Combating Biofilm Formation by Modulating Iron Concentration, using Nanoparticles and Plant Extracts

Article ID: e2210299X265522 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Biofilm formation often has detrimental effects from clinical and industrial perspectives. They are found to be resistant to antibiotics, detergents, etc., causing their treatment and cure to be onerous. Therefore, it becomes a necessity to develop novel methods to inhibit it. Iron is an essential regulator of bacterial biofilm formation. Studies suggest that by modulating iron concentration using either iron-chelating substances or iron salts, biofilm inhibition can be achieved depending on the mechanism of biofilm formation. This approach inhibits the expression of several genes responsible for adherence and colonization of bacteria. The use of nanoparticles is gaining rapid interest for biofilm inhibition. The ability of nanoparticles to act as antibacterial agents depends on their surface-to-mass ratio. Owing to their small size, certain metal nanoparticles can penetrate the EPS and inhibit bacterial adhesion and biofilm formation. Nanoparticles (NP) bring about cell lysis by interacting with cell membranes or producing Reactive Oxygen Species (ROS). Owing to the mechanical, thermal, or physiochemical properties of nanocomposite material, it is also studied for biofilm inhibition in various organisms. A widely appreciated method of NP synthesis is green synthesis, which makes use of plant extracts and microorganisms. Interestingly, plant extracts inherently are known to possess antimicrobial and anti-biofilm effects owing to their bioactive compounds. Plants synthesize secondary metabolites such as steroids, terpenoids, alkaloids, quinones, tannins, flavonoids, etc., for their defense, pollination, flavor, etc. Plant extracts made using appropriate solvents can be used to inhibit biofilm formed on various surfaces. They have been known to reduce biofilm by hindering exopolysaccharide formation and quorum sensing. In this review, we aim to describe these potential methods of biofilm inhibition.

[1]
Garrett, T.R.; Bhakoo, M.; Zhang, Z. Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci., 2008, 18(9), 1049-1056.
[http://dx.doi.org/10.1016/j.pnsc.2008.04.001]
[2]
Watnick, P.; Kolter, R. Biofilm, city of microbes. J. Bacteriol., 2000, 182(10), 2675-2679.
[http://dx.doi.org/10.1128/JB.182.10.2675-2679.2000] [PMID: 10781532]
[3]
Jefferson, K.K. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett., 2004, 236(2), 163-173.
[http://dx.doi.org/10.1111/j.1574-6968.2004.tb09643.x] [PMID: 15251193]
[4]
Flemming, H.C.; Neu, T.R.; Wozniak, D.J. The EPS matrix: The “house of biofilm cells”. J. Bacteriol., 2007, 189(22), 7945-7947.
[http://dx.doi.org/10.1128/JB.00858-07] [PMID: 17675377]
[5]
Limoli, D. H.; Jones, C. J.; Wozniak, D. J. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr, 2017, 3(3), 10.
[6]
Annous, B.A.; Fratamico, P.M.; Smith, J.L. Scientific status summary. J. Food Sci., 2009, 74(1), R24-R37.
[http://dx.doi.org/10.1111/j.1750-3841.2008.01022.x] [PMID: 19200115]
[7]
Mattila-Sandholm, T.; Wirtanen, G. Biofilm formation in the industry: A review. Food Rev. Int., 1992, 8(4), 573-603.
[http://dx.doi.org/10.1080/87559129209540953]
[8]
Harrison, J.J.; Ceri, H.; Stremick, C.A.; Turner, R.J. Biofilm susceptibility to metal toxicity. Environ. Microbiol., 2004, 6(12), 1220-1227.
[http://dx.doi.org/10.1111/j.1462-2920.2004.00656.x] [PMID: 15560820]
[9]
Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc., 2018, 81(1), 7-11.
[http://dx.doi.org/10.1016/j.jcma.2017.07.012] [PMID: 29042186]
[10]
Shikuma, N.J.; Hadfield, M.G. Marine biofilms on submerged surfaces are a reservoir for Escherichia coli and Vibrio cholerae. Biofouling, 2010, 26(1), 39-46.
[http://dx.doi.org/10.1080/08927010903282814] [PMID: 20390555]
[11]
Enning, D.; Garrelfs, J. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem. Appl. Environ. Microbiol., 2014, 80(4), 1226-1236.
[http://dx.doi.org/10.1128/AEM.02848-13] [PMID: 24317078]
[12]
Shrestha, L.; Fan, H.M.; Tao, H.R.; Huang, J.D. Recent strategies to combat biofilms using antimicrobial agents and therapeutic approaches. Pathogens, 2022, 11(3), 292.
[http://dx.doi.org/10.3390/pathogens11030292] [PMID: 35335616]
[13]
Lu, L.; Hu, W.; Tian, Z.; Yuan, D.; Yi, G.; Zhou, Y.; Cheng, Q.; Zhu, J.; Li, M. Developing natural products as potential anti-biofilm agents. Chin. Med., 2019, 14(1), 11.
[http://dx.doi.org/10.1186/s13020-019-0232-2] [PMID: 30936939]
[14]
Sahli, C.; Moya, S.E.; Lomas, J.S.; Gravier-Pelletier, C.; Briandet, R.; Hémadi, M. Recent advances in nanotechnology for eradicating bacterial biofilm. Theranostics, 2022, 12(5), 2383-2405.
[http://dx.doi.org/10.7150/thno.67296] [PMID: 35265216]
[15]
Greenberg, E.P.; Banin, E. Ironing out the biofilm problem:The role of iron in biofilm formation. In: Control of Biofilm Infections by Signal Manipulation; Balaban, N., Ed.; Springer: Berlin Heidelberg, 2008; Vol. 2, pp. 141-156.
[http://dx.doi.org/10.1007/7142_2007_014]
[16]
Moon, J.H.; Kim, C.; Lee, H.S.; Kim, S.W.; Lee, J.Y. Antibacterial and antibiofilm effects of iron chelators against Prevotella intermedia. J. Med. Microbiol., 2013, 62(9), 1307-1316.
[http://dx.doi.org/10.1099/jmm.0.053553-0] [PMID: 23329319]
[17]
Escolar, L.; Pérez-Martín, J.; de Lorenzo, V. Opening the iron box: Transcriptional metalloregulation by the Fur protein. J. Bacteriol., 1999, 181(20), 6223-6229.
[http://dx.doi.org/10.1128/JB.181.20.6223-6229.1999] [PMID: 10515908]
[18]
Sun, F.; Gao, H.; Zhang, Y.; Wang, L.; Fang, N.; Tan, Y.; Guo, Z.; Xia, P.; Zhou, D.; Yang, R. Fur is a repressor of biofilm formation in Yersinia pestis. PLoS One, 2012, 7(12), e52392.
[http://dx.doi.org/10.1371/journal.pone.0052392] [PMID: 23285021]
[19]
Johnson, M.; Cockayne, A.; Williams, P.H.; Morrissey, J.A. Iron-responsive regulation of biofilm formation in staphylococcus aureus involves fur-dependent and fur-independent mechanisms. J. Bacteriol., 2005, 187(23), 8211-8215.
[http://dx.doi.org/10.1128/JB.187.23.8211-8215.2005] [PMID: 16291697]
[20]
Musk, D.J.; Banko, D.A.; Hergenrother, P.J. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem. Biol., 2005, 12(7), 789-796.
[http://dx.doi.org/10.1016/j.chembiol.2005.05.007] [PMID: 16039526]
[21]
Raad, I.I.; Fang, X.; Keutgen, X.M.; Jiang, Y.; Sherertz, R.; Hachem, R. The role of chelators in preventing biofilm formation and catheter-related bloodstream infections. Curr. Opin. Infect. Dis., 2008, 21(4), 385-392.
[http://dx.doi.org/10.1097/QCO.0b013e32830634d8] [PMID: 18594291]
[22]
Musk, D.J., Jr; Hergenrother, P.J. Chelated iron sources are inhibitors of Pseudomonas aeruginosa biofilms and distribute efficiently in an in vitro model of drug delivery to the human lung. J. Appl. Microbiol., 2008, 105(2), 380-388.
[http://dx.doi.org/10.1111/j.1365-2672.2008.03751.x] [PMID: 18284482]
[23]
Watts, R.E.; Totsika, M.; Challinor, V.L.; Mabbett, A.N.; Ulett, G.C.; De Voss, J.J.; Schembri, M.A. Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infect. Immun., 2012, 80(1), 333-344.
[http://dx.doi.org/10.1128/IAI.05594-11] [PMID: 21930757]
[24]
Ali, S.G.; Ansari, M.A.; Khan, H.M.; Jalal, M.; Mahdi, A.A.; Cameotra, S.S. Antibacterial and antibiofilm potential of green synthesized silver nanoparticles against imipenem resistant clinical isolates of P. aeruginosa. Bionanoscience, 2018, 8(2), 544-553.
[http://dx.doi.org/10.1007/s12668-018-0505-8]
[25]
Ali, S.S. Biofilm formation and siderophore production by pseudomonas aeruginosa isolated from wounds infection. IJNTR, 2016, 2(9), 20-23.
[26]
Wilson, B.R.; Bogdan, A.R.; Miyazawa, M.; Hashimoto, K.; Tsuji, Y. Siderophores in iron metabolism: From mechanism to therapy potential. Trends Mol. Med., 2016, 22(12), 1077-1090.
[http://dx.doi.org/10.1016/j.molmed.2016.10.005] [PMID: 27825668]
[27]
Berlutti, F.; Morea, C.; Battistoni, A.; Sarli, S.; Cipriani, P.; Superti, F.; Ammendolia, M.G.; Valenti, P. Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia. Int. J. Immunopathol. Pharmacol., 2005, 18(4), 661-670.
[http://dx.doi.org/10.1177/039463200501800407] [PMID: 16388713]
[28]
Messersmith, R.E.; Sage, F.C.; Johnson, J.K.; Langevin, S.A.; Forsyth, E.R.; Hart, M.T.; Hoffman, C.M. Iron sequestration by galloyl-silane nano coatings inhibits biofilm formation of sulfitobacter sp. Biomimetics, 2023, 8(1), 79.
[http://dx.doi.org/10.3390/biomimetics8010079] [PMID: 36810410]
[29]
Wu, Y.; Outten, F.W.; Isc, R. IscR controls iron-dependent biofilm formation in escherichia coli by regulating type i fimbria expression. J. Bacteriol., 2009, 191(4), 1248-1257.
[http://dx.doi.org/10.1128/JB.01086-08] [PMID: 19074392]
[30]
Poggiali, E.; Cassinerio, E.; Zanaboni, L.; Cappellini, M.D. An update on iron chelation therapy. Blood Transfus., 2012, 10(4), 411-422.
[http://dx.doi.org/10.2450/2012.0008-12] [PMID: 22790257]
[31]
Wakabayashi, H.; Yamauchi, K.; Kobayashi, T.; Yaeshima, T.; Iwatsuki, K.; Yoshie, H. Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and prevotella intermedia. Antimicrob. Agents Chemother., 2009, 53(8), 3308-3316.
[http://dx.doi.org/10.1128/AAC.01688-08] [PMID: 19451301]
[32]
Mey, A.R.; Craig, S.A.; Payne, S.M. Characterization of Vibrio cholerae RyhB: The RyhB regulon and role of ryhB in biofilm formation. Infect. Immun., 2005, 73(9), 5706-5719.
[http://dx.doi.org/10.1128/IAI.73.9.5706-5719.2005] [PMID: 16113288]
[33]
Percival, S.L.; Kite, P.; Eastwood, K.; Murga, R.; Carr, J.; Arduino, M.J.; Donlan, R.M. Tetrasodium EDTA as a novel central venous catheter lock solution against biofilm. Infect. Control Hosp. Epidemiol., 2005, 26(6), 515-519.
[http://dx.doi.org/10.1086/502577] [PMID: 16018425]
[34]
Juda, M.; Paprota, K.; Ja, D.; Go, K. Edta as a potential agent preventing formation of staphylococcus epidermidis biofilm on polichloride vinyl biomaterials. Ann. Agric. Environ. Med., 2008, 15(2), 237-241.
[35]
Lin, M.H.; Shu, J.C.; Huang, H.Y.; Cheng, Y.C. Involvement of iron in biofilm formation by staphylococcus aureus. PLoS One, 2012, 7(3), e34388.
[http://dx.doi.org/10.1371/journal.pone.0034388] [PMID: 22479621]
[36]
Li, F.; Huang, K.; Wang, J.; Yuan, K.; Yang, Y.; Liu, Y.; Zhou, X.; Kong, K.; Yang, T.; He, J.; Liu, C.; Ao, H.; Liu, F.; Liu, Q.; Tang, T.; Yang, S. A dual functional Ti-Ga alloy: Inhibiting biofilm formation and osteoclastogenesis differentiation via disturbing iron metabolism. Biomater. Res., 2023, 27(1), 24.
[http://dx.doi.org/10.1186/s40824-023-00362-1] [PMID: 36978196]
[37]
Modarresi, F.; Azizi, O.; Shakibaie, M.R.; Motamedifar, M.; Mosadegh, E.; Mansouri, S. Iron limitation enhances acyl homoserine lactone (AHL) production and biofilm formation in clinical isolates of Acinetobacter baumannii. Virulence, 2015, 6(2), 152-161.
[http://dx.doi.org/10.1080/21505594.2014.1003001] [PMID: 25622119]
[38]
Gentile, V.; Frangipani, E.; Bonchi, C.; Minandri, F.; Runci, F.; Visca, P. Iron and acinetobacter baumannii biofilm formation. Pathogens, 2014, 3(3), 704-719.
[http://dx.doi.org/10.3390/pathogens3030704] [PMID: 25438019]
[39]
Shakerimoghaddam, A.; Ghaemi, E.A.; Jamalli, A. Zinc oxide nanoparticle reduced biofilm formation and antigen 43 expressions in uropathogenic Escherichiacoli. Iran. J. Basic Med. Sci., 2017, 20(4), 451-456.
[http://dx.doi.org/10.22038/ijbms.2017.8589] [PMID: 28804616]
[40]
Lee, J.H.; Kim, Y.G.; Cho, M.H.; Lee, J. ZnO nanoparticles inhibit pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol. Res., 2014, 169(12), 888-896.
[http://dx.doi.org/10.1016/j.micres.2014.05.005] [PMID: 24958247]
[41]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[42]
Fu, P.P.; Xia, Q.; Hwang, H.M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal., 2014, 22(1), 64-75.
[http://dx.doi.org/10.1016/j.jfda.2014.01.005] [PMID: 24673904]
[43]
Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W.; Hazan, R. Alternative antimicrobial approach: Nano-antimicrobial materials. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-16.
[http://dx.doi.org/10.1155/2015/246012] [PMID: 25861355]
[44]
Sharma, P.; Jha, A.B.; Dubey, R.S.; Pessarakli, M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot., 2012, 2012, 1-26.
[http://dx.doi.org/10.1155/2012/217037]
[45]
Jesline, A.; John, N.P.; Narayanan, P.M.; Vani, C.; Murugan, S. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl. Nanosci., 2015, 5(2), 157-162.
[http://dx.doi.org/10.1007/s13204-014-0301-x]
[46]
Kalishwaralal, K.; BarathManiKanth, S.; Pandian, S.R.K.; Deepak, V.; Gurunathan, S. Silver nanoparticles impede the biofilm formation by pseudomonas aeruginosa and staphylococcus epidermidis. Colloids Surf. B Biointerfaces, 2010, 79(2), 340-344.
[http://dx.doi.org/10.1016/j.colsurfb.2010.04.014] [PMID: 20493674]
[47]
Hashimoto, M.; Yanagiuchi, H.; Kitagawa, H.; Yamaguchi, S.; Honda, Y. Effect of metal nanoparticles on biofilm formation of streptococcus mutans. Nano Biomed., 2017, 9(2), 61-68.
[48]
Ramachandran, R.; Sangeetha, D. Antibiofilm efficacy of silver nanoparticles against biofilm forming multidrug resistant clinical isolates. Pharma. Innov. J., 2017, 6(11), 36-43.
[49]
Barras, A.; Szunerits, S.; Marcon, L.; Monfilliette-Dupont, N.; Boukherroub, R. Functionalization of diamond nanoparticles using “click” chemistry. Langmuir, 2010, 26(16), 13168-13172.
[http://dx.doi.org/10.1021/la101709q] [PMID: 20695555]
[50]
Seil, J.T.; Webster, T.J. Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces. Acta Biomater., 2011, 7(6), 2579-2584.
[http://dx.doi.org/10.1016/j.actbio.2011.03.018] [PMID: 21421087]
[51]
Dwivedi, S.; Wahab, R.; Khan, F.; Mishra, Y.K.; Musarrat, J.; Al-Khedhairy, A.A. Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One, 2014, 9(11), e111289.
[http://dx.doi.org/10.1371/journal.pone.0111289] [PMID: 25402188]
[52]
Manke, A.; Wang, L.; Rojanasakul, Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res. Int., 2013, 2013, 1-15.
[http://dx.doi.org/10.1155/2013/942916] [PMID: 24027766]
[53]
Algburi, A.; Comito, N.; Kashtanov, D.; Dicks, L. M. T.; Chikindas, M. L. Control of biofilm formation: Antibiotics and beyond. Appl. Environ. Microbiol., 2017, 83(3), e02508-16.
[http://dx.doi.org/10.1128/AEM.02508-16]
[54]
Bianchini Fulindi, R.; Domingues Rodrigues, J.; Lemos Barbosa, T.W.; Goncalves Garcia, A.D.; de Almeida La Porta, F.; Pratavieira, S.; Chiavacci, L.A.; Pessoa Araújo Junior, J.; da Costa, P.I.; Martinez, L.R. Zinc-based nanoparticles reduce bacterial biofilm formation. Microbiol. Spectr., 2023, 11(2), e04831-22.
[http://dx.doi.org/10.1128/spectrum.04831-22] [PMID: 36853055]
[55]
Qayyum, S.; Oves, M.; Khan, A.U. Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLoS One, 2017, 12(8), e0181363.
[http://dx.doi.org/10.1371/journal.pone.0181363] [PMID: 28771501]
[56]
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem., 2011, 13(10), 2638.
[http://dx.doi.org/10.1039/c1gc15386b]
[57]
Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res., 2016, 7(1), 17-28.
[http://dx.doi.org/10.1016/j.jare.2015.02.007] [PMID: 26843966]
[58]
Ishwarya, R.; Vaseeharan, B.; Kalyani, S.; Banumathi, B.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Al-anbr, M.N.; Khaled, J.M.; Benelli, G. Facile green synthesis of zinc oxide nanoparticles using Ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity. J. Photochem. Photobiol. B, 2018, 178, 249-258.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.11.006] [PMID: 29169140]
[59]
Cai, L.; Chen, J.; Liu, Z.; Wang, H.; Yang, H.; Ding, W. Magnesium oxide nanoparticles: Effective agricultural antibacterial agent against ralstonia solanacearum. Front. Microbiol., 2018, 9, 790.
[http://dx.doi.org/10.3389/fmicb.2018.00790] [PMID: 29922237]
[60]
Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev., 1999, 12(4), 564-582.
[http://dx.doi.org/10.1128/CMR.12.4.564] [PMID: 10515903]
[61]
Quave, C.L.; Lisa, R.W.; Plano, L.R.W.; Pantuso, T.; Bennett, B.C. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol., 2008, 118(3), 418-428.
[http://dx.doi.org/10.1016/j.jep.2008.05.005]
[62]
Namasivayam, S.K.R.; Roy, E.A. Anti biofilm effect of medicinal plant extracts against clinical isolate of biofilm of escherichia coli. Int. J. Pharma. Pharmaceut. Sci., 2013, 5(2), 5.
[63]
Sánchez, E.; Rivas Morales, C.; Castillo, S.; Leos-Rivas, C.; García-Becerra, L.; Ortiz Martínez, D.M. Antibacterial and antibiofilm activity of methanolic plant extracts against nosocomial microorganisms. Evid. Based Complement. Alternat. Med., 2016, 2016, 1-8.
[http://dx.doi.org/10.1155/2016/1572697] [PMID: 27429633]
[64]
Sandasi, M.; Leonard, C.M.; Viljoen, A.M. The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett. Appl. Microbiol., 2010, 50(1), 30-35.
[http://dx.doi.org/10.1111/j.1472-765X.2009.02747.x] [PMID: 19874481]
[65]
Trentin, D.S.; Giordani, R.B.; Zimmer, K.R.; da Silva, A.G.; da Silva, M.V.; Correia, M.T.S.; Baumvol, I.J.R.; Macedo, A.J. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J. Ethnopharmacol., 2011, 137(1), 327-335.
[http://dx.doi.org/10.1016/j.jep.2011.05.030] [PMID: 21651970]
[66]
Shukla, V.; Bhathena, Z. Sustained release of a purified tannin component of terminalia chebula from a titanium implant surface prevents biofilm formation by staphylococcus aureus. Appl. Biochem. Biotechnol., 2015, 175(7), 3542-3556.
[http://dx.doi.org/10.1007/s12010-015-1525-2] [PMID: 25680711]
[67]
Slobodníková, L.; Fialová, S.; Rendeková, K.; Kováč, J.; Mučaji, P. Antibiofilm activity of plant polyphenols. Molecules, 2016, 21(12), 1717.
[http://dx.doi.org/10.3390/molecules21121717] [PMID: 27983597]
[68]
Morsi, R.E.; Labena, A.; Khamis, E.A. Core/shell (ZnO/polyacrylamide) nanocomposite: In-situ emulsion polymerization, corrosion inhibition, anti-microbial and anti-biofilm characteristics. J. Taiwan Inst. Chem. Eng., 2016, 63, 512-522.
[http://dx.doi.org/10.1016/j.jtice.2016.03.037]
[69]
Rajkumari, J.; Busi, S.; Vasu, A.C.; Reddy, P. Facile green synthesis of baicalein fabricated gold nanoparticles and their antibiofilm activity against Pseudomonas aeruginosa PAO1. Microb. Pathog., 2017, 107, 261-269.
[http://dx.doi.org/10.1016/j.micpath.2017.03.044] [PMID: 28377235]
[70]
Ramasamy, M.; Lee, J.H.; Lee, J. Development of gold nanoparticles coated with silica containing the antibiofilm drug cinnamaldehyde and their effects on pathogenic bacteria. Int. J. Nanomedicine, 2017, 12, 2813-2828.
[http://dx.doi.org/10.2147/IJN.S132784] [PMID: 28435260]
[71]
Abinaya, M.; Vaseeharan, B.; Divya, M.; Sharmili, A.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Bacterial exopolysaccharide (EPS)-coated ZnO nanoparticles showed high antibiofilm activity and larvicidal toxicity against malaria and Zika virus vectors. J. Trace Elem. Med. Biol., 2018, 45, 93-103.
[http://dx.doi.org/10.1016/j.jtemb.2017.10.002] [PMID: 29173489]
[72]
Bhattacharyya, P.; Agarwal, B.; Goswami, M.; Maiti, D.; Baruah, S.; Tribedi, P. Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae. Antonie van Leeuwenhoek, 2018, 111(1), 89-99.
[http://dx.doi.org/10.1007/s10482-017-0930-7] [PMID: 28889242]
[73]
Shakibaie, M.; Forootanfar, H.; Golkari, Y.; Mohammadi-Khorsand, T.; Shakibaie, M.R. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J. Trace Elem. Med. Biol., 2015, 29, 235-241.
[http://dx.doi.org/10.1016/j.jtemb.2014.07.020] [PMID: 25175509]
[74]
Prateeksha; Rao, C.V.; Das, A.K.; Barik, S.K.; Singh, B.N. ZnO/Curcumin nanocomposites for enhanced inhibition of pseudomonas aeruginosa virulence via lasr-rhlr quorum sensing systems. Mol. Pharm., 2019, 16(8), 3399-3413.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00179] [PMID: 31260316]
[75]
Palmieri, V.; Bugli, F.; Cacaci, M.; Perini, G.; Maio, F.D.; Delogu, G.; Torelli, R.; Conti, C.; Sanguinetti, M.; Spirito, M.D.; Zanoni, R.; Papi, M. Graphene oxide coatings prevent Candida albicans biofilm formation with a controlled release of curcumin-loaded nanocomposites. Nanomedicine, 2018, 13(22), 2867-2879.
[http://dx.doi.org/10.2217/nnm-2018-0183] [PMID: 30431405]
[76]
Gholap, H.; Patil, R.; Yadav, P.; Banpurkar, A.; Ogale, S.; Gade, W. CdTe–TiO 2 nanocomposite: An impeder of bacterial growth and biofilm. Nanotechnology, 2013, 24(19), 195101.
[http://dx.doi.org/10.1088/0957-4484/24/19/195101] [PMID: 23579550]
[77]
Mitwalli, H.; Balhaddad, A.A.; AlSahafi, R.; Oates, T.W.; Melo, M.A.S.; Xu, H.H.K.; Weir, M.D. Novel CaF2 nanocomposites with antibacterial function and fluoride and calcium ion release to inhibit oral biofilm and protect teeth. J. Funct. Biomater., 2020, 11(3), 56.
[http://dx.doi.org/10.3390/jfb11030056] [PMID: 32752248]
[78]
Hasan, I.; Qais, F.A.; Husain, F.M.; Khan, R.A.; Alsalme, A.; Alenazi, B.; Usman, M.; Jaafar, M.H.; Ahmad, I. Eco-friendly green synthesis of dextrin based poly (methyl methacrylate) grafted silver nanocomposites and their antibacterial and antibiofilm efficacy against multi-drug resistance pathogens. J. Clean. Prod., 2019, 230, 1148-1155.
[http://dx.doi.org/10.1016/j.jclepro.2019.05.157]
[79]
Aljaafari, A.; Ahmed, F.; Husain, F. Bio-inspired facile synthesis of graphene-based nanocomposites: Elucidation of antimicrobial and biofilm inhibitory potential against foodborne pathogenic bacteria. Coatings, 2020, 10(12), 1171.
[http://dx.doi.org/10.3390/coatings10121171]
[80]
Alavi, M.; Karimi, N. Antiplanktonic; antibiofilm; antiswarming motility and antiquorum sensing activities of green synthesized Ag–TiO2 ; TiO 2 -Ag; Ag-Cu and Cu-Ag nanocomposites against multi-drug-resistant bacteria. Artif Cells Nanomed. Biotechnol., 2018, 46(S3), S399-S413.
[http://dx.doi.org/10.1080/21691401.2018.1496923]
[81]
Newase, S.; Bankar, A.V. Synthesis of bio-inspired Ag-Au nanocomposite and its anti-biofilm efficacy. Bull. Mater. Sci., 2017, 40(1), 157-162.
[http://dx.doi.org/10.1007/s12034-017-1363-7]
[82]
Baig, U.; Gondal, M.A.; Ansari, M.A.; Dastageer, M.A.; Sajid, M.; Falath, W.S. Rapid synthesis and characterization of advanced ceramic-polymeric nanocomposites for efficient photocatalytic decontamination of hazardous organic pollutant under visible light and inhibition of microbial biofilm. Ceram. Int., 2021, 47(4), 4737-4748.
[http://dx.doi.org/10.1016/j.ceramint.2020.10.043]