Impacts of Cavity Thickness and Insulating Material on Dielectric Modulated Trench Junction-less Double Gate Field Effect Transistor for Biosensing Applications

Page: [513 - 521] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Introduction: This work represents the influence of gate dielectric, and the nano-cavity gap of a dielectric modulated trench gate Junction-less Double Gate Field Effect Transistor (JL-DGFET) on the different performance indicators is investigated considering the Low-Frequency Noise.

Methods: It is noted that the gate dielectric and the nanogap, both parameters, have a substantial influence on the sensing capacity and performance of noise of the device.

Results: A double gate suitable dielectric material and cavity thickness can effectively improve the biosensor’s sensitivity with a minimum amount of noise.

Conclusion: The sensitivity is found to increase up to 9.5 for dielectric constant, k = 3.57 and 6.5 for dielectric constant, k = 2.1.

[1]
Svintsovet GDA. Tunnel field effect transistors with graphene channels. IX International Conference “Silicon- 2012”. St. Petersburg. 2012.July 29-13, 2012.
[2]
Colinge J-p, Chi-Woo L, Aryan A. Nanowire transistors without junctions. Nat Nanotechnol 2010; 5: 225-229.02.
[3]
Dipankar G, Mukta DP, Alastair A. High-performance junctionless mosfets for ultralow-power analog/rf, applications. IEEE Electron Device Lett 2012; 33(10): 1477-9.
[4]
Kanungo S, Chattopadhyay S, Gupta PS, Rahaman H. Comparative performance analysis of the dielectrically modulated full-gate and short-gate tunnel fet-based biosensors. IEEE Trans Electron Dev 2015; 62(3): 994-1001.
[http://dx.doi.org/10.1109/TED.2015.2390774]
[5]
Kannan N, Kumar MJ. Dielectric-modulated impact-ionization MOS transistor as a label-free biosensor. IEEE Electron Device Lett 2013; 34(12): 1575-7.
[http://dx.doi.org/10.1109/LED.2013.2283858]
[6]
Dwivedi P, Kranti A. Applicability of transconductance-to-current ratio (gm/Ids) as a sensing metric for tunnel FET biosensors. IEEE Sens J 2017; 17(4): 1030-6.
[7]
Dwivedi P, Kranti A. Dielectric modulated biosensor architecture: Tunneling or accumulation based transistor? ieee sensors j 2018; 18(8): 3228-5.
[8]
Verma M, Tirkey S, Yadav S, Sharma D. Performance assessment of a novel vertical dielectrically modulated TFET-based biosensor. IEEE Trans on Electron Dev 2017; 64(9): 3841-8.
[9]
Wadhwa G, Raj B. Label free detection of biomolecules using charge-plasma-based gate underlap dielectric modulated junctionless TFET. J Electron Mater 2018; 47: 4683-93.
[http://dx.doi.org/10.1007/s11664-018-6343-1]
[10]
Narang R. A dielectric-modulated tunnel-fet-based biosensor for label-free detection: Analytical modeling study and sensitivity analysis. IEEE Trans Electron Dev 2012; 59(10): 2809-17.
[11]
Abdi D, Kumar MJ. Dielectric modulated overlapping gate-ondrain tunnel-fet as a label-free biosensor. Superlattices Microstruct 2015; 56.
[12]
Ahangari Z. Performance assessment of dual material gate dielectric modulated nanowire junctionless mosfet for ultrasensitive detection of biomolecules. RSC Advances 2016; 6: 89185-91.
[http://dx.doi.org/10.1039/C6RA17361F]
[13]
Kumar S, Singh B, Singh Y. Analytical model of dielectric modulated trench double gate junctionless fet for biosensing applications. IEEE Sens J 2021; 21(7): 8896-902.
[http://dx.doi.org/10.1109/JSEN.2021.3056385]
[14]
Kumar S, Singh Y, Singh B, Tiwari PK. Simulation study of dielectric modulated dual channel trench gate tfet based biosensor. IEEE Sens J 2020; 20(21): 12565-73.
[http://dx.doi.org/10.1109/JSEN.2020.3001300]
[15]
Bhattacharyya A, Chanda M, De D. Analysis of partial hybridization and probe positioning on sensitivity of a dielectric modulated junctionless label free biosensor. IEEE Trans Nanotechnol 2020; 19: 719-27.
[16]
Kutovyi Y. Noise suppression beyond the thermal limit with nanotransistor biosensors. Sci Rep 2020; 10(1): 12678.
[http://dx.doi.org/10.1038/s41598-020-69493-y]
[17]
Deen MJ, Shinwari MW, Ranuárez JC, Landheer D. Noise considerations in field-effect biosensors. J Appl Phys 2006; 100(7): 074703.
[http://dx.doi.org/10.1063/1.2355542]
[18]
Jagritee T, Gopal R, Kunal S, Kavicharan M. Low frequency noise analysis of single gate extended source tunnel FET. Silicon 2020; 13: 3971-80.
[19]
Bender K, Vitaliy AG, Alexey T, et al. Investigation of the dominant 1/f noise source in silicon-nanowire sensors. Sens Actuators B Chem 2014; 191: 270-5.
[20]
Swagata B, Abhijit B. Effect of sidewall spacers layers on thermal and low frequency noise performance of soi utb mosfets. Microsyst Technol 2022; 28: 653-8.
[21]
Kim SG. fabrication of superjunction trench gate power mosfets using bsg-doped deep trench of p-pillar. ETRI J 2013; 35: 632-7.
[http://dx.doi.org/10.4218/etrij.13.1912.0012]
[22]
ATLAS user’s manual: device simulation software. Santa clara, ca, USA: Silvaco International inc. 2018.
[23]
Swagata B, Abhijit B. Development of noise model for InAsSb MOSFETs and their application in low noise amplifiers. Microsyst Technol 2019; 25: 1555-62.
[24]
Ajay R, Narang M. Saxena, Gupta M. Modeling and simulation investigation of sensitivity of symmetric split gate junctionless fet for biosensing application. IEEE Sens J 2017; 17(15): 4853-61.
[25]
Bibi F, Villain M, Guillaume C, Sorli B, Gontard N. A review: Origins of the dielectric properties of proteins and potential development as bio-sensors. Sensors 2016; 16(8): 1232.
[26]
Cuervo A, Dans PD, Carrascosa JL, Orozco M, Gomila G, Fumagalli L. Direct measurement of the dielectric polarization properties of DNA. Proc Natl Acad Sci 2014; 111(35): E3624-e3630.
[http://dx.doi.org/10.1073/pnas.1405702111]
[27]
A transistor-based biosensor for the extraction of physical properties from biomolecules. Appl Hys Lett 2012; 101(7): 073703.
[28]
Paliwal A, Tomar M, Gupta V. Complex dielectric constant of various biomolecules as a function of wavelength using surface plasmon resonance. J Appl Phys 2014; 116(2): 023109.
[http://dx.doi.org/10.1063/1.4890027]
[29]
Löffler G, Schreiber H, Steinhauser O. Calculation of the dielectric properties of a protein and its solvent: theory and a case study. J Mol Biol 1997; 270(3): 520-34.
[http://dx.doi.org/10.1006/jmbi.1997.1130]
[30]
Singh B, Gola D, Singh K, Goel E, Kumar S, Jit S. 2-D analytical threshold voltage model for dielectric pocket double-gate junctionless FETs by considering source/drain depletion effect. IEEE Trans on Electron Dev 2017; 64(3): 901-8.