doi.org/10.1038/s41591-018-0197-1] [PMID: 30297909]
[43]
Bhatia, S.; Tykodi, S.S.; Thompson, J.A. Treatment of metastatic melanoma: An overview. Oncology, 2009, 23(6), 488-496.
[PMID: 19544689]
[44]
Rooney, M.S.; Shukla, S.A.; Wu, C.J.; Getz, G.; Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell, 2015, 160(1-2), 48-61.
[http://dx.doi.org/10.1016/j.cell.2014.12.033] [PMID: 25594174]
[45]
Beermann, J.; Piccoli, M.T.; Viereck, J.; Thum, T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol. Rev., 2016, 96(4), 1297-1325.
[http://dx.doi.org/10.1152/physrev.00041.2015] [PMID: 27535639]
[46]
Stachowiak, Z.; Narożna, B.; Szczepankiewicz, A. Non-Coding RNAs in pulmonary diseases: Comparison of different airway-derived biosamples. Int. J. Mol. Sci., 2023, 24(3), 2006.
[http://dx.doi.org/10.3390/ijms24032006] [PMID: 36768329]
[47]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[48]
Vishnoi, A.; Rani, S. MiRNA biogenesis and regulation of diseases: An overview. Methods Mol. Biol., 2017, 1509, 1-10.
[http://dx.doi.org/10.1007/978-1-4939-6524-3_1] [PMID: 27826912]
[49]
Carthew, R.W.; Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136(4), 642-655.
[http://dx.doi.org/10.1016/j.cell.2009.01.035] [PMID: 19239886]
[50]
Bonasio, R.; Shiekhattar, R. Regulation of transcription by long noncoding RNAs. Annu. Rev. Genet., 2014, 48(1), 433-455.
[http://dx.doi.org/10.1146/annurev-genet-120213-092323] [PMID: 25251851]
[51]
Okazaki, Y.; Furuno, M.; Kasukawa, T.; Adachi, J.; Bono, H.; Kondo, S.; Nikaido, I.; Osato, N.; Saito, R.; Suzuki, H.; Yamanaka, I.; Kiyosawa, H.; Yagi, K.; Tomaru, Y.; Hasegawa, Y.; Nogami, A.; Schönbach, C.; Gojobori, T.; Baldarelli, R.; Hill, D.P.; Bult, C.; Hume, D.A.; Quackenbush, J.; Schriml, L.M.; Kanapin, A.; Matsuda, H.; Batalov, S.; Beisel, K.W.; Blake, J.A.; Bradt, D.; Brusic, V.; Chothia, C.; Corbani, L.E.; Cousins, S.; Dalla, E.; Dragani, T.A.; Fletcher, C.F.; Forrest, A.; Frazer, K.S.; Gaasterland, T.; Gariboldi, M.; Gissi, C.; Godzik, A.; Gough, J.; Grimmond, S.; Gustincich, S.; Hirokawa, N.; Jackson, I.J.; Jarvis, E.D.; Kanai, A.; Kawaji, H.; Kawasawa, Y.; Kedzierski, R.M.; King, B.L.; Konagaya, A.; Kurochkin, I.V.; Lee, Y.; Lenhard, B.; Lyons, P.A.; Maglott, D.R.; Maltais, L.; Marchionni, L.; McKenzie, L.; Miki, H.; Nagashima, T.; Numata, K.; Okido, T.; Pavan, W.J.; Pertea, G.; Pesole, G.; Petrovsky, N.; Pillai, R.; Pontius, J.U.; Qi, D.; Ramachandran, S.; Ravasi, T.; Reed, J.C.; Reed, D.J.; Reid, J.; Ring, B.Z.; Ringwald, M.; Sandelin, A.; Schneider, C.; Semple, C.A.; Setou, M.; Shimada, K.; Sultana, R.; Takenaka, Y.; Taylor, M.S.; Teasdale, R.D.; Tomita, M.; Verardo, R.; Wagner, L.; Wahlestedt, C.; Wang, Y.; Watanabe, Y.; Wells, C.; Wilming, L.G.; Wynshaw-Boris, A.; Yanagisawa, M.; Yang, I.; Yang, L.; Yuan, Z.; Zavolan, M.; Zhu, Y.; Zimmer, A.; Carninci, P.; Hayatsu, N.; Hirozane-Kishikawa, T.; Konno, H.; Nakamura, M.; Sakazume, N.; Sato, K.; Shiraki, T.; Waki, K.; Kawai, J.; Aizawa, K.; Arakawa, T.; Fukuda, S.; Hara, A.; Hashizume, W.; Imotani, K.; Ishii, Y.; Itoh, M.; Kagawa, I.; Miyazaki, A.; Sakai, K.; Sasaki, D.; Shibata, K.; Shinagawa, A.; Yasunishi, A.; Yoshino, M.; Waterston, R.; Lander, E.S.; Rogers, J.; Birney, E.; Hayashizaki, Y.; Consortium, F. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 2002, 420(6915), 563-573.
[http://dx.doi.org/10.1038/nature01266] [PMID: 12466851]
[52]
Ponting, C.P.; Oliver, P.L.; Reik, W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4), 629-641.
[http://dx.doi.org/10.1016/j.cell.2009.02.006] [PMID: 19239885]
[53]
Wierzbicki, A.T.; Haag, J.R.; Pikaard, C.S. Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell, 2008, 135(4), 635-648.
[http://dx.doi.org/10.1016/j.cell.2008.09.035] [PMID: 19013275]
[54]
Wierzbicki, A.T.; Ream, T.S.; Haag, J.R.; Pikaard, C.S. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat. Genet., 2009, 41(5), 630-634.
[http://dx.doi.org/10.1038/ng.365] [PMID: 19377477]
[55]
McKinlay, A.; Podicheti, R.; Wendte, J.M.; Cocklin, R.; Rusch, D.B. RNA polymerases IV and V influence the 3′ boundaries of Polymerase II transcription units in Arabidopsis. RNA Biol., 2018, 15(2), 269-279.
[http://dx.doi.org/10.1080/15476286.2017.1409930] [PMID: 29199514]
[56]
Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; Loewer, A.; Ziebold, U.; Landthaler, M.; Kocks, C.; le Noble, F.; Rajewsky, N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441), 333-338.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[57]
Abu, N.; Jamal, R. Circular RNAs as promising biomarkers: A mini-review. Front. Physiol., 2016, 7, 355.
[http://dx.doi.org/10.3389/fphys.2016.00355] [PMID: 27588005]
[58]
Li, R.; Jiang, J.; Shi, H.; Qian, H.; Zhang, X.; Xu, W. CircRNA: A rising star in gastric cancer. Cell. Mol. Life Sci., 2020, 77(9), 1661-1680.
[http://dx.doi.org/10.1007/s00018-019-03345-5] [PMID: 31659415]
[59]
Dong, Y.; He, D.; Peng, Z.; Peng, W.; Shi, W.; Wang, J.; Li, B.; Zhang, C.; Duan, C. Circular RNAs in cancer: An emerging key player. J. Hematol. Oncol., 2017, 10(1), 2.
[http://dx.doi.org/10.1186/s13045-016-0370-2] [PMID: 28049499]
[60]
Tan, S.; Gou, Q.; Pu, W.; Guo, C.; Yang, Y.; Wu, K.; Liu, Y.; Liu, L.; Wei, Y.Q.; Peng, Y. Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res., 2018, 28(6), 693-695.
[http://dx.doi.org/10.1038/s41422-018-0033-7] [PMID: 29628502]
[61]
Herranz, H.; Cohen, S.M. MicroRNAs and gene regulatory networks: Managing the impact of noise in biological systems. Genes Dev., 2010, 24(13), 1339-1344.
[http://dx.doi.org/10.1101/gad.1937010] [PMID: 20595229]
[62]
Providing a comprehensive district psychiatric service for the adult mentally ill. Appendix 1. Syndicate ‘A’ discussion paper. Rep. Health Soc. Subj., 1974, (8), 15-17.
[PMID: 4463426]
[63]
Guarnerio, J.; Bezzi, M.; Jeong, J.C.; Paffenholz, S.V.; Berry, K.; Naldini, M.M.; Lo-Coco, F.; Tay, Y.; Beck, A.H.; Pandolfi, P.P. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell, 2016, 166(4), 1055-1056.
[http://dx.doi.org/10.1016/j.cell.2016.07.035] [PMID: 27518567]
[64]
Xu, R.; Greening, D.W.; Rai, A.; Ji, H.; Simpson, R.J. Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods, 2015, 87, 11-25.
[http://dx.doi.org/10.1016/j.ymeth.2015.04.008] [PMID: 25890246]
[65]
Livshits, M.A.; Khomyakova, E.; Evtushenko, E.G.; Lazarev, V.N.; Kulemin, N.A.; Semina, S.E.; Generozov, E.V.; Govorun, V.M. Isolation of exosomes by differential centrifugation: Theoretical analysis of a commonly used protocol. Sci. Rep., 2015, 5(1), 17319.
[http://dx.doi.org/10.1038/srep17319] [PMID: 26616523]
[66]
Shu, S.L.; Allen, C.L.; Benjamin-Davalos, S.; Koroleva, M.; MacFarland, D.; Minderman, H.; Ernstoff, M.S. A Rapid Exosome Isolation Using Ultrafiltration and Size Exclusion Chromatography (REIUS) method for exosome isolation from melanoma cell lines. Methods Mol. Biol., 2021, 2265, 289-304.
[http://dx.doi.org/10.1007/978-1-0716-1205-7_22] [PMID: 33704723]
[67]
Van Deun, J.; Jo, A.; Li, H.; Lin, H.Y.; Weissleder, R.; Im, H.; Lee, H. Integrated dual-mode chromatography to enrich extracellular vesicles from plasma. Adv. Biosyst., 2020, 4(12), 1900310.
[http://dx.doi.org/10.1002/adbi.201900310] [PMID: 32351054]
[68]
Mizutani, K.; Terazawa, R.; Kameyama, K.; Kato, T.; Horie, K.; Tsuchiya, T.; Seike, K.; Ehara, H.; Fujita, Y.; Kawakami, K.; Ito, M.; Deguchi, T. Isolation of prostate cancer-related exosomes. Anticancer Res., 2014, 34(7), 3419-3423.
[PMID: 24982349]
[69]
Ding, M.; Wang, C.; Lu, X.; Zhang, C.; Zhou, Z.; Chen, X.; Zhang, C.Y.; Zen, K.; Zhang, C. Comparison of commercial exosome isolation kits for circulating exosomal microRNA profiling. Anal. Bioanal. Chem., 2018, 410(16), 3805-3814.
[http://dx.doi.org/10.1007/s00216-018-1052-4] [PMID: 29671027]
[70]
Guo, S.C.; Tao, S.C.; Dawn, H. Microfluidics-based on-a-chip systems for isolating and analysing extracellular vesicles. J. Extracell. Vesicles, 2018, 7(1), 1508271.
[http://dx.doi.org/10.1080/20013078.2018.1508271] [PMID: 30151077]
[71]
Gao, Z.; Pang, B.; Li, J.; Gao, N.; Fan, T.; Li, Y. Emerging role of exosomes in liquid biopsy for monitoring prostate cancer invasion and metastasis. Front. Cell Dev. Biol., 2021, 9, 679527.
[http://dx.doi.org/10.3389/fcell.2021.679527] [PMID: 34017837]
[72]
Thery, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell. Biol., 2006, Chapter 3, 22.
[http://dx.doi.org/10.1002/0471143030.cb0322s30]
[73]
Li, Y.; Zhang, Z.; Chen, J.; Liu, W.; Lai, W.; Liu, B.; Li, X.; Liu, L.; Xu, S.; Dong, Q.; Wang, M.; Duan, X.; Tan, J.; Zheng, Y.; Zhang, P.; Fan, G.; Wong, J.; Xu, G.L.; Wang, Z.; Wang, H.; Gao, S.; Zhu, B. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature, 2018, 564(7734), 136-140.
[http://dx.doi.org/10.1038/s41586-018-0751-5] [PMID: 30487604]
[74]
Arraud, N.; Linares, R.; Tan, S.; Gounou, C.; Pasquet, J.M.; Mornet, S.; Brisson, A.R. Extracellular vesicles from blood plasma: Determination of their morphology, size, phenotype and concentration. J. Thromb. Haemost., 2014, 12(5), 614-627.
[http://dx.doi.org/10.1111/jth.12554] [PMID: 24618123]
[75]
Kashkanova, A.D.; Blessing, M.; Gemeinhardt, A.; Soulat, D.; Sandoghdar, V. Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nat. Methods, 2022, 19(5), 586-593.
[http://dx.doi.org/10.1038/s41592-022-01460-z] [PMID: 35534632]
[76]
Inglis, H.; Norris, P.; Danesh, A. Techniques for the analysis of extracellular vesicles using flow cytometry. J. Vis. Exp., 2015, 97
[77]
Tiruvayipati, S.; Wolfgeher, D.; Yue, M.; Duan, F.; Andrade, J.; Jiang, H.; Schuger, L. Variability in protein cargo detection in technical and biological replicates of exosome-enriched extracellular vesicles. PLoS One, 2020, 15(3), e0228871.
[http://dx.doi.org/10.1371/journal.pone.0228871] [PMID: 32119684]
[78]
Skliar, M.; Chernyshev, V.S. Imaging of extracellular vesicles by atomic force microscopy. J. Vis. Exp., 2019, 151
[79]
Sung, B.H.; von Lersner, A.; Guerrero, J.; Krystofiak, E.S.; Inman, D.; Pelletier, R.; Zijlstra, A.; Ponik, S.M.; Weaver, A.M. A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells. Nat. Commun., 2020, 11(1), 2092.
[http://dx.doi.org/10.1038/s41467-020-15747-2] [PMID: 32350252]
[80]
Di Leva, G.; Piovan, C.; Gasparini, P.; Ngankeu, A.; Taccioli, C.; Briskin, D.; Cheung, D.G.; Bolon, B.; Anderlucci, L.; Alder, H.; Nuovo, G.; Li, M.; Iorio, M.V.; Galasso, M.; Ramasamy, S.; Marcucci, G.; Perrotti, D.; Powell, K.A.; Bratasz, A.; Garofalo, M.; Nephew, K.P.; Croce, C.M. Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status. PLoS Genet., 2013, 9(3), e1003311.
[http://dx.doi.org/10.1371/journal.pgen.1003311] [PMID: 23505378]
[81]
Felicetti, F.; De Feo, A.; Coscia, C.; Puglisi, R.; Pedini, F.; Pasquini, L.; Bellenghi, M.; Errico, M.C.; Pagani, E.; Carè, A. Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma. J. Transl. Med., 2016, 14(1), 56.
[http://dx.doi.org/10.1186/s12967-016-0811-2] [PMID: 26912358]
[82]
Que, R.; Lin, C.; Ding, G.; Wu, Z.; Cao, L. Increasing the immune activity of exosomes: The effect of miRNA-depleted exosome proteins on activating dendritic cell/cytokine-induced killer cells against pancreatic cancer. J. Zhejiang Univ. Sci. B, 2016, 17(5), 352-360.
[http://dx.doi.org/10.1631/jzus.B1500305] [PMID: 27143262]
[83]
Fabbri, M.; Paone, A.; Calore, F.; Galli, R.; Gaudio, E.; Santhanam, R.; Lovat, F.; Fadda, P.; Mao, C.; Nuovo, G.J.; Zanesi, N.; Crawford, M.; Ozer, G.H.; Wernicke, D.; Alder, H.; Caligiuri, M.A.; Nana-Sinkam, P.; Perrotti, D.; Croce, C.M. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci., 2012, 109(31), E2110-E2116.
[http://dx.doi.org/10.1073/pnas.1209414109] [PMID: 22753494]
[84]
Li, X.; Liu, D.; Chen, H.; Zeng, B.; Zhao, Q.; Zhang, Y.; Chen, Y.; Wang, J.; Xing, H.R. Melanoma stem cells promote metastasis via exosomal miR-1268a inactivation of autophagy. Biol. Res., 2022, 55(1), 29.
[http://dx.doi.org/10.1186/s40659-022-00397-z] [PMID: 36182945]
[85]
Sun, X.; Li, J.; Sun, Y.; Zhang, Y.; Dong, L.; Shen, C.; Yang, L.; Yang, M.; Li, Y.; Shen, G.; Tu, Y.; Tao, J. miR-7 reverses the resistance to BRAFi in melanoma by targeting EGFR/IGF-1R/CRAF and inhibiting the MAPK and PI3K/AKT signaling pathways. Oncotarget, 2016, 7(33), 53558-53570.
[http://dx.doi.org/10.18632/oncotarget.10669] [PMID: 27448964]
[86]
Ma, Y.; Wang, N.; Yang, S. Skin cutaneous melanoma properties of immune-related lncRNAs identifying potential prognostic biomarkers. Aging, 2022, 14(7), 3030-3048.
[http://dx.doi.org/10.18632/aging.203982] [PMID: 35361740]
[87]
Chen, L.; Ma, D.; Li, Y.; Li, X.; Zhao, L.; Zhang, J.; Song, Y. Effect of long non-coding RNA PVT1 on cell proliferation and migration in melanoma. Int. J. Mol. Med., 2018, 41(3), 1275-1282.
[PMID: 29286144]
[88]
Luan, W.; Li, R.; Liu, L.; Ni, X.; Shi, Y.; Xia, Y.; Wang, J.; Lu, F.; Xu, B. Long non-coding RNA HOTAIR acts as a competing endogenous RNA to promote malignant melanoma progression by sponging miR-152-3p. Oncotarget, 2017, 8(49), 85401-85414.
[http://dx.doi.org/10.18632/oncotarget.19910] [PMID: 29156728]
[89]
Wu, L.; Zhu, L.; Li, Y.; Zheng, Z.; Lin, X.; Yang, C. LncRNA MEG3 promotes melanoma growth, metastasis and formation through modulating miR-21/E-cadherin axis. Cancer Cell Int., 2020, 20(1), 12.
[http://dx.doi.org/10.1186/s12935-019-1087-4] [PMID: 31938020]
[90]
Zhu, L.; Wang, Y.; Yang, C.; Li, Y.; Zheng, Z.; Wu, L.; Zhou, H. RETRACTED ARTICLE: Long non-coding RNA MIAT promotes the growth of melanoma via targeting miR-150. Hum. Cell, 2020, 33(3), 819-829.
[http://dx.doi.org/10.1007/s13577-020-00340-y] [PMID: 32300960]
[91]
Tuo, B.; Chen, Z.; Dang, Q.; Chen, C.; Zhang, H.; Hu, S.; Sun, Z. Roles of exosomal circRNAs in tumour immunity and cancer progression. Cell Death Dis., 2022, 13(6), 539.
[http://dx.doi.org/10.1038/s41419-022-04949-9] [PMID: 35676257]
[92]
Yanagisawa, S.; Baker, J.R.; Vuppusetty, C.; Fenwick, P.; Donnelly, L.E.; Ito, K.; Barnes, P.J. Decreased phosphatase PTEN amplifies PI3K signaling and enhances proinflammatory cytokine release in COPD. Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, 313(2), L230-L239.
[http://dx.doi.org/10.1152/ajplung.00382.2016] [PMID: 28522564]
[93]
Wang, J.; Zhao, X.; Wang, Y.; Ren, F.; Sun, D.; Yan, Y.; Kong, X.; Bu, J.; Liu, M.; Xu, S. circRNA-002178 act as a ceRNA to promote PDL1/PD1 expression in lung adenocarcinoma. Cell Death Dis., 2020, 11(1), 32.
[http://dx.doi.org/10.1038/s41419-020-2230-9] [PMID: 31949130]
[94]
Díaz-Lagares, A.; Alegre, E.; Arroyo, A.; González-Cao, M.; Zudaire, M.E.; Viteri, S.; Martín-Algarra, S.; González, A. Evaluation of multiple serum markers in advanced melanoma. Tumour Biol., 2011, 32(6), 1155-1161.
[http://dx.doi.org/10.1007/s13277-011-0218-x] [PMID: 21858537]
[95]
Alegre, E.; Sammamed, M.; Fernández-Landázuri, S.; Zubiri, L.; González, Á. Circulating biomarkers in malignant melanoma. Adv. Clin. Chem., 2015, 69, 47-89.
[http://dx.doi.org/10.1016/bs.acc.2014.12.002] [PMID: 25934359]
[96]
Egberts, F.; Hitschler, W.N.; Weichenthal, M.; Hauschild, A. Prospective monitoring of adjuvant treatment in high-risk melanoma patients: Lactate dehydrogenase and protein S-100B as indicators of relapse. Melanoma Res., 2009, 19(1), 31-35.
[http://dx.doi.org/10.1097/CMR.0b013e32831993cc] [PMID: 19104452]
[97]
Wevers, K.P.; Kruijff, S.; Speijers, M.J.; Bastiaannet, E.; Muller Kobold, A.C.; Hoekstra, H.J. S-100B: A stronger prognostic biomarker than LDH in stage IIIB-C melanoma. Ann. Surg. Oncol., 2013, 20(8), 2772-2779.
[http://dx.doi.org/10.1245/s10434-013-2949-y] [PMID: 23512078]
[98]
Kucharzewska, P.; Belting, M. Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress. J. Extracell. Vesicles, 2013, 2(1), 20304.
[http://dx.doi.org/10.3402/jev.v2i0.20304] [PMID: 24009895]
[99]
Wendler, F.; Bota-Rabassedas, N.; Franch-Marro, X. Cancer becomes wasteful: Emerging roles of exosomes in cell-fate determination. J. Extracell. Vesicles, 2013, 2(1), 22390.
[http://dx.doi.org/10.3402/jev.v2i0.22390] [PMID: 24223259]
[100]
Wang, Z.; Chen, J.Q.; Liu, J.; Tian, L. Exosomes in tumor microenvironment: Novel transporters and biomarkers. J. Transl. Med., 2016, 14(1), 297.
[http://dx.doi.org/10.1186/s12967-016-1056-9] [PMID: 27756426]
[101]
Teng, Y.; Ren, Y.; Hu, X.; Mu, J.; Samykutty, A.; Zhuang, X.; Deng, Z.; Kumar, A.; Zhang, L.; Merchant, M.L.; Yan, J.; Miller, D.M.; Zhang, H.G. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat. Commun., 2017, 8(1), 14448.
[http://dx.doi.org/10.1038/ncomms14448] [PMID: 28211508]
[102]
Li, Y.; Yin, Z.; Fan, J.; Zhang, S.; Yang, W. The roles of exosomal miRNAs and lncRNAs in lung diseases. Signal Transduct. Target. Ther., 2019, 4(1), 47.
[http://dx.doi.org/10.1038/s41392-019-0080-7] [PMID: 31728212]
[103]
Desmond, B.J.; Dennett, E.R.; Danielson, K.M. Circulating extracellular vesicle MicroRNA as diagnostic biomarkers in early colorectal cancer-A review. Cancers, 2019, 12(1), 52.
[http://dx.doi.org/10.3390/cancers12010052] [PMID: 31878015]
[104]
Kumata, Y.; Iinuma, H.; Suzuki, Y.; Tsukahara, D.; Midorikawa, H.; Igarashi, Y.; Soeda, N.; Kiyokawa, T.; Horikawa, M.; Fukushima, R. Exosome-encapsulated microRNA-23b as a minimally invasive liquid biomarker for the prediction of recurrence and prognosis of gastric cancer patients in each tumor stage. Oncol. Rep., 2018, 40(1), 319-330.
[http://dx.doi.org/10.3892/or.2018.6418] [PMID: 29749537]
[105]
Tengda, L.; Shuping, L.; Mingli, G.; Jie, G.; Yun, L.; Weiwei, Z.; Anmei, D. Serum exosomal microRNAs as potent circulating biomarkers for melanoma. Melanoma Res., 2018, 28(4), 295-303.
[http://dx.doi.org/10.1097/CMR.0000000000000450] [PMID: 29750752]
[106]
Lunavat, T.R.; Cheng, L.; Einarsdottir, B.O.; Olofsson Bagge, R.; Veppil Muralidharan, S.; Sharples, R.A.; Lässer, C.; Gho, Y.S.; Hill, A.F.; Nilsson, J.A.; Lötvall, J. BRAF V600 inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells. Proc. Natl. Acad. Sci. USA, 2017, 114(29), E5930-E5939.
[http://dx.doi.org/10.1073/pnas.1705206114] [PMID: 28684402]
[107]
Chen, L.; Karisma, V.W.; Liu, H.; Zhong, L. MicroRNA-300: A transcellular mediator in exosome regulates melanoma progression. Front. Oncol., 2019, 9, 1005.
[http://dx.doi.org/10.3389/fonc.2019.01005] [PMID: 31681565]
[108]
Zhuang, G.; Wu, X.; Jiang, Z.; Kasman, I.; Yao, J.; Guan, Y.; Oeh, J.; Modrusan, Z.; Bais, C.; Sampath, D.; Ferrara, N. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J., 2012, 31(17), 3513-3523.
[http://dx.doi.org/10.1038/emboj.2012.183] [PMID: 22773185]
[109]
Flockhart, R.J.; Webster, D.E.; Qu, K.; Mascarenhas, N.; Kovalski, J.; Kretz, M.; Khavari, P.A. BRAF V600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res., 2012, 22(6), 1006-1014.
[http://dx.doi.org/10.1101/gr.140061.112] [PMID: 22581800]
[110]
Li, R.; Zhang, L.; Jia, L.; Duan, Y.; Li, Y.; Bao, L.; Sha, N. Long non-coding RNA BANCR promotes proliferation in malignant melanoma by regulating MAPK pathway activation. PLoS One, 2014, 9(6), e100893.
[http://dx.doi.org/10.1371/journal.pone.0100893] [PMID: 24967732]
[111]
Khaitan, D.; Dinger, M.E.; Mazar, J.; Crawford, J.; Smith, M.A.; Mattick, J.S.; Perera, R.J. The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res., 2011, 71(11), 3852-3862.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4460] [PMID: 21558391]
[112]
Huang, S.; Lyu, S.; Gao, Z.; Zha, W.; Wang, P.; Shan, Y.; He, J.; Li, Y. m6A-Related lncRNAs are potential biomarkers for the prognosis of metastatic skin cutaneous melanoma. Front. Mol. Biosci., 2021, 8, 687760.
[http://dx.doi.org/10.3389/fmolb.2021.687760] [PMID: 34026852]
[113]
Gezer, U.; Özgür, E.; Cetinkaya, M.; Isin, M.; Dalay, N. Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol. Int., 2014, 38(9), n/a.
[http://dx.doi.org/10.1002/cbin.10301] [PMID: 24798520]
[114]
Wang, J.; Zhou, Y.; Lu, J.; Sun, Y.; Xiao, H.; Liu, M.; Tian, L. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med. Oncol., 2014, 31(9), 148.
[http://dx.doi.org/10.1007/s12032-014-0148-8] [PMID: 25099764]
[115]
Wu, C.F.; Tan, G.H.; Ma, C.C.; Li, L. The non-coding RNA llme23 drives the malignant property of human melanoma cells. J. Genet. Genomics, 2013, 40(4), 179-188.
[http://dx.doi.org/10.1016/j.jgg.2013.03.001] [PMID: 23618401]
[116]
Lessard, L.; Liu, M.; Marzese, D.M.; Wang, H.; Chong, K.; Kawas, N.; Donovan, N.C.; Kiyohara, E.; Hsu, S.; Nelson, N.; Izraely, S.; Sagi-Assif, O.; Witz, I.P.; Ma, X.J.; Luo, Y.; Hoon, D.S.B. The CASC15 long intergenic noncoding RNA locus is involved in melanoma progression and phenotype switching. J. Invest. Dermatol., 2015, 135(10), 2464-2474.
[http://dx.doi.org/10.1038/jid.2015.200] [PMID: 26016895]
[117]
Wang, S.; Zhang, K.; Tan, S.; Xin, J.; Yuan, Q.; Xu, H.; Xu, X.; Liang, Q.; Christiani, D.C.; Wang, M.; Liu, L.; Du, M. Circular RNAs in body fluids as cancer biomarkers: The new frontier of liquid biopsies. Mol. Cancer, 2021, 20(1), 13.
[http://dx.doi.org/10.1186/s12943-020-01298-z] [PMID: 33430880]
[118]
Wang, H.; Tang, Z.; Duan, J.; Zhou, C.; Xu, K.; Mu, H. Cancer-released exosomal circular RNA circ_0008717 promotes cell tumorigenicity through microRNA-1287-5p/P21-activated kinase 2 (PAK2) axis in non-small cell lung cancer. Bioengineered, 2022, 13(4), 8937-8949.
[http://dx.doi.org/10.1080/21655979.2022.2056822] [PMID: 35333693]
[119]
Zheng, P.; Gao, H.; Xie, X.; Lu, P. Plasma exosomal hsa_circ_0015286 as a potential diagnostic and prognostic biomarker for gastric cancer. Pathol. Oncol. Res., 2022, 28, 1610446.
[http://dx.doi.org/10.3389/pore.2022.1610446] [PMID: 35755416]
[120]
Hong, L.; Xu, L.; Jin, L.; Xu, K.; Tang, W.; Zhu, Y.; Qiu, X.; Wang, J. Exosomal circular RNA hsa_circ_0006220, and hsa_circ_0001666 as biomarkers in the diagnosis of pancreatic cancer. J. Clin. Lab. Anal., 2022, 36(6), e24447.
[http://dx.doi.org/10.1002/jcla.24447] [PMID: 35446993]
[121]
Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[122]
Pan, J.; Ruan, W.; Qin, M.; Long, Y.; Wan, T.; Yu, K.; Zhai, Y.; Wu, C.; Xu, Y. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci. Rep., 2018, 8(1), 1117.
[http://dx.doi.org/10.1038/s41598-018-19463-2] [PMID: 29348670]
[123]
Zhang, X.; Cai, A.; Gao, Y.; Zhang, Y.; Duan, X.; Men, K. Treatment of melanoma by nano-conjugate-delivered wee1 siRNA. Mol. Pharm., 2021, 18(9), 3387-3400.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00316] [PMID: 34375118]
[124]
Stremersch, S.; Vandenbroucke, R.E.; Van Wonterghem, E.; Hendrix, A.; De Smedt, S.C.; Raemdonck, K. Comparing exosome-like vesicles with liposomes for the functional cellular delivery of small RNAs. J. Control. Release, 2016, 232, 51-61.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.005] [PMID: 27072025]
[125]
Wang, Z.; Song, L.; Liu, Q.; Tian, R.; Shang, Y.; Liu, F.; Liu, S.; Zhao, S.; Han, Z.; Sun, J.; Jiang, Q.; Ding, B. A tubular DNA nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy. Angew. Chem. Int. Ed., 2021, 60(5), 2594-2598.
[http://dx.doi.org/10.1002/anie.202009842] [PMID: 33089613]
[126]
Thyagarajan, A.; Shaban, A.; Sahu, R.P. MicroRNA-directed cancer therapies: Implications in melanoma intervention. J. Pharmacol. Exp. Ther., 2018, 364(1), 1-12.
[http://dx.doi.org/10.1124/jpet.117.242636] [PMID: 29054858]
[127]
Fattore, L.; Costantini, S.; Malpicci, D.; Ruggiero, C.F.; Ascierto, P.A.; Croce, C.M.; Mancini, R.; Ciliberto, G. MicroRNAs in melanoma development and resistance to target therapy. Oncotarget, 2017, 8(13), 22262-22278.
[http://dx.doi.org/10.18632/oncotarget.14763] [PMID: 28118616]
[128]
Ryu, B.; Hwang, S.; Alani, R.M. MicroRNAs as an emerging target for melanoma therapy. J. Invest. Dermatol., 2013, 133(5), 1137-1139.
[http://dx.doi.org/10.1038/jid.2012.505] [PMID: 23594536]
[129]
Jiang, L.; Lv, X.; Li, J.; Li, J.; Li, X.; Li, W.; Li, Y. The status of microRNA-21 expression and its clinical significance in human cutaneous malignant melanoma. Acta Histochem., 2012, 114(6), 582-588.
[http://dx.doi.org/10.1016/j.acthis.2011.11.001] [PMID: 22130252]
[130]
Mishra, P.J.; Mishra, P.J.; Merlino, G. Integrated genomics identifies miR-32/MCL-1 pathway as a critical driver of melanomagenesis: Implications for miR-replacement and combination therapy. PLoS One, 2016, 11(11), e0165102.
[http://dx.doi.org/10.1371/journal.pone.0165102] [PMID: 27846237]
[131]
Ling, H.; Fabbri, M.; Calin, G.A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov., 2013, 12(11), 847-865.
[http://dx.doi.org/10.1038/nrd4140] [PMID: 24172333]
[132]
Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA therapeutics - challenges and potential solutions. Nat. Rev. Drug Discov., 2021, 20(8), 629-651.
[http://dx.doi.org/10.1038/s41573-021-00219-z] [PMID: 34145432]
[133]
Arun, G.; Diermeier, S.D.; Spector, D.L. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol. Med., 2018, 24(3), 257-277.
[http://dx.doi.org/10.1016/j.molmed.2018.01.001] [PMID: 29449148]
[134]
Qu, S.; Jiao, Z.; Lu, G.; Yao, B.; Wang, T.; Rong, W.; Xu, J.; Fan, T.; Sun, X.; Yang, R.; Wang, J.; Yao, Y.; Xu, G.; Yan, X.; Wang, T.; Liang, H.; Zen, K. PD-L1 lncRNA splice isoform promotes lung adenocarcinoma progression via enhancing c-Myc activity. Genome Biol., 2021, 22(1), 104.
[http://dx.doi.org/10.1186/s13059-021-02331-0] [PMID: 33849634]
[135]
Shi, L.; Yang, Y.; Li, M.; Li, C.; Zhou, Z.; Tang, G.; Wu, L.; Yao, Y.; Shen, X.; Hou, Z.; Jia, H. LncRNA IFITM4P promotes immune escape by up-regulating PD-L1 via dual mechanism in oral carcinogenesis. Mol. Ther., 2022, 30(4), 1564-1577.
[http://dx.doi.org/10.1016/j.ymthe.2022.01.003] [PMID: 35051616]
[136]
Charpentier, M.; Dupré, E.; Fortun, A.; Briand, F.; Maillasson, M.; Com, E.; Pineau, C.; Labarrière, N.; Rabu, C.; Lang, F. hnRNP-A1 binds to the IRES of MELOE-1 antigen to promote MELOE-1 translation in stressed melanoma cells. Mol. Oncol., 2022, 16(3), 594-606.
[http://dx.doi.org/10.1002/1878-0261.13088] [PMID: 34418284]
[137]
Dai, S.; Wei, D.; Wu, Z.; Zhou, X.; Wei, X.; Huang, H.; Li, G. Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Mol. Ther., 2008, 16(4), 782-790.
[http://dx.doi.org/10.1038/mt.2008.1] [PMID: 18362931]
[138]
Xu, S.; Wang, H.; Pan, H.; Shi, Y.; Li, T.; Ge, S.; Jia, R.; Zhang, H.; Fan, X. ANRIL lncRNA triggers efficient therapeutic efficacy by reprogramming the aberrant INK4-hub in melanoma. Cancer Lett., 2016, 381(1), 41-48.
[http://dx.doi.org/10.1016/j.canlet.2016.07.024] [PMID: 27461581]
[139]
Luan, W.; Li, L.; Shi, Y.; Bu, X.; Xia, Y.; Wang, J.; Djangmah, H.S.; Liu, X.; You, Y.; Xu, B. Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22. Oncotarget, 2016, 7(39), 63901-63912.
[http://dx.doi.org/10.18632/oncotarget.11564] [PMID: 27564100]
[140]
Tang, L.; Zhang, W.; Su, B.; Yu, B. Long noncoding RNA HOTAIR is associated with motility, invasion, and metastatic potential of metastatic melanoma. BioMed Res. Int., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/251098] [PMID: 23862139]
[141]
Lin, Q.; Jiang, H.; Lin, D.; Circular, R.N.A. Circular RNA ITCH downregulates GLUT1 and suppresses glucose uptake in melanoma to inhibit cancer cell proliferation. J. Dermatolog. Treat., 2021, 32(2), 231-235.
[http://dx.doi.org/10.1080/09546634.2019.1654069] [PMID: 31403357]
[142]
Zhang, L.; Li, Y.; Liu, W.; Li, H.; Zhu, Z. Analysis of the complex interaction of CDR1as-miRNA-protein and detection of its novel role in melanoma. Oncol. Lett., 2018, 16(1), 1219-1225.
[http://dx.doi.org/10.3892/ol.2018.8700] [PMID: 29963195]
[143]
Ray, A.; Kunhiraman, H.; Perera, R.J. The paradoxical behavior of microRNA-211 in melanomas and other human cancers. Front. Oncol., 2021, 10, 628367.
[http://dx.doi.org/10.3389/fonc.2020.628367] [PMID: 33628737]
[144]
Tang, H.; Ma, M.; Dai, J.; Cui, C.; Si, L.; Sheng, X.; Chi, Z.; Xu, L.; Yu, S.; Xu, T.; Yan, J.; Yu, H.; Yang, L.; Kong, Y.; Guo, J. miR-let-7b and miR-let-7c suppress tumourigenesis of human mucosal melanoma and enhance the sensitivity to chemotherapy. J. Exp. Clin. Cancer Res., 2019, 38(1), 212.
[http://dx.doi.org/10.1186/s13046-019-1190-3] [PMID: 31118065]
[145]
Melnik, B.C. MiR-21: An environmental driver of malignant melanoma? J. Transl. Med., 2015, 13(1), 202.
[http://dx.doi.org/10.1186/s12967-015-0570-5] [PMID: 26116372]
[146]
Han, Y.; Fang, J.; Xiao, Z.; Deng, J.; Zhang, M.; Gu, L. Downregulation of lncRNA TSLNC8 promotes melanoma resistance to BRAF inhibitor PLX4720 through binding with PP1α to re-activate MAPK signaling. J. Cancer Res. Clin. Oncol., 2021, 147(3), 767-777.
[http://dx.doi.org/10.1007/s00432-020-03484-4] [PMID: 33389075]
[147]
Leucci, E.; Vendramin, R.; Spinazzi, M.; Laurette, P.; Fiers, M.; Wouters, J.; Radaelli, E.; Eyckerman, S.; Leonelli, C.; Vanderheyden, K.; Rogiers, A.; Hermans, E.; Baatsen, P.; Aerts, S.; Amant, F.; Van Aelst, S.; van den Oord, J.; de Strooper, B.; Davidson, I.; Lafontaine, D.L.J.; Gevaert, K.; Vandesompele, J.; Mestdagh, P.; Marine, J.C. Melanoma addiction to the long non-coding RNA SAMMSON. Nature, 2016, 531(7595), 518-522.
[http://dx.doi.org/10.1038/nature17161] [PMID: 27008969]
[148]
Han, S.; Yan, Y.; Ren, Y.; Hu, Y.; Wang, Y.; Chen, L.; Zhi, Z.; Zheng, Y.; Shao, Y.; Liu, J. LncRNA SAMMSON mediates adaptive resistance to RAF inhibition in braf-mutant melanoma cells. Cancer Res., 2021, 81(11), 2918-2929.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-3145] [PMID: 34087780]
[149]
Sanlorenzo, M.; Vujic, I.; Esteve-Puig, R.; Lai, K.; Vujic, M.; Lin, K.; Posch, C.; Dimon, M.; Moy, A.; Zekhtser, M.; Johnston, K.; Gho, D.; Ho, W.; Gajjala, A.; Oses Prieto, J.; Burlingame, A.; Daud, A.; Rappersberger, K.; Ortiz-Urda, S. The lincRNA MIRAT binds to IQGAP1 and modulates the MAPK pathway in NRAS mutant melanoma. Sci. Rep., 2018, 8(1), 10902.
[http://dx.doi.org/10.1038/s41598-018-27643-3] [PMID: 30026510]
[150]
Wu, K.; Wang, Q.; Liu, Y.L.; Xiang, Z.; Wang, Q.Q.; Yin, L.; Liu, S.L. LncRNA POU3F3 contributes to dacarbazine resistance of human melanoma through the MiR-650/MGMT axis. Front. Oncol., 2021, 11, 643613.
[http://dx.doi.org/10.3389/fonc.2021.643613] [PMID: 33816296]
[151]
Long, J.; Pi, X. lncRNA-MEG3 suppresses the proliferation and invasion of melanoma by regulating CYLD expression mediated by sponging miR-499-5p. BioMed Res. Int., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/2086564] [PMID: 29808164]
[152]
Pan, B.; Lin, X.; Zhang, L.; Hong, W.; Zhang, Y. Long noncoding RNA X-inactive specific transcript promotes malignant melanoma progression and oxaliplatin resistance. Melanoma Res., 2019, 29(3), 254-262.
[http://dx.doi.org/10.1097/CMR.0000000000000560] [PMID: 30640294]
[153]
An, L.; Huang, J.; Han, X.; Wang, J. Downregulation of lncRNA H19 sensitizes melanoma cells to cisplatin by regulating the miR-18b/IGF1 axis. Anticancer Drugs, 2020, 31(5), 473-482.
[http://dx.doi.org/10.1097/CAD.0000000000000888] [PMID: 32265386]
[154]
Wu, L.; Li, K.; Lin, W.; Liu, J.; Qi, Q.; Shen, G.; Chen, W.; He, W. Long noncoding RNA LINC01291 promotes the aggressive properties of melanoma by functioning as a competing endogenous RNA for microRNA-625-5p and subsequently increasing IGF-1R expression. Cancer Gene Ther., 2022, 29(3-4), 341-357.
[http://dx.doi.org/10.1038/s41417-021-00313-9] [PMID: 33674778]
[155]
Melixetian, M.; Bossi, D.; Mihailovich, M.; Punzi, S.; Barozzi, I.; Marocchi, F.; Cuomo, A.; Bonaldi, T.; Testa, G.; Marine, J.C.; Leucci, E.; Minucci, S.; Pelicci, P.G.; Lanfrancone, L. Long non-coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation. EMBO Rep., 2021, 22(3), e50852.
[http://dx.doi.org/10.15252/embr.202050852] [PMID: 33586907]
[156]
Caporali, S.; Amaro, A.; Levati, L.; Alvino, E.; Lacal, P.M.; Mastroeni, S.; Ruffini, F.; Bonmassar, L.; Antonini Cappellini, G.C.; Felli, N.; Carè, A.; Pfeffer, U.; D’Atri, S. miR-126-3p down-regulation contributes to dabrafenib acquired resistance in melanoma by up-regulating ADAM9 and VEGF-A. J. Exp. Clin. Cancer Res., 2019, 38(1), 272.
[http://dx.doi.org/10.1186/s13046-019-1238-4] [PMID: 31227006]
[157]
Zheng, Y.; Sun, Y.; Liu, Y.; Zhang, X.; Li, F.; Li, L.; Wang, J. The miR-31-SOX10 axis regulates tumor growth and chemotherapy resistance of melanoma via PI3K/AKT pathway. Biochem. Biophys. Res. Commun., 2018, 503(4), 2451-2458.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.175] [PMID: 29969627]
[158]
Koetz-Ploch, L.; Hanniford, D.; Dolgalev, I.; Sokolova, E.; Zhong, J.; Díaz-Martínez, M.; Bernstein, E.; Darvishian, F.; Flaherty, K.T.; Chapman, P.B.; Tawbi, H.; Hernando, E. Micro RNA -125a promotes resistance to BRAF inhibitors through suppression of the intrinsic apoptotic pathway. Pigment Cell Melanoma Res., 2017, 30(3), 328-338.
[http://dx.doi.org/10.1111/pcmr.12578] [PMID: 28140520]
[159]
Díaz-Martínez, M.; Benito-Jardón, L.; Teixidó, J. New insights in melanoma resistance to BRAF inhibitors: A role for microRNAs. Oncotarget, 2018, 9(83), 35374-35375.
[http://dx.doi.org/10.18632/oncotarget.26244] [PMID: 30459929]
[160]
Huber, V.; Vallacchi, V.; Fleming, V.; Hu, X.; Cova, A.; Dugo, M.; Shahaj, E.; Sulsenti, R.; Vergani, E.; Filipazzi, P.; De Laurentiis, A.; Lalli, L.; Di Guardo, L.; Patuzzo, R.; Vergani, B.; Casiraghi, E.; Cossa, M.; Gualeni, A.; Bollati, V.; Arienti, F.; De Braud, F.; Mariani, L.; Villa, A.; Altevogt, P.; Umansky, V.; Rodolfo, M.; Rivoltini, L. Tumor-derived microRNAs induce myeloid suppressor cells and predict immunotherapy resistance in melanoma. J. Clin. Invest., 2018, 128(12), 5505-5516.
[http://dx.doi.org/10.1172/JCI98060] [PMID: 30260323]
[161]
Gao, M.; Li, C.; Xiao, H.; Dong, H.; Jiang, S.; Fu, Y.; Gong, L. hsa_circ_0007841: A novel potential biomarker and drug resistance for multiple myeloma. Front. Oncol., 2019, 9, 1261.
[http://dx.doi.org/10.3389/fonc.2019.01261] [PMID: 31803627]
[162]
Hanniford, D.; Ulloa-Morales, A.; Karz, A.; Berzoti-Coelho, M.G.; Moubarak, R.S.; Sánchez-Sendra, B.; Kloetgen, A.; Davalos, V.; Imig, J.; Wu, P.; Vasudevaraja, V.; Argibay, D.; Lilja, K.; Tabaglio, T.; Monteagudo, C.; Guccione, E.; Tsirigos, A.; Osman, I.; Aifantis, I.; Hernando, E. Epigenetic silencing of CDR1as drives iGF2BP3-mediated melanoma invasion and metastasis. Cancer Cell, 2020, 37(1), 55-70.e15.
[http://dx.doi.org/10.1016/j.ccell.2019.12.007] [PMID: 31935372]
[163]
Zhou, X.; Yan, T.; Huang, C.; Xu, Z.; Wang, L.; Jiang, E.; Wang, H.; Chen, Y.; Liu, K.; Shao, Z.; Shang, Z. Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. J. Exp. Clin. Cancer Res., 2018, 37(1), 242.
[http://dx.doi.org/10.1186/s13046-018-0911-3] [PMID: 30285793]
[164]
Bae, I.S.; Kim, S.H. Milk exosome-derived MicroRNA-2478 suppresses melanogenesis through the Akt-GSK3β pathway. Cells, 2021, 10(11), 2848.
[http://dx.doi.org/10.3390/cells10112848] [PMID: 34831071]
[165]
Luan, W.; Ding, Y.; Xi, H.; Ruan, H.; Lu, F.; Ma, S.; Wang, J. Exosomal miR-106b-5p derived from melanoma cell promotes primary melanocytes epithelial-mesenchymal transition through targeting EphA4. J. Exp. Clin. Cancer Res., 2021, 40(1), 107.
[http://dx.doi.org/10.1186/s13046-021-01906-w] [PMID: 33741023]
[166]
Chen, Y.; Fang, Y.; Li, L.; Luo, H.; Cao, T.; Tu, B. Exosomal miR-22-3p from Mesenchymal Stem Cells Inhibits the Epithelial-Mesenchymal Transition (EMT) of melanoma cells by regulating LGALS1. Front. Biosci.-Landmark, 2022, 27(9), 275.
[http://dx.doi.org/10.31083/j.fbl2709275] [PMID: 36224027]
[167]
Zeng, B.; Chen, Y.; Chen, H.; Zhao, Q.; Sun, Z.; Liu, D.; Li, X.; Zhang, Y.; Wang, J.; Xing, H.R. Exosomal miR-211-5p regulates glucose metabolism, pyroptosis, and immune microenvironment of melanoma through GNA15. Pharmacol. Res., 2023, 188, 106660.
[http://dx.doi.org/10.1016/j.phrs.2023.106660] [PMID: 36642112]
[168]
Liu, D.; Li, X.; Zeng, B.; Zhao, Q.; Chen, H.; Zhang, Y.; Chen, Y.; Wang, J.; Xing, H.R. Exosomal microRNA-4535 of melanoma stem cells promotes metastasis by inhibiting autophagy pathway. Stem Cell Rev. Rep., 2023, 19(1), 155-169.
[http://dx.doi.org/10.1007/s12015-022-10358-4] [PMID: 35296991]
[169]
Byrnes, C.C.; Jia, W.; Alshamrani, A.A.; Kuppa, S.S.; Murph, M.M. miR-122-5p expression and secretion in melanoma cells is amplified by the lpar3 sh3–binding domain to regulate Wnt1. Mol. Cancer Res., 2019, 17(1), 299-309.
[http://dx.doi.org/10.1158/1541-7786.MCR-18-0460] [PMID: 30266753]
[170]
Li, J.; Chen, J.; Wang, S.; Li, P.; Zheng, C.; Zhou, X.; Tao, Y.; Chen, X.; Sun, L.; Wang, A.; Cao, K.; Tang, S.; Zhou, J. Blockage of transferred exosome-shuttled miR-494 inhibits melanoma growth and metastasis. J. Cell. Physiol., 2019, 234(9), 15763-15774.
[http://dx.doi.org/10.1002/jcp.28234] [PMID: 30723916]
[171]
Chen, H.; Zeng, B.; Li, X.; Zhao, Q.; Liu, D.; Chen, Y.; Zhang, Y.; Wang, J.; Xing, H.R. High-metastatic melanoma cells promote the metastatic capability of low-metastatic melanoma cells via exosomal transfer of miR-411-5p. Front. Oncol., 2022, 12, 895164.
[http://dx.doi.org/10.3389/fonc.2022.895164] [PMID: 35669425]
[172]
Zhao, Q.; Chen, H.; Li, X.; Zeng, B.; Sun, Z.; Liu, D.; Chen, Y.; Zhang, Y.; Rosie Xing, H.; Wang, J. Low-metastatic melanoma cells acquire enhanced metastatic capability via exosomal transfer of miR-199a-1-5p from highly metastatic melanoma cells. Cell Death Discov., 2022, 8(1), 188.
[http://dx.doi.org/10.1038/s41420-022-00993-8] [PMID: 35397647]
[173]
Wang, X.; Cui, Z.; Zeng, B.; Qiong, Z.; Long, Z. Human mesenchymal stem cell derived exosomes inhibit the survival of human melanoma cells through modulating miR-138-5p/SOX4 pathway. Cancer Biomark., 2022, 34(4), 533-543.
[http://dx.doi.org/10.3233/CBM-210409] [PMID: 35275523]
[174]
Hu, T.; Hu, J. Melanoma-derived exosomes induce reprogramming fibroblasts into cancer-associated fibroblasts via Gm26809 delivery. Cell Cycle, 2019, 18(22), 3085-3094.
[http://dx.doi.org/10.1080/15384101.2019.1669380] [PMID: 31544590]
[175]
Wang, X.; Cheng, Q. Suppression of exosomal hsa_circ_0001005 eliminates the Vemurafenib resistance of melanoma. J. Cancer Res. Clin. Oncol., 2023, 149(9), 5921-5936.
[http://dx.doi.org/10.1007/s00432-022-04434-y] [PMID: 36598578]
[176]
Wei, C.Y.; Zhu, M.X.; Lu, N.H.; Liu, J.Q.; Yang, Y.W.; Zhang, Y.; Shi, Y.D.; Feng, Z.H.; Li, J.X.; Qi, F.Z.; Gu, J.Y. Circular RNA circ_0020710 drives tumor progression and immune evasion by regulating the miR-370-3p/CXCL12 axis in melanoma. Mol. Cancer, 2020, 19(1), 84.
[http://dx.doi.org/10.1186/s12943-020-01191-9] [PMID: 32381016]
[177]
Alegre, E.; Sanmamed, M.F.; Rodriguez, C.; Carranza, O.; Martín-Algarra, S.; González, Á. Study of circulating microRNA-125b levels in serum exosomes in advanced melanoma. Arch. Pathol. Lab. Med., 2014, 138(6), 828-832.
[http://dx.doi.org/10.5858/arpa.2013-0134-OA] [PMID: 24878024]
[178]
Zhong, D.; Wu, C.; Xu, D.; Bai, J.; Wang, Q.; Zeng, X. Plasma-Derived Exosomal hsa-miR-4488 and hsa-miR-1228-5p: Novel biomarkers for dermatomyositis-associated interstitial lung disease with anti-melanoma differentiation-associated protein 5 antibody-positive subset. BioMed Res. Int., 2021, 2021, 1-16.
[http://dx.doi.org/10.1155/2021/6676107] [PMID: 34368354]
[179]
Guo, Y.; Zhang, X.; Wang, L.; Li, M.; Shen, M.; Zhou, Z.; Zhu, S.; Li, K.; Fang, Z.; Yan, B.; Zhao, S.; Su, J.; Chen, X.; Peng, C. The plasma exosomal miR-1180-3p serves as a novel potential diagnostic marker for cutaneous melanoma. Cancer Cell Int., 2021, 21(1), 487.
[http://dx.doi.org/10.1186/s12935-021-02164-8] [PMID: 34544412]
[180]
Dejima, H.; Iinuma, H.; Kanaoka, R.; Matsutani, N.; Kawamura, M. Exosomal microRNA in plasma as a non-invasive biomarker for the recurrence of non-small cell lung cancer. Oncol. Lett., 2017, 13(3), 1256-1263.
[http://dx.doi.org/10.3892/ol.2017.5569] [PMID: 28454243]
[181]
Tamiya, H.; Mitani, A.; Saito, A.; Ishimori, T.; Saito, M.; Isago, H.; Jo, T.; Yamauchi, Y.; Tanaka, G.; Nagase, T. Exosomal MicroRNA expression profiling in patients with lung adenocarcinoma-associated malignant pleural effusion. Anticancer Res., 2018, 38(12), 6707-6714.
[http://dx.doi.org/10.21873/anticanres.13039] [PMID: 30504380]
[182]
Wu, H.; Zhou, J.; Mei, S.; Wu, D.; Mu, Z.; Chen, B.; Xie, Y.; Ye, Y.; Liu, J. Circulating exosomal microRNA-96 promotes cell proliferation, migration and drug resistance by targeting LMO7. J. Cell. Mol. Med., 2017, 21(6), 1228-1236.
[http://dx.doi.org/10.1111/jcmm.13056] [PMID: 28026121]
[183]
Aushev, V.N.; Zborovskaya, I.B.; Laktionov, K.K.; Girard, N.; Cros, M.P.; Herceg, Z.; Krutovskikh, V. Comparisons of microRNA patterns in plasma before and after tumor removal reveal new biomarkers of lung squamous cell carcinoma. PLoS One, 2013, 8(10), e78649.
[http://dx.doi.org/10.1371/journal.pone.0078649] [PMID: 24130905]
[184]
Zhou, W.; Fong, M.Y.; Min, Y.; Somlo, G.; Liu, L.; Palomares, M.R.; Yu, Y.; Chow, A.; O’Connor, S.T.F.; Chin, A.R.; Yen, Y.; Wang, Y.; Marcusson, E.G.; Chu, P.; Wu, J.; Wu, X.; Li, A.X.; Li, Z.; Gao, H.; Ren, X.; Boldin, M.P.; Lin, P.C.; Wang, S.E. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell, 2014, 25(4), 501-515.
[http://dx.doi.org/10.1016/j.ccr.2014.03.007] [PMID: 24735924]
[185]
Eichelser, C.; Stückrath, I.; Müller, V.; Milde-Langosch, K.; Wikman, H.; Pantel, K.; Schwarzenbach, H. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget, 2014, 5(20), 9650-9663.
[http://dx.doi.org/10.18632/oncotarget.2520] [PMID: 25333260]
[186]
Bryant, R.J.; Pawlowski, T.; Catto, J.W.F.; Marsden, G.; Vessella, R.L.; Rhees, B.; Kuslich, C.; Visakorpi, T.; Hamdy, F.C. Changes in circulating microRNA levels associated with prostate cancer. Br. J. Cancer, 2012, 106(4), 768-774.
[http://dx.doi.org/10.1038/bjc.2011.595] [PMID: 22240788]
[187]
Liu, M.X.; Liao, J.; Xie, M.; Gao, Z.K.; Wang, X.H.; Zhang, Y.; Shang, M.H.; Yin, L.H.; Pu, Y.P.; Liu, R. miR-93-5p transferred by exosomes promotes the proliferation of esophageal cancer cells via intercellular communication by targeting PTEN. Biomed. Environ. Sci., 2018, 31(3), 171-185.
[PMID: 29673440]
[188]
Hornick, N.I.; Huan, J.; Doron, B.; Goloviznina, N.A.; Lapidus, J.; Chang, B.H.; Kurre, P. Serum exosome MicroRNA as a minimally-invasive early biomarker of AML. Sci. Rep., 2015, 5(1), 11295.
[http://dx.doi.org/10.1038/srep11295] [PMID: 26067326]
[189]
Taylor, D.D.; Gercel-Taylor, C. RETRACTED: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol. Oncol., 2008, 110(1), 13-21.
[http://dx.doi.org/10.1016/j.ygyno.2008.04.033] [PMID: 18589210]
[190]
Akers, J.C.; Ramakrishnan, V.; Kim, R.; Skog, J.; Nakano, I.; Pingle, S.; Kalinina, J.; Hua, W.; Kesari, S.; Mao, Y.; Breakefield, X.O.; Hochberg, F.H.; Van Meir, E.G.; Carter, B.S.; Chen, C.C. MiR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): A platform for glioblastoma biomarker development. PLoS One, 2013, 8(10), e78115.
[http://dx.doi.org/10.1371/journal.pone.0078115] [PMID: 24205116]
[191]
Shi, R.; Wang, P.Y.; Li, X.Y.; Chen, J.X.; Li, Y.; Zhang, X.Z.; Zhang, C.G.; Jiang, T.; Li, W.B.; Ding, W.; Cheng, S.J. Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget, 2015, 6(29), 26971-26981.
[http://dx.doi.org/10.18632/oncotarget.4699] [PMID: 26284486]
[192]
Zeng, A.; Wei, Z.; Yan, W.; Yin, J.; Huang, X.; Zhou, X.; Li, R.; Shen, F.; Wu, W.; Wang, X.; You, Y. Exosomal transfer of miR-151a enhances chemosensitivity to temozolomide in drug-resistant glioblastoma. Cancer Lett., 2018, 436, 10-21.
[http://dx.doi.org/10.1016/j.canlet.2018.08.004] [PMID: 30102952]
[193]
Manterola, L.; Guruceaga, E.; Pérez-Larraya, J.G.; González-Huarriz, M.; Jauregui, P.; Tejada, S.; Diez-Valle, R.; Segura, V.; Samprón, N.; Barrena, C.; Ruiz, I.; Agirre, A.; Ayuso, Á.; Rodríguez, J.; González, Á.; Xipell, E.; Matheu, A.; López de Munain, A.; Tuñón, T.; Zazpe, I.; García-Foncillas, J.; Paris, S.; Delattre, J.Y.; Alonso, M.M. A small noncoding RNA signature found in exosomes of GBM patient serum as a diagnostic tool. Neuro-oncol., 2014, 16(4), 520-527.
[http://dx.doi.org/10.1093/neuonc/not218] [PMID: 24435880]
[194]
Yang, J.K.; Yang, J.P.; Tong, J.; Jing, S.Y.; Fan, B.; Wang, F.; Sun, G.Z.; Jiao, B.H. Exosomal miR-221 targets DNM3 to induce tumor progression and temozolomide resistance in glioma. J. Neurooncol., 2017, 131(2), 255-265.
[http://dx.doi.org/10.1007/s11060-016-2308-5] [PMID: 27837435]
[195]
Lan, F.; Qing, Q.; Pan, Q.; Hu, M.; Yu, H.; Yue, X. Serum exosomal miR-301a as a potential diagnostic and prognostic biomarker for human glioma. Cell Oncol., 2018, 41(1), 25-33.
[http://dx.doi.org/10.1007/s13402-017-0355-3] [PMID: 29076027]
[196]
Cai, Q.; Zhu, A.; Gong, L. Exosomes of glioma cells deliver miR-148a to promote proliferation and metastasis of glioblastoma via targeting CADM1. Bull. Cancer, 2018, 105(7-8), 643-651.
[http://dx.doi.org/10.1016/j.bulcan.2018.05.003] [PMID: 29921422]
[197]
Santangelo, A.; Imbrucè, P.; Gardenghi, B.; Belli, L.; Agushi, R.; Tamanini, A.; Munari, S.; Bossi, A.M.; Scambi, I.; Benati, D.; Mariotti, R.; Di Gennaro, G.; Sbarbati, A.; Eccher, A.; Ricciardi, G.K.; Ciceri, E.M.; Sala, F.; Pinna, G.; Lippi, G.; Cabrini, G.; Dechecchi, M.C. A microRNA signature from serum exosomes of patients with glioma as complementary diagnostic biomarker. J. Neurooncol., 2018, 136(1), 51-62.
[http://dx.doi.org/10.1007/s11060-017-2639-x] [PMID: 29076001]
[198]
Liu, L.; Meng, T.; Yang, X.H.; Sayim, P.; Lei, C.; Jin, B.; Ge, L.; Wang, H.J. Prognostic and predictive value of long non-coding RNA GAS5 and mircoRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion. Cancer Biomark., 2018, 22(2), 283-299.
[http://dx.doi.org/10.3233/CBM-171011] [PMID: 29630521]
[199]
Pan, L.; Liang, W.; Fu, M.; Huang, Z.; Li, X.; Zhang, W.; Zhang, P.; Qian, H.; Jiang, P.; Xu, W.; Zhang, X. Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. J. Cancer Res. Clin. Oncol., 2017, 143(6), 991-1004.
[http://dx.doi.org/10.1007/s00432-017-2361-2] [PMID: 28285404]
[200]
Li, Q.; Shao, Y.; Zhang, X.; Zheng, T.; Miao, M.; Qin, L.; Wang, B.; Ye, G.; Xiao, B.; Guo, J. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol., 2015, 36(3), 2007-2012.
[http://dx.doi.org/10.1007/s13277-014-2807-y] [PMID: 25391424]