Hybrids of Benzimidazole-oxadiazole: A New Avenue for Synthesis, Pharmacological Activity and Recent Patents for the Development of More Effective Ligands

Page: [976 - 1013] Pages: 38

  • * (Excluding Mailing and Handling)

Abstract

Background: Two significant families of compounds i.e. 1,3,4-oxadiazole and benzimidazole, have undergone extensive investigation into their pharmacological characteristics and possible therapeutic applications. Both classes have shown their potential in a variety of applications, and because of their synergistic interactions, they may have an even better therapeutic impact when combined.

Objectives: To produce a specific molecule with potent therapeutic properties, it is now common methods to combine at least two pharmacophores. This facilitates interaction with several targets, enhances biological functions, or eliminates adverse effects associated with them.

Conclusion: The synthesis of benzimidazole-1,3,4-oxadiazole hybrid compounds has recently involved the use of several synthetic techniques, all of which are detailed in the literature along with the advantages and disadvantages. It has been noted that the structure-activity relationship relates their pharmacological actions to their molecular structure. In order to set the stage for future research, the study aims to provide researchers with an effective toolbox and an understanding of benzimidazole and 1,3,4-oxadiazole hybrid compounds.

Graphical Abstract

[1]
Yadav, G.; Ganguly, S. Structure activity relationship (SAR) study of benzimidazole scaffold for different biological activities: A mini-review. Eur. J. Med. Chem., 2015, 97(97), 419-443.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.053] [PMID: 25479684]
[2]
Hashem, H.E.; El Bakri, Y. An overview on novel synthetic approaches and medicinal applications of benzimidazole compounds. Arab. J. Chem., 2021, 14(11), 103418.
[http://dx.doi.org/10.1016/j.arabjc.2021.103418]
[3]
Sundaraganesan, N.; Ilakiamani, S.; Subramani, P.; Joshua, B.D. Comparison of experimental and ab initio HF and DFT vibrational spectra of benzimidazole. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2007, 67(3-4), 628-635.
[http://dx.doi.org/10.1016/j.saa.2006.08.020] [PMID: 16979935]
[4]
Shrivastava, N.; Naim, M.J.; Alam, M.J.; Nawaz, F.; Ahmed, S.; Alam, O. Benzimidazole scaffold as anticancer agent: Synthetic approaches and structure–activity relationship. Arch. Pharm., 2017, 350(6), e201700040.
[http://dx.doi.org/10.1002/ardp.201700040] [PMID: 28544162]
[5]
Kovačević, N.; Kokalj, A. Analysis of molecular electronic structure of imidazole- and benzimidazole-based inhibitors: A simple recipe for qualitative estimation of chemical hardness. Corros. Sci., 2011, 53(3), 909-921.
[http://dx.doi.org/10.1016/j.corsci.2010.11.016]
[6]
Fei, F.; Zhou, Z. New substituted benzimidazole derivatives: A patent review (2010 – 2012). Expert Opin. Ther. Pat., 2013, 23(9), 1157-1179.
[http://dx.doi.org/10.1517/13543776.2013.800857] [PMID: 23675911]
[7]
Tahlan, S.; Kumar, S.; Kakkar, S.; Narasimhan, B. Benzimidazole scaffolds as promising antiproliferative agents: A review. BMC Chem., 2019, 13(1), 66.
[http://dx.doi.org/10.1186/s13065-019-0579-6] [PMID: 31384813]
[8]
Wang, X.; Yang, H.; Wang, F. An investigation of benzimidazole derivative as corrosion inhibitor for mild steel in different concentration HCl solutions. Corros. Sci., 2011, 53(1), 113-121.
[http://dx.doi.org/10.1016/j.corsci.2010.09.029]
[9]
Vasil’ev, P.M.; Kalitin, K.Y.; Spasov, A.A.; Grechko, O.Y.; Poroikov, V.V.; Filimonov, D.A.; Anisimova, V.A. Prediction and study of anticonvulsant properties of benzimidazole derivatives. Pharm. Chem. J., 2017, 50(12), 775-780.
[http://dx.doi.org/10.1007/s11094-017-1530-6]
[10]
Jerez, G.; Kaufman, G.; Prystai, M.; Schenkeveld, S.; Donkor, K.K. Determination of thermodynamic p Ka values of benzimidazole and benzimidazole derivatives by capillary electrophoresis. J. Sep. Sci., 2009, 32(7), 1087-1095.
[http://dx.doi.org/10.1002/jssc.200800482] [PMID: 19306255]
[11]
Lubega, G.; Prichard, R. Specific interaction of benzimidazole anthelmintics with tubulin: High-affinity binding and benzimidazole resistance in Haemonchus contortus. Mol. Biochem. Parasitol., 1990, 38(2), 221-232.
[http://dx.doi.org/10.1016/0166-6851(90)90025-H] [PMID: 2325707]
[12]
Tunçbilek, M.; Kiper, T.; Altanlar, N. Synthesis and in vitro antimicrobial activity of some novel substituted benzimidazole derivatives having potent activity against MRSA. Eur. J. Med. Chem., 2009, 44(3), 1024-1033.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.026] [PMID: 18718694]
[13]
Khvatova, G.I.; Semeikin, A.V. Molecular-biological problems of drug design and mechanism of drug action. Pharm. Chem. J., 2011, 44(12), 651-653.
[http://dx.doi.org/10.1007/s11094-011-0539-5]
[14]
Gullapelli, K.; Brahmeshwari, G.; Ravichander, M.; Kusuma, U. Synthesis, antibacterial and molecular docking studies of new benzimidazole derivatives. Egyptian J. Basic Appl. Sci., 2017, 4(4), 303-309.
[http://dx.doi.org/10.1016/j.ejbas.2017.09.002]
[15]
Küçükbay, H.; Uçkun, M.; Apohan, E.; Yeşilada, Ö. Cytotoxic and antimicrobial potential of benzimidazole derivatives. Arch. Pharm., 2021, 354(8), 2100076.
[http://dx.doi.org/10.1002/ardp.202100076] [PMID: 33872394]
[16]
Elnima, E.I.; Zubair, M.U.; Al-Badr, A.A. Antibacterial and antifungal activities of benzimidazole and benzoxazole derivatives. Antimicrob. Agents Chemother., 1981, 19(1), 29-32.
[http://dx.doi.org/10.1128/AAC.19.1.29] [PMID: 7247359]
[17]
Paul, K.; Bindal, S.; Luxami, V. Synthesis of new conjugated coumarin-benzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. Lett., 2013, 23(12), 3667-3672.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.071] [PMID: 23642480]
[18]
Zhang, S.L.; Damu, G.L.V.; Zhang, L.; Geng, R.X.; Zhou, C.H. Synthesis and biological evaluation of novel benzimidazole derivatives and their binding behavior with bovine serum albumin. Eur. J. Med. Chem., 2012, 55, 164-175.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.015] [PMID: 22863183]
[19]
Lanusse, C.E.; Prichard, R.K. Clinical pharmacokinetics and metabolism of benzimidazole anthelmintics in ruminants. Drug Metab. Rev., 1993, 25(3), 235-279.
[http://dx.doi.org/10.3109/03602539308993977] [PMID: 8404459]
[20]
Aljourani, J.; Golozar, M.A.; Raeissi, K. The inhibition of carbon steel corrosion in hydrochloric and sulfuric acid media using some benzimidazole derivatives. Mater. Chem. Phys., 2010, 121(1-2), 320-325.
[http://dx.doi.org/10.1016/j.matchemphys.2010.01.040]
[21]
Katritzky, A.R.; Barcock, R.A.; Balasubramanian, M.; Greenhill, J.V.; Siskin, M.; Olmstead, W.N. Aqueous high-temperature chemistry of carbo- and heterocycles. 21. reactions of sulfur-containing compounds in supercritical water at 460. degree. C. Energy Fuels, 1994, 8(2), 498-506.
[http://dx.doi.org/10.1021/ef00044a031]
[22]
Sadek, B.; Fahelelbom, K.M.S. Synthesis, characterization, and antimicrobial evaluation of oxadiazole congeners. Molecules, 2011, 16(6), 4339-4347.
[http://dx.doi.org/10.3390/molecules16064339] [PMID: 21613975]
[23]
Hemming, K. Recent developments in the synthesis, chemistry and applications of the fully unsaturated 1, 2, 4-oxadiazoles. J. Chem. Res., 2001, 2001(6), 209-216.
[http://dx.doi.org/10.3184/030823401103169603]
[24]
Pitasse-Santos, P.; Sueth-Santiago, V.; Lima, M. 1,2,4- and 1,3,4-oxadiazoles as scaffolds in the development of antiparasitic agents. J. Braz. Chem. Soc., 2017, 29, 435-456.
[http://dx.doi.org/10.21577/0103-5053.20170208]
[25]
Nagaraj, C.K.; Niranjan, M.S.; Kiran, S. 1, 3, 4 Oxadiazole: A potent drug candidate with various pharmacological activities. Int. J. Pharm. Pharm. Sci., 2011, 3(3), 9-16.
[26]
Boström, J.; Hogner, A.; Llinàs, A.; Wellner, E.; Plowright, A.T. Oxadiazoles in medicinal chemistry. J. Med. Chem., 2012, 55(5), 1817-1830.
[http://dx.doi.org/10.1021/jm2013248] [PMID: 22185670]
[27]
Chitambar, C.R.; Wereley, J.P. Resistance to the antitumor agent gallium nitrate in human leukemic cells is associated with decreased gallium/iron uptake, increased activity of iron regulatory protein-1, and decreased ferritin production. J. Biol. Chem., 1997, 272(18), 12151-12157.
[http://dx.doi.org/10.1074/jbc.272.18.12151] [PMID: 9115286]
[28]
Singh, P.; Sharma, P.; Sharma, J.; Upadhyay, A.; Kumar, N. Synthesis and evaluation of substituted diphenyl-1,3,4-oxadiazole derivatives for central nervous system depressant activity. Org. Med. Chem. Lett., 2012, 2(1), 8.
[http://dx.doi.org/10.1186/2191-2858-2-8] [PMID: 22380426]
[29]
Bala, S.; Kamboj, S.; Kumar, A. Heterocyclic 1,3,4-oxadiazole compounds with diverse biological activities: A comprehensive review. J. Pharm. Res., 2010, 3(12), 2993-2997.
[30]
Singh, P.; Jangra, P.K. Oxadiazoles: A novel class of anti-convulsant agents. Acta Chim. Sim., 2010, 1(3), 118-123.
[31]
Singhai, A.; Gupta, M.K. Synthesis and characterization of 1,3,4-oxadiazole derivatives as potential anti-inflammatory and analgesic agents. Res. J. Pharma. Technol., 2020, 13(12), 5898-5902.
[http://dx.doi.org/10.5958/0974-360X.2020.01029.X]
[32]
Glomb, T.; Szymankiewicz, K.; Świątek, P. Anti-cancer activity of derivatives of 1, 3, 4-oxadiazole. Molecules, 2018, 23(12), 3361.
[http://dx.doi.org/10.3390/molecules23123361] [PMID: 30567416]
[33]
Yar, M.S.; Siddiqui, A.A.; Ashraf Ali, M. Synthesis and anti tuberculostatic activity of novel 1,3,4-oxadiazole derivatives. J. Chin. Chem. Soc., 2007, 54(1), 5-8.
[http://dx.doi.org/10.1002/jccs.200700002]
[34]
Hendawy, O.M. A comprehensive review of recent advances in the biological activities of 1,2,4‐oxadiazoles. Arch. Pharm., 2022, 355(7), 2200045.
[http://dx.doi.org/10.1002/ardp.202200045] [PMID: 35445430]
[35]
Salahuddin, M.; Mazumder, A.; Yar, M.S.; Mazumder, R.; Chakraborthy, G.S.; Ahsan, M.J.; Rahman, M.U. Updates on synthesis and biological activities of 1,3,4-oxadiazole: A review. Synth. Commun., 2017, 47(20), 1805-1847.
[http://dx.doi.org/10.1080/00397911.2017.1360911]
[36]
Khalilullah, H.; Ahsan, M.J.; Hedaitullah, M.; Khan, S.; Ahmed, B. 1,3,4-oxadiazole: A biologically active scaffold. Mini Rev. Med. Chem., 2012, 12(8), 789-801.
[http://dx.doi.org/10.2174/138955712801264800] [PMID: 22512560]
[37]
Joshi, S.; Mehra, M.; Singh, R.; Kakar, S. Review on chemistry of oxazole derivatives: Current to future therapeutic prospective. Egyptian J. Basic Appl.Sci., 2023, 10(1), 218-239.
[http://dx.doi.org/10.1080/2314808X.2023.2171578]
[38]
Guimarães, C.R.W.; Boger, D.L.; Jorgensen, W.L. Elucidation of fatty acid amide hydrolase inhibition by potent α-ketoheterocycle derivatives from Monte Carlo simulations. J. Am. Chem. Soc., 2005, 127(49), 17377-17384.
[http://dx.doi.org/10.1021/ja055438j] [PMID: 16332087]
[39]
Summers, L.A. The bipyridines. Adv. Heterocycl. Chem., 1984, 35(35), 281-374.
[http://dx.doi.org/10.1016/S0065-2725(08)60151-8]
[40]
Zhang, S.; Luo, Y.; He, L.Q.; Liu, Z.J.; Jiang, A.Q.; Yang, Y.H.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of novel 1,3,4-oxadiazole derivatives possessing benzotriazole moiety as FAK inhibitors with anticancer activity. Bioorg. Med. Chem., 2013, 21(13), 3723-3729.
[http://dx.doi.org/10.1016/j.bmc.2013.04.043] [PMID: 23673215]
[41]
Vaidya, A.; Pathak, D.; Shah, K. 1,3,4‐oxadiazole and its derivatives: A review on recent progress in anticancer activities. Chem. Biol. Drug Des., 2021, 97(3), 572-591.
[http://dx.doi.org/10.1111/cbdd.13795] [PMID: 32946168]
[42]
Lee, L.; Robb, L.M.; Lee, M.; Davis, R.; Mackay, H.; Chavda, S.; Babu, B.; O’Brien, E.L.; Risinger, A.L.; Mooberry, S.L.; Lee, M. Design, synthesis, and biological evaluations of 2,5-diaryl-2,3-dihydro-1,3,4-oxadiazoline analogs of combretastatin-A4. J. Med. Chem., 2010, 53(1), 325-334.
[http://dx.doi.org/10.1021/jm901268n] [PMID: 19894742]
[43]
Kiselyov, A.S.; Semenova, M.N.; Chernyshova, N.B.; Leitao, A.; Samet, A.V.; Kislyi, K.A.; Raihstat, M.M.; Oprea, T.; Lemcke, H.; Lantow, M.; Weiss, D.G.; Ikizalp, N.N.; Kuznetsov, S.A.; Semenov, V.V. Novel derivatives of 1,3,4-oxadiazoles are potent mitostatic agents featuring strong microtubule depolymerizing activity in the sea urchin embryo and cell culture assays. Eur. J. Med. Chem., 2010, 45(5), 1683-1697.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.072] [PMID: 20110137]
[44]
Zarghi, A.; Hajimahdi, Z.; Mohebbi, S.; Rashidi, H.; Mozaffari, S.; Sarraf, S.; Faizi, M.; Tabatabaee, S.A.; Shafiee, A. Design and synthesis of new 2-substituted-5-[2-(2-halobenzyloxy)phenyl]-1,3,4-oxadiazoles as anticonvulsant agents. Chem. Pharm. Bull., 2008, 56(4), 509-512.
[http://dx.doi.org/10.1248/cpb.56.509] [PMID: 18379099]
[45]
Zarghi, A.; Tabatabai, S.A.; Faizi, M.; Ahadian, A.; Navabi, P.; Zanganeh, V.; Shafiee, A. Synthesis and anticonvulsant activity of new 2-substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazoles. Bioorg. Med. Chem. Lett., 2005, 15(7), 1863-1865.
[http://dx.doi.org/10.1016/j.bmcl.2005.02.014] [PMID: 15780622]
[46]
Jayashankar, B.; Lokanath Rai, K.M.; Baskaran, N.; Sathish, H.S. Synthesis and pharmacological evaluation of 1,3,4-oxadiazole bearing bis(heterocycle) derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2009, 44(10), 3898-3902.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.006] [PMID: 19423197]
[47]
Ghani, U.; Ullah, N. New potent inhibitors of tyrosinase: Novel clues to binding of 1,3,4-thiadiazole-2(3H)-thiones, 1,3,4-oxadiazole-2(3H)-thiones, 4-amino-1,2,4-triazole-5(4H)-thiones, and substituted hydrazides to the dicopper active site. Bioorg. Med. Chem., 2010, 18(11), 4042-4048.
[http://dx.doi.org/10.1016/j.bmc.2010.04.021] [PMID: 20452224]
[48]
Bankar, G.R.; Nandakumar, K.; Nayak, P.G.; Thakur, A.; Chamallamudi, M.R.; Nampurath, G.K. Vasorelaxant effect in rat aortic rings through calcium channel blockage: A preliminary in vitro assessment of a 1,3,4-oxadiazole derivative. Chem. Biol. Interact., 2009, 181(3), 377-382.
[http://dx.doi.org/10.1016/j.cbi.2009.07.014] [PMID: 19643099]
[49]
Mohammed Iqbal, A.K.; Khan, A.Y.; Kalashetti, M.B.; Belavagi, N.S.; Gong, Y.D.; Khazi, I.A.M. Synthesis, hypoglycemic and hypolipidemic activities of novel thiazolidinedione derivatives containing thiazole/triazole/oxadiazole ring. Eur. J. Med. Chem., 2012, 53, 308-315.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.015] [PMID: 22575535]
[50]
Schiefer, I.T.; VandeVrede, L. Furoxans (1,2,5-oxadiazole-N-oxides) as novel NO mimetic neuroprotective and procognitive agents. J. Med. Chem., 2012, 55, 3076.
[http://dx.doi.org/10.1021/jm201504s] [PMID: 22429006]
[51]
Warrener, R.N. New adventures in the synthesis of hetero-bridgedsyn-facially fused norbornadienes (“[n]Polynorbornadienes”) and their topological diversity. Eur. J. Org. Chem., 2000, 2000(20), 3363-3380.
[http://dx.doi.org/10.1002/1099-0690(200010)2000:20<3363::AID-EJOC3363>3.0.CO;2-I]
[52]
Sharma, D.; Om, H.; Sharma, A.K. Potential synthetic routes and metal-ion sensing applications of 1,3,4-oxadiazoles: An integrative review. Crit. Rev. Anal. Chem., 2022, 23, 1-21.
[http://dx.doi.org/10.1080/10408347.2022.2080494] [PMID: 35617470]
[53]
Brandenberger, H.; Maes, R.A. Analytical Toxicology for Clinical, Forensic and Pharmaceutical Chemists; Walter de Gruyter, 2011.
[54]
Ducharme, Y.; Blouin, M.; Brideau, C.; Châteauneuf, A.; Gareau, Y.; Grimm, E.L.; Juteau, H.; Laliberté, S.; MacKay, B.; Massé, F.; Ouellet, M.; Salem, M.; Styhler, A.; Friesen, R.W. The discovery of setileuton, a potent and selective 5-lipoxygenase inhibitor. ACS Med. Chem. Lett., 2010, 1(4), 170-174.
[http://dx.doi.org/10.1021/ml100029k] [PMID: 24900191]
[55]
Adelstein, G.W.; Yen, C.H.; Dajani, E.Z.; Bianchi, R.G. 3,3-Diphenyl-3-(2-alkyl-1,3,4-oxadiazol-5-yl)propylcycloalkylamines, a novel series of antidiarrheal agents. J. Med. Chem., 1976, 19(10), 1221-1225.
[http://dx.doi.org/10.1021/jm00232a010] [PMID: 994153]
[56]
Ouyang, X.; Piatnitski, E.L.; Pattaropong, V.; Chen, X.; He, H.Y.; Kiselyov, A.S.; Velankar, A.; Kawakami, J.; Labelle, M.; Smith, L., II; Lohman, J.; Lee, S.P.; Malikzay, A.; Fleming, J.; Gerlak, J.; Wang, Y.; Rosler, R.L.; Zhou, K.; Mitelman, S.; Camara, M.; Surguladze, D.; Doody, J.F.; Tuma, M.C. Oxadiazole derivatives as a novel class of antimitotic agents: Synthesis, inhibition of tubulin polymerization, and activity in tumor cell lines. Bioorg. Med. Chem. Lett., 2006, 16(5), 1191-1196.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.094] [PMID: 16377187]
[57]
Patel, K.D.; Prajapati, S.M.; Panchal, S.N.; Patel, H.D. Review of synthesis of 1, 3, 4-oxadiazole derivatives. Synth. Commun., 2014, 44(13), 1859-1875.
[http://dx.doi.org/10.1080/00397911.2013.879901]
[58]
Ogata, M.; Atobe, H.; Kushida, H.; Yamamoto, K. In vitro sensitivity of mycoplasmas isolated from various animals and sewage to antibiotics and nitrofurans. J. Antibiot., 1971, 24(7), 443-451.
[http://dx.doi.org/10.7164/antibiotics.24.443] [PMID: 4327309]
[59]
Çevik, U.A.; Osmaniye, D.; Çavuşoğlu, B.K.; Sağlik, B.N.; Levent, S.; Ilgin, S.; Can, N.Ö.; Özkay, Y.; Kaplancikli, Z.A. Synthesis of novel benzimidazole-oxadiazole derivatives as potent anticancer activity. Med. Chem. Res., 2019, 28(12), 2252-2261.
[http://dx.doi.org/10.1007/s00044-019-02451-0]
[60]
Rashid, M.; Husain, A.; Mishra, R.; Karim, S.; Khan, S.; Ahmad, M.; Al-wabel, N.; Husain, A.; Ahmad, A.; Khan, S.A. Design and synthesis of benzimidazoles containing substituted oxadiazole, thiadiazole and triazolo-thiadiazines as a source of new anticancer agents. Arab. J. Chem., 2019, 12(8), 3202-3224.
[http://dx.doi.org/10.1016/j.arabjc.2015.08.019]
[61]
Akhtar, M.J.; Siddiqui, A.A.; Khan, A.A.; Ali, Z.; Dewangan, R.P.; Pasha, S.; Yar, M.S. Design, synthesis, docking and QSAR study of substituted benzimidazole linked oxadiazole as cytotoxic agents, EGFR and erbB2 receptor inhibitors. Eur. J. Med. Chem., 2017, 126, 853-869.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.014] [PMID: 27987485]
[62]
Rashid, M.; Husain, A.; Mishra, R. Synthesis of benzimidazoles bearing oxadiazole nucleus as anticancer agents. Eur. J. Med. Chem., 2012, 54, 855-866.
[http://dx.doi.org/10.1016/j.ejmech.2012.04.027] [PMID: 22608854]
[63]
Husain, A.; Rashid, M.; Mishra, R.; Parveen, S.; Shin, D.S.; Kumar, D. Benzimidazole bearing oxadiazole and triazolo-thiadiazoles nucleus: Design and synthesis as anticancer agents. Bioorg. Med. Chem. Lett., 2012, 22(17), 5438-5444.
[http://dx.doi.org/10.1016/j.bmcl.2012.07.038] [PMID: 22840417]
[64]
Devi, E.R.; Sreenivasulu, R.; Malladi, S.; Nadh, R.V.; Rao, M.V.; Rao, K.P. Design, synthesis and biological evaluation of amide derivatives of 1, 3, 4-oxadiazole-isoxazol-pyridine-benzimidazole as anticancer agents. Res. Sci. Technol., 2022, 1-10.
[http://dx.doi.org/10.21203/rs.3.rs-1496043/v1]
[65]
Celik, I.; Ayşen, I.Ş.; Özkay, Y.; Kaplancıklı, Z.A. Design, synthesis, molecular docking, adme and biological evaluation studies of some new 1, 3, 4-oxadiazole linked benzimidazoles as anticancer agents and aromatase inhibitors. Res. Sci. Technol., 2022, 1-10.
[http://dx.doi.org/10.21203/rs.3.rs-975581/v1]
[66]
Katikireddy, R.; Marri, S.; Kakkerla, R.; Murali Krishna, M.P.S.; Gandamalla, D.; Reddy, Y.N. Synthesis, anticancer activity and molecular docking studies of hybrid benzimidazole-1,3,4-oxadiazol-2- N -alkyl/aryl amines. Polycycl. Aromat. Compd., 2022, 42(9), 5855-5869.
[http://dx.doi.org/10.1080/10406638.2021.1959352]
[67]
Abd El-Meguid, E.A.; Awad, H.M.; Anwar, M.M. Synthesis of new 1, 3, 4-oxadiazole-benzimidazole derivatives as potential antioxidants and breast cancer inhibitors with apoptosis inducing activity. Russ. J. Gen. Chem., 2019, 89(2), 348-356.
[http://dx.doi.org/10.1134/S1070363219020282]
[68]
Mochona, B.; Jackson, T.; McCauley, D.; Mazzio, E.; Redda, K.K. Synthesis and cytotoxic evaluation of pyrrole hetarylazoles containing benzimidazole/pyrazolone/1,3,4-oxadiazole motifs. J. Heterocycl. Chem., 2016, 53(6), 1871-1877.
[http://dx.doi.org/10.1002/jhet.2501] [PMID: 27956751]
[69]
Quy, N.P.; Hue, B.T.B.; Do, K.M.; Quy, H.T.K.; De, T.Q.; Phuong, T.T.B.; Trang, P.C.; Quoc, N.C.; Morita, H. Design, synthesis and cytotoxicity evalufation of substituted benzimidazole conjugated 1,3,4-oxadiazoles. Chem. Pharm. Bull., 2022, 70(6), 448-453.
[http://dx.doi.org/10.1248/cpb.c22-00162] [PMID: 35650042]
[70]
Alzahrani, H.A.; Alam, M.M.; Elhenawy, A.A.; Nazreen, S. Synthesis, antimicrobial, antiproliferative, and docking studies of 1, 3, 4-oxadiazole derivatives containing benzimidazole scaffold. Biointerface Res. Appl. Chem., 2022, 1-16.
[71]
Karaali, N.; Menteşe, E. Synthesis and study of antitumor activity of some new 2-(4-methoxybenzyl)-1H-benzimidazole derivatives bearing triazole, oxadiazole and ethanol moiety. Rev. Roum. Chim., 2016, 61(3), 187-192.
[72]
Galal, S.A.; Abdelsamie, A.S.; Rodriguez, M.L.; Kerwin, S.M.; El Diwani, H.I. Synthesis and studying the antitumor activity of novel 5-(2-methylbenzimidazol-5-yl)-1,3,4-oxadiazole-2(3H)-thiones. Eur. J. Chem., 2010, 1(2), 67-72.
[http://dx.doi.org/10.5155/eurjchem.1.2.67-72.1]
[73]
Gowda, J.; Khadar, A.M.; Kalluraya, B.; Kumari, N.S. Microwave assisted synthesis of 1, 3, 4-oxadiazoles carrying benzimidazole moiety and their antimicrobial properties. Indian J. Chem., 2010, 49(8), 1130-1134.
[74]
Bantho, A.N. The synthesis, characterisation and antibacterial activity of benzimidazole-oxadiazole hybrids, 2022. https://researchspace.ukzn.ac.za/items/1ee26eba-f8f8-4c38-8171-0e61ffbe96bf
[75]
Meshram, G.A.; Vala, V.A. Synthesis, characterization, and antimicrobial activity of benzimidazole-derived chalcones containing 1,3,4-oxadiazole moiety. Chem. Heterocycl. Compd., 2015, 51(1), 44-50.
[http://dx.doi.org/10.1007/s10593-015-1653-1]
[76]
Desai, N.C.; Kotadiya, G.M. Microwave-assisted synthesis of benzimidazole bearing 1,3,4-oxadiazole derivatives: Screening for their in vitro antimicrobial activity. Med. Chem. Res., 2014, 23(9), 4021-4033.
[http://dx.doi.org/10.1007/s00044-014-0978-0]
[77]
Salahuddin; Shaharyar, M.; Mazumder, A.; Abdullah, M.M. Synthesis, characterization and antimicrobial activity of 1,3,4-oxadiazole bearing 1H-benzimidazole derivatives. Arab. J. Chem., 2017, 10, S503-S508.
[http://dx.doi.org/10.1016/j.arabjc.2012.10.010]
[78]
Bhati, S. Microwave assisted synthesis, antimicrobial activity and in silico pharmacokinetic study of some novel 1′, 3′, 4′-oxadiazole derivatives. Rasayan J. Chem., 2018, 11(3), 1366-1375.
[http://dx.doi.org/10.31788/RJC.2018.1132066]
[79]
Noureldin, N.A.; Richards, J.; Kothayer, H.; Baraka, M.M.; Eladl, S.M.; Wootton, M.; Simons, C. Design, computational studies, synthesis and in vitro antimicrobial evaluation of benzimidazole based thio-oxadiazole and thio-thiadiazole analogues. BMC Chem., 2021, 15(1), 58.
[http://dx.doi.org/10.1186/s13065-021-00785-8] [PMID: 34711258]
[80]
Bektas, H.; Albay, C.; Sökmen, B.B.; Aydın, S.; Menteşe, E.; Aydın, G.; Şen, D. Synthesis, antioxidant, and antibacterial activities of some new 2-(3-fluorobenzyl)-1 H -benzimidazole Derivatives. J. Heterocycl. Chem., 2018, 55(10), 2400-2407.
[http://dx.doi.org/10.1002/jhet.3304]
[81]
Karaburun, A.Ç.; Kaya Çavuşoğlu, B.; Acar Çevik, U.; Osmaniye, D.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Atlı, Ö.; Koparal, A.S.; Kaplancıklı, Z.A. Synthesis and antifungal potential of some novel benzimidazole-1,3,4-oxadiazole compounds. Molecules, 2019, 24(1), 191.
[http://dx.doi.org/10.3390/molecules24010191] [PMID: 30621357]
[82]
Zhang, Z.; Mu, W.; Ji, Z.; Jiang, L. Synthesis and antifungal activity of novel 2,5-disubstituted-1,3,4-oxadiazoles containing benzimidazole moiety. J. Pestic. Sci., 2012, 37(4), 338-341.
[http://dx.doi.org/10.1584/jpestics.D12-040]
[83]
Ansari, K.F.; Lal, C. Synthesis, physicochemical properties and antimicrobial activity of some new benzimidazole derivatives. Eur. J. Med. Chem., 2009, 44(10), 4028-4033.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.037] [PMID: 19482384]
[84]
Manjunath, G.; Bheemaraju, G.; Mahesh, M.; Venkata Ramana, P. Synthesis of new 5-((2-(substituted phenoxymethyl)-1H-benzo[d]imidazol-1-yl)methyl)-1,3,4-oxadiazole-2-thiol: A novel class of potential antibacterial and antifungal agents. Ann. Pharm. Fr., 2015, 73(6), 452-460.
[http://dx.doi.org/10.1016/j.pharma.2015.06.003] [PMID: 26188841]
[85]
Rathore, A.; Rahman, M.U.; Siddiqui, A.A.; Ali, A.; Shaharyar, M. Design and synthesis of benzimidazole analogs endowed with oxadiazole as selective COX-2 inhibitor. Arch. Pharm., 2014, 347(12), 923-935.
[http://dx.doi.org/10.1002/ardp.201400219] [PMID: 25303727]
[86]
Rathore, A.; Sudhakar, R.; Ahsan, M.J.; Ali, A.; Subbarao, N.; Jadav, S.S.; Umar, S.; Yar, M.S. In vivo anti-inflammatory activity and docking study of newly synthesized benzimidazole derivatives bearing oxadiazole and morpholine rings. Bioorg. Chem., 2017, 70, 107-117.
[http://dx.doi.org/10.1016/j.bioorg.2016.11.014] [PMID: 27923497]
[87]
Rajasekaran, S.; Rao, G.; Chatterjee, A. Synthesis, anti-inflammatory and anti-oxidant activity of some substituted benzimidazole derivatives. >Int. J. Drug Dev. Res., 2012, 4(3), 303-309.
[88]
Ujjwal, S.; Seth, A.K.; Balaraman, R. Design, synthesis of some novel 1, 3, 4-oxadiazole derivatives bearing benzimidazole nucleus and biological evaluation of their possible in vitro anti-inflammatory and antioxidant activity. Int. J. Chemtech Res., 2014, 6, 2427-2437.
[89]
Tantray, M.A.; Khan, I.; Hamid, H.; Alam, M.S.; Dhulap, A.; Kalam, A. Synthesis of benzimidazole-linked-1,3,4-oxadiazole carboxamides as GSK-3β inhibitors with in vivo antidepressant activity. Bioorg. Chem., 2018, 77, 393-401.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.040] [PMID: 29421716]
[90]
Tantray, M.A.; Khan, I.; Hamid, H.; Alam, M.S.; Dhulap, A.; Kalam, A. Synthesis of benzimidazole-based 1,3,4-oxadiazole-1,2,3-triazole conjugates as glycogen synthase kinase-3β inhibitors with antidepressant activity in in vivo models. RSC Advances, 2016, 6(49), 43345-43355.
[http://dx.doi.org/10.1039/C6RA07273A]
[91]
Patel, R.V.; Patel, P.K.; Kumari, P.; Rajani, D.P.; Chikhalia, K.H. Synthesis of benzimidazolyl-1,3,4-oxadiazol-2ylthio-N-phenyl (benzothiazolyl) acetamides as antibacterial, antifungal and antituberculosis agents. Eur. J. Med. Chem., 2012, 53, 41-51.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.033] [PMID: 22516426]
[92]
Bhati, S.; Kumar, V.; Singh, S.; Singh, J. Synthesis, characterization, antimicrobial, anti-tubercular, antioxidant activities and docking simulations of derivatives of 2-(pyridin-3-yl)-1Hbenzo [d] imidazole and 1, 3, 4-oxadiazole analogy. Lett. Drug Des. Discov., 2020, 17(8), 1047-1059.
[http://dx.doi.org/10.2174/1570180816666191122105313]
[93]
Ayhan-Kılcıgil, G.; Kus, C.; Özdamar, E.D.; Can-Eke, B.; Iscan, M. Synthesis and antioxidant capacities of some new benzimidazole derivatives. Arch. Pharm., 2007, 340(11), 607-611.
[http://dx.doi.org/10.1002/ardp.200700088] [PMID: 17994646]
[94]
Alp, A.S.; Kilcigi̇l, G.; Özdamar, E.D.; Çoban, T.; Eke, B. Synthesis and evaluation of antioxidant activities of novel 1,3,4-oxadiazole and imine containing 1$H$-benzimidazoles. Turk. J. Chem., 2015, 39(1), 42-53.
[http://dx.doi.org/10.3906/kim-1403-44]
[95]
Taha, M.; Rahim, F.; Zaman, K.; Selvaraj, M.; Uddin, N.; Farooq, R.K.; Nawaz, M.; Sajid, M.; Nawaz, F.; Ibrahim, M.; Khan, K.M. Synthesis, α-glycosidase inhibitory potential and molecular docking study of benzimidazole derivatives. Bioorg. Chem., 2020, 95, 103555.
[http://dx.doi.org/10.1016/j.bioorg.2019.103555] [PMID: 31911306]
[96]
Menteşe, E.; Ülker, S.; Kahveci, B. Synthesis and study of α-glucosidase inhibitory, antimicrobial and antioxidant activities of some benzimidazole derivatives containing triazole, thiadiazole, oxadiazole, and morpholine rings. Chem. Heterocycl. Compd., 2015, 50(12), 1671-1682.
[http://dx.doi.org/10.1007/s10593-015-1637-1]
[97]
Jian, Ge.; Jianyi, Ma. Benzimidazole derivatives and preparation process and pharmaceutical uses thereof. Patent US-9708306-B2, 2017.
[98]
Thomas, Schaefer Benzimidazolo[1,2-A] Benzimidazole carrying triazine groups for organic light-emitting diodes. Patent US-20180269407-A1, 2018.
[99]
Mark, J. Benzimidazole derivatives useful as CB-1 inverse agonists. Patent US-10118900-B2, 2018.
[100]
Stewart, Cole Benzimidazole Sulfide derivatives for the treatment or prevention of Tuberculosis. Patent US-10137116-B2, 2018.
[101]
Jau-Jiun, Huang Organic electroluminescent material containing benzimidazole and organic electroluminescent device by using the same. Patent US-10170708-B2, 2019.
[102]
Lie, Zhang Nitrogen Heterocyclic-Fused Benzene-Benzimidazole organic compound, display panel, and display apparatus. Patent US-20190173021-A1, 2019.
[103]
Kishor, Padmakar Method of measuring Benzimidazole-Based compounds in water. Patent US-20190271674-A1, 2019.
[104]
Fei, Sun Benzimidazole-Linked Indole compound acting as Novel Divalent IAP Antagonist. Patent US-10508103-B2, 2019.
[105]
Chih-Hao, C. Benzimidazole compounds and use thereof for treating Alzheimer's disease or Huntington's disease. Patent US-10584120-B1, 2020.
[106]
Jin, Y. Substituted Imidazole and Benzimidazole Lithium salts. Patent US-10734677-B2, 2020.
[107]
Jung, Mi. Benzimidazole derivative having JNK inhibitory activity and use thereof. Patent US-10781201-B22020,
[108]
Ha, J. Uses of Benzimidazole Derivative for Nocturnal acid breakthrough. Patent US-11033532-B2, 2021.
[109]
Lee, S. A pharmaceutical composition comprising benzimidazole derivative compound. Patent WO-2021171239-A1, 2021.
[110]
Luigi, A. Benzimidazole derivatives for treating filovirus infection. Patent US-20210292350-A1, 2021.
[111]
Younggeun, Shin Benzimidazole or Benzoxazole derivatives for preventing and treating central nervous system disease, Diabetes, and complications thereof. Patent US-20220016099-A1, 2022.
[112]
Gu, Yu.; He, Gui 1,3,4-oxadiazole and 1,3,4-thiadiazole beta-lactamase inhibitors. Patent US-2015031659-A1, 2015.
[113]
Zhang, G. [1,3,4] Oxadiazole derivative and application thereof. Patent US-8993575-B2, 2015.
[114]
Li, L. Bicyclic 1,3,4-oxadiazole derivatives as sphingosine-1-phosphate receptors modulators. Patent US-2016137616-A1, 2016.
[115]
Sarkar, D. 1,2,4-triazole, 1,3,4-oxadiazole, and 1,3,4-tridiazole derivatives and their antimycobacterial activity. Patent WO-2016108249-A1, 2016.
[116]
Perez, C. Herbicidal composition comprising N-(Tetrazole-5-yl)-or N-(1,3,4-Oxadiazole-2-yl) aryl amides and 3-isoxazolidinone derivative. Patent WO-2017025396-A1, 2017.
[117]
Kohn, Arnim Thermodynamically stable crystal modification of 2-methyl-n-(5-methyl-1,3,4-oxadiazole-2-yl)-3-(methylsulfonyl)-4-(trifluoromethyl)benzamide. Patent WO-2017080912-A1, 2017.
[118]
Sasikimar, P. 1,3,4-oxadiazole and 1,3,4-thiadiazole derivative as immunomodulators. Patent US-9776978-B2, 2017.
[119]
Pottayil, Govindan 1,3,4-oxadiazole and thiadiazole compound as immunomodulators. Patent US-2018044304-A1, 2018.
[120]
Pottayil, Govindan 3-Substituted 1,3,4-oxadiazole and thiadiazole compounds as immunomodulators. Patent US-2018044305-A1, 2018.
[121]
Sasikimar, Pottayil Cyclic substituted-1,3,4-oxadiazole and thiadiazole compounds as immunomodulators. Patent WO-201851255-A1, 2018.
[122]
Mikhajlov, Igor 2-(2-alkoxyphenyl)-5-(3,4,5-trialkoxyphenyl)-1,3,4-oxadiazole, which has luminescent properties. Patent RU-2670829-C1, 2018.
[123]
Wang, Yong 1,3,4-oxadiazole-2-cyclobutyl compound, a preparation method therefor and application thereof. Patent WO-2020083336-A1, 2020.
[124]
Lian, Lei N-(1,3,4-Oxadiazole-2-yl) aryl formamides or a salt thereof, a preparation method therefor, Herbicidal composition and use thereof. Patent WO-2020108518-A1, 2020.
[125]
Yudin, Andrei Oxadiazole cyclic peptides. Patent US-10703779-B2, 2020.
[126]
Catherine, Lynn Hydrogels for isotopic neutron emitters and antineutrino detection and related detection systems and methods. Patent US-10703968-B2, 2020.
[127]
Guangyi, Liu Method of using flotation collector containing azolethione structure. Patent US-10737280-B2, 2020.
[128]
Liedberg, Bo. Membrane Protease-Based methods for detection of bacteria. Patent WO-2020218976-A1, 2020.
[129]
Lee, Chang 1,3,4-oxadiazole derivative compound as histone deacetylase 6 inhibitors, and the pharmaceutical composition comprising the same. Patent WO-2020240492-A1, 2020.
[130]
Arnim, Koehn Substituted N-(-1,3,4-oxadiazole-2-yl) aryl carboxamides and the use thereof as Herbicides. Patent US-2021076680-A1, 2021.
[131]
Li, L. Bicyclic 1,3,4-oxadiazole derivatives as sphingosine-1-phosphate receptors modulators. Patent US-9371296-B2, 2021.
[132]
Dufour, Jeremy 1,3,4-oxadiazole pyrimidines as fungicides. Patent WO-2021255169-A1, 2021.
[133]
Lee, Jae Novel compounds as histone deacetylase 6 inhibitors, and pharmaceutical composition comprising the same. Patent WO-2022013728-A1, 2022.
[134]
Hamel, Matthieu Hydrated porous material and method for preparing same. Patent WO-2022023678-A1, 2022.
[135]
Marchini, Mattia 2-(4-((5-Benzo[B]thiophen-3-yl)-1-H-tetrazol-1-yl) methyl) phenyl)-5-(difluoromethyl)-1,3,4oxadiazole derivative and similar compounds as Selective inhibitors of histone deacetylase 6 (HDAC6) for use in treating e.g Peripheral Neuropathy. Patent WO-2022029041-A1, 2022.
[136]
Nakaya, Yoshihiko Method for producing 1,3,4 oxadiazole-2-amine compound. Patent WO-2022050427-A1, 2022.
[137]
Tahlan, S.; Kumar, S.; Narasimhan, B. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review. BMC Chem., 2019, 13(1), 101.
[http://dx.doi.org/10.1186/s13065-019-0625-4] [PMID: 31410412]
[138]
Khokra, S.L.; Choudhary, D. Benzimidazole an important scaffold in drug discovery. Asian J. Biochem. Pharm. Res, 2011, 3(1), 476-486.
[http://dx.doi.org/10.20959/wjpr20168-6710]
[139]
Jakhar, R.; Paul, S.; Bhardwaj, M.; Kang, S.C. Astemizole–Histamine induces Beclin-1-independent autophagy by targeting p53-dependent crosstalk between autophagy and apoptosis. Cancer Lett., 2016, 372(1), 89-100.
[http://dx.doi.org/10.1016/j.canlet.2015.12.024] [PMID: 26739061]
[140]
Vickers, N.J. Animal communication: When i’m calling you, will you answer too. Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[141]
Insa, D.; Wakode, S.; Sharma, A. Valuable insight into recent biological activities of different benzimidazoles. Curr. Trends. Pharma Chem., 2019, 1, 1-22.
[142]
Yang, G.J.; Utzinger, J.; Zhou, X.N. Interplay between environment, agriculture and infectious diseases of poverty: Case studies in China. Acta Trop., 2015, 141(Pt B), 399-406.
[http://dx.doi.org/10.1016/j.actatropica.2013.07.009] [PMID: 23906612]
[143]
Zuba, D. Identification of cathinones and other active components of ‘legal highs’ by mass spectrometric methods. Trends Analyt. Chem., 2012, 32, 15-30.
[http://dx.doi.org/10.1016/j.trac.2011.09.009]
[144]
Yang, L.; Meng, X.; Yu, X.; Kuang, H. Simultaneous determination of anemoside B4, phellodendrine, berberine, palmatine, obakunone, esculin, esculetin in rat plasma by UPLC–ESI–MS/MS and its application to a comparative pharmacokinetic study in normal and ulcerative colitis rats. J. Pharm. Biomed. Anal., 2017, 134, 43-52.
[http://dx.doi.org/10.1016/j.jpba.2016.11.021] [PMID: 27875787]
[145]
Huber, S.; Antoni, F.; Schickaneder, C.; Schickaneder, H.; Bernhardt, G.; Buschauer, A. Stabilities of neutral and basic esters of bendamustine in plasma compared to the parent compound: Kinetic investigations by HPLC. J. Pharm. Biomed. Anal., 2015, 104, 137-143.
[http://dx.doi.org/10.1016/j.jpba.2014.11.038] [PMID: 25499654]
[146]
Prakash, A.; Faulds, D. Rabeprazole. Drugs, 1998, 55(2), 261-267.
[http://dx.doi.org/10.2165/00003495-199855020-00009] [PMID: 9506245]
[147]
Borba, P.A.A.; Pinotti, M.; Andrade, G.R.S.; da Costa, N.B., Jr; Olchanheski, L.R.; Fernandes, D.; de Campos, C.E.M.; Stulzer, H.K. The effect of mechanical grinding on the formation, crystalline changes and dissolution behaviour of the inclusion complex of telmisartan and β-cyclodextrins. Carbohydr. Polym., 2015, 133, 373-383.
[http://dx.doi.org/10.1016/j.carbpol.2015.06.098]
[148]
Ntountaniotis, D.; Kellici, T.; Tzakos, A.; Kolokotroni, P.; Tselios, T.; Becker-Baldus, J.; Glaubitz, C.; Lin, S.; Makriyannis, A.; Mavromoustakos, T. The application of solid-state NMR spectroscopy to study candesartan cilexetil (TCV-116) membrane interactions. Comparative study with the AT1R antagonist drug olmesartan. Biochim. Biophys. Acta Biomembr., 2014, 1838(10), 2439-2450.
[http://dx.doi.org/10.1016/j.bbamem.2014.06.003] [PMID: 24946142]