A Review on Novel Nanofiber-based Dermal Applications: Utilization of Polysaccharides

Article ID: e201023222435 Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Nanotechnology is a rapidly expanding field of study because of its numerous dermal applications and benefits in dermal care. It also represents progress in research and development by enhancing product efficacy through the adoption of novel technologies. Nanotechnology is increasingly being used in dermal applications to avoid some of the problems associated with traditional treatments. Dermal applications are the segment of the consumer products market that is expanding the fastest, and their popularity has exploded in recent years. In addition to wrinkles, hyperpigmentation, photoaging, hair damage, and dandruff, nanofibers are now frequently used in dermal treatments for skincare, hair, lips, and nails. These innovative dermal applications using nanofibers provide improved skin penetration, higher stability, site-specific targeting, controlled and prolonged drug release, and high entrapment effectiveness. The outcome of dermal applications can be improved with nanofibers by modifying their structure, functionality, chemical and mechanical resistance, and additional attributes. The importance of biopolymers in processing nanofibers, nanofiber processing methods, an overview of dermal applications' significance, and dermal applications based on nanofibers will all be discussed in this review.

Graphical Abstract

[1]
Rasouli, R.; Barhoum, A.; Bechelany, M.; Dufresne, A. Nanofibers for biomedical and healthcare applications. Macromol. Biosci., 2019, 19(2), 1800256.
[http://dx.doi.org/10.1002/mabi.201800256] [PMID: 30485660]
[2]
Calderón, M.Á.R.; Zhao, W. Applications of polymer nanofibers in bio-materials, biotechnology and biomedicine: A review. TMS Annu. Meet., 2014, 125, 401-14.
[3]
Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of nanotechnology in cosmeceuticals: A review of recent advances. J. Pharm., 2018, 2018, 1-19.
[http://dx.doi.org/10.1155/2018/3420204] [PMID: 29785318]
[4]
Sarma, A.; Das, M.K. Improving the sustainable performance of biopolymers using nanotechnology. Polymer-Plast. Technol. Mater., 2021, 60(18), 1-31.
[http://dx.doi.org/10.1080/25740881.2021.1937645]
[5]
Schiffman, J.D.; Schauer, C.L. A review: Electrospinning of biopolymer nanofibers and their applications. Polym. Rev., 2008, 48(2), 317-352.
[http://dx.doi.org/10.1080/15583720802022182]
[6]
George, A.; Sanjay, M.R.; Srisuk, R.; Parameswaranpillai, J.; Siengchin, S. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int. J. Biol. Macromol., 2020, 154, 329-338.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.120] [PMID: 32179114]
[7]
Rebelo, R.; Fernandes, M.; Fangueiro, R. Biopolymers in medical implants: A brief review. Procedia Eng., 2017, 200, 236-243.
[http://dx.doi.org/10.1016/j.proeng.2017.07.034]
[8]
Udayakumar, G.P.; Muthusamy, S.; Selvaganesh, B.; Sivarajasekar, N.; Rambabu, K.; Banat, F.; Sivamani, S.; Sivakumar, N.; Hosseini-Bandegharaei, A.; Show, P.L. Biopolymers and composites: Properties, characterization and their applications in food, medical and pharmaceutical industries. J. Environ. Chem. Eng., 2021, 9(4), 105322.
[http://dx.doi.org/10.1016/j.jece.2021.105322]
[9]
Flaris, V.; Singh, G. Recent developments in biopolymers. J. Vinyl Additive Technol., 2009, 15(1), 1-11.
[http://dx.doi.org/10.1002/vnl.20171]
[10]
Kawalkar, A. A comprehensive review on osteoporosis. J. Trauma, 2015, 10(1), 3-12.
[11]
Augustine, R.; Rajendran, R.; Cvelbar, U.; Mozetič, M.; George, A. Biopolymers for health, food, and cosmetic applications. In: Handb Biopolym Mater From Blends Compos to Gels Complex Networks; Wiley,; , 2013; pp. 801-849.
[http://dx.doi.org/10.1002/9783527652457.ch27]
[12]
Priya, S.; Batra, U.; Samshritha, R.N.; Sharma, S.; Chaurasiya, A.; Singhvi, G. Polysaccharide-based nanofibers for pharmaceutical and biomedical applications: A review. Int. J. Biol. Macromol., 2022, 218, 209-224.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.07.118]
[13]
Rhim, J.; Park, H.; Ha, C. Bio-nanocomposites for food packaging applications. Prog. Polym. Sci., 2013, 38(10-11), 1629-1652.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.05.008]
[14]
Sundar, S.; Kumar, D.; Rajendran, NK.; Houreld, NN.; Abrahamse, HPT. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int. J. Biol. Macromol., 2017, 115, 165-175.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.003]
[15]
Samrot, A.V.; Sean, T.C.; Kudaiyappan, T.; Bisyarah, U.; Mirarmandi, A.; Faradjeva, E. Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. Int. J. Biol. Macromol., 2020, 165(Pt B), 3088-3105.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.10.104] [PMID: 33098896]
[16]
Haponiuk, T.; Thomas, S.; Gopi, S.; Jacob, J. Biopolymer based nanomaterials in drug delivery systems: A review. Mater. Chem., 2018, 9, 43-55.
[17]
Kulasinski, K.; Guyer, R.; Keten, S.; Derome, D.; Carmeliet, J. Impact of moisture adsorption on structure and physical properties of amorphous biopolymers. Macromolecules, 2015, 48(8), 2793-2800.
[http://dx.doi.org/10.1021/acs.macromol.5b00248]
[18]
Hubbell, D.S.; Cooper, S.L. The physical properties and morphology of poly-ε-caprolactone polymer blends. J. Appl. Polym. Sci., 1977, 21(11), 3035-3061.
[http://dx.doi.org/10.1002/app.1977.070211117]
[19]
Kumar, K.; Prosenjit, S.; Jaideep, S. Recent advances in mechanical properties of biopolymer composites: A review. Polym. Compos., 2019, 41(20), 1-28.
[20]
Gan, P.G.; Sam, S.T.; Faiq, M.; Omar, M.F. Thermal properties of nanocellulose-reinforced composites: A review. J. Appl. Polym. Sci., 2019, 137(11), 48544.
[21]
Sen, S.; Patil, S.; Argyropoulos, DS. Thermal properties of lignin in copolymers, blends, and composites: A review. Green Chem., 2015, 11, 4862-4687.
[http://dx.doi.org/10.1039/C5GC01066G]
[22]
Mehdizadeh, T.; Tajik, H.; Mehdi, S.; Rohani, R.; Oromiehie, AR. Antibacterial, antioxidant and optical properties of edible starch-chitosan composite film containing Thymus kotschyanus essential oil. Vet. Res. Forum, 2012, 3(3), 167-173.
[23]
Ifuku, S. Chitin and chitosan nanofibers: Preparation and chemical modifications. Molecules, 2014, 19(11), 18367-80.
[24]
Isogai, A.; Saito, T.; Fukuzumi, H. TEMPO-oxidized cellulose nanofibers. Nanoscale, 2011, 3(1), 71-85.
[http://dx.doi.org/10.1039/C0NR00583E] [PMID: 20957280]
[25]
Zhang, Y.; Lim, C.T.; Ramakrishna, S.; Huang, Z.M. Recent development of polymer nanofibers for biomedical and biotechnological applications. J. Mater. Sci. Mater. Med., 2005, 16(10), 933-946.
[http://dx.doi.org/10.1007/s10856-005-4428-x] [PMID: 16167102]
[26]
Rošic, R.; Kocbek, P.; Pelipenko, J.; Kristl, J.; Baumgartner, S. Nanofibers and their biomedical use. Acta Pharm., 2013, 63(3), 295-304.
[http://dx.doi.org/10.2478/acph-2013-0024] [PMID: 24152893]
[27]
Chandrasekaran, R.; Gnanasekar, S.; Seetharaman, P.; Keppanan, R.; Arockiaswamy, W.; Sivaperumal, S. Formulation of Carica papaya latex-functionalized silver nanoparticles for its improved antibacterial and anticancer applications. J. Mol. Liq., 2016, 219, 232-238.
[http://dx.doi.org/10.1016/j.molliq.2016.03.038]
[28]
Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release, 2008, 126(3), 187-204.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.017]
[29]
Elsabee, M.Z.; Naguib, H.F.; Morsi, R.E. Chitosan based nanofibers. review Mater. Sci. Eng. C, 2012, 32(7), 1711-1726.
[http://dx.doi.org/10.1016/j.msec.2012.05.009] [PMID: 34062651]
[30]
Lohani, A.; Verma, A.; Joshi, H.; Yadav, N.; Karki, N. Nanotechnology-based cosmeceuticals. ISRN Dermatol., 2014, 2014, 843687.
[31]
Paul, D.R.; Robeson, L.M. Polymer nanotechnology: Nanocomposites. Polymer, 2008, 49(15), 3187-3204.
[http://dx.doi.org/10.1016/j.polymer.2008.04.017]
[32]
Noh, H.K.; Lee, S.W.; Kim, J.M.; Oh, J.E.; Kim, K.H.; Chung, C.P.; Choi, S.C.; Park, W.H.; Min, B.M. Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials, 2006, 27(21), 3934-3944.
[http://dx.doi.org/10.1016/j.biomaterials.2006.03.016] [PMID: 16574218]
[33]
Salaberria, A.M.; Labidi, J.; Fernandes, S.C.M. Different routes to turn chitin into stunning nano-objects. Eur. Polym. J., 2015, 68, 503-515.
[http://dx.doi.org/10.1016/j.eurpolymj.2015.03.005]
[34]
Kenry; Lim, C.T. Nanofiber technology: Current status and emerging developments. Prog. Polym. Sci., 2017, 70, 1-17.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.03.002]
[35]
Weiss, I.M.; Schönitzer, V. The distribution of chitin in larval shells of the bivalve mollusk Mytilus galloprovincialis. J. Struct. Biol., 2006, 153(3), 264-277.
[http://dx.doi.org/10.1016/j.jsb.2005.11.006] [PMID: 16406681]
[36]
Salaberria, A.M.; Fernandes, S.C.M.; Diaz, R.H.; Labidi, J. Processing of α-chitin nanofibers by dynamic high pressure homogenization: Characterization and antifungal activity against A. niger. Carbohydr. Polym., 2015, 116, 286-291.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.047] [PMID: 25458302]
[37]
Borras, A.; Aguirre, M.; Groening, O.; Lopez-cartes, C.; Groening, P.; Du, C. Synthesis of supported single-crystalline organic nanowires by physical vapor deposition. Chem. Mater., 2008, 20(24), 7371-7373.
[38]
Zhang, Y.Z.; Venugopal, J.; Huang, Z.M.; Lim, C.T.; Ramakrishna, S. Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules, 2005, 6(5), 2583-2589.
[http://dx.doi.org/10.1021/bm050314k] [PMID: 16153095]
[39]
Choi, H.; Johnson, J.K.; Nam, J.; Farson, D.F.; Lannutti, J. Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation. J. Laser Appl., 2007, 19(4), 225-231.
[http://dx.doi.org/10.2351/1.2795749]
[40]
di Stasio, S. Growth of zinc hollow nanofibers and nanotubes by thermal evaporation–condensation–deposition route. Chem. Phys. Lett., 2004, 393(4-6), 498-503.
[http://dx.doi.org/10.1016/j.cplett.2004.06.090]
[41]
Caughman, J.B.O.; Baylor, L.R.; Guillorn, M.A.; Merkulov, V.I.; Lowndes, D.H.; Allard, L.F. Growth of vertically aligned carbon nanofibers by low-pressure inductively coupled plasma-enhanced chemical vapor deposition. Appl. Phys. Lett., 2003, 83(6), 1207-1209.
[http://dx.doi.org/10.1063/1.1597981]
[42]
Park, J.A.; Moon, J.; Lee, S.J.; Kim, S.H.; Chu, H.Y.; Zyung, T. SnO2–ZnO hybrid nanofibers-based highly sensitive nitrogen dioxides sensor. Sens. Actuators B Chem., 2010, 145(1), 592-595.
[http://dx.doi.org/10.1016/j.snb.2009.11.023]
[43]
Turback, AF.; Snyder, FW.; Sandber, KR. Microfibrillated Cellulose, A New Cellulose Product. Properties, Uses, And Commercial Potential., 1983, 37, 827-815.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.036]
[44]
Zhang, L.; Tsuzuki, T.; Wang, X. Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose, 2015, 22, 1729-1741.
[http://dx.doi.org/10.1007/s10570-015-0582-6]
[45]
Chakraborty, M.; Ghosh, A.; Ghosh, UU.; DasGupta, S. Enhanced cooling by an oscillating droplet on DMF platform; , 2015. Available fromhttps://www.aiche.org/conferences/aiche-annual-meeting/2015/proceeding/paper/153b-enhanced-cooling-oscillating-droplet-on-dmf-platform
[46]
Samyn, P.; Barhoum, A.; Öhlund, T.; Dufresne, A. Review: Nanoparticles and nanostructured materials in papermaking. J. Mater. Sci., 2018, 53(1), 146-184.
[http://dx.doi.org/10.1007/s10853-017-1525-4]
[47]
Che, G.; Lakshmi, B.B.; Martin, C.R.; Fisher, E.R.; Ruoff, R.S. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem. Mater., 1998, 4756(16), 260-267.
[48]
Guo, Y.; Zhou, Y. Polyaniline nanofibers fabricated by electrochemical polymerization: A mechanistic study. Eur. Polym. J., 2007, 43(6), 2292-2297.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.01.020]
[49]
Jang, J.; Bae, J. Fabrication of polymer nanofibers and carbon nanofibers by using a salt-assisted microemulsion polymerization. Angew. Chem. Int. Ed., 2004, 43(29), 3803-3806.
[http://dx.doi.org/10.1002/anie.200353580] [PMID: 15258941]
[50]
Yu, J.; Kudo, A. Hydrothermal synthesis of nanofibrous bismuth vanadate. Chem. Lett., 2005, 34(6), 850-851.
[http://dx.doi.org/10.1246/cl.2005.850]
[51]
Steigerwalt, E.S.; Deluga, G.A.; Lukeharta, C.M. Rapid preparation of Pt-Ru/graphitic carbon nanofiber nanocomposites as DMFC anode catalysts using microwave processing. J. Nanosci. Nanotechnol., 2003, 3(3), 247-251.
[http://dx.doi.org/10.1166/jnn.2003.195] [PMID: 14503410]
[52]
Lu, X.; Mao, H.; Chao, D.; Zhang, W.; Wei, Y. Fabrication of polyaniline nanostructures under ultrasonic irradiation: From nanotubes to nanofibers. Macromol. Chem. Phys., 2006, 207(22), 2142-2152.
[http://dx.doi.org/10.1002/macp.200600424]
[53]
Blanco, A.; Monte, M.C.; Campano, C.; Balea, A.; Merayo, N.; Negro, C. Nanocellulose for industrial use: Cellulose nanofibers (CNF), cellulose nanocrystals (CNC), and bacterial cellulose (BC). In: Handbook of Nanomaterials for Industrial Applications; Elsevier, 2018; pp. 74-126.
[http://dx.doi.org/10.1016/B978-0-12-813351-4.00005-5]
[54]
Wang, S.; Li, T.; Chen, C.; Kong, W.; Zhu, S.; Dai, J.; Diaz, A.J.; Hitz, E.; Solares, S.D.; Li, T.; Hu, L. Transparent, anisotropic biofilm with aligned bacterial cellulose nanofibers. Adv. Funct. Mater., 2018, 28(24), 1707491.
[http://dx.doi.org/10.1002/adfm.201707491]
[55]
Adpekar, P.D.; Rama, A.; Rani, U.; Naha, A. Electrospun nanofibres and their biomedical applications. Res. J. Pharma. Technol., 2020, 5569-5575.
[56]
Ghafoor, B.; Aleem, A.; Najabat Ali, M.; Mir, M. Review of the fabrication techniques and applications of polymeric electrospun nanofibers for drug delivery systems. J. Drug Deliv. Sci. Technol., 2018, 48, 82-87.
[http://dx.doi.org/10.1016/j.jddst.2018.09.005]
[57]
Boal, A.K.; Ilhan, F.; DeRouchey, J.E.; Thurn-Albrecht, T.; Russell, T.P.; Rotello, V.M. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature, 2000, 404(6779), 746-748.
[http://dx.doi.org/10.1038/35008037] [PMID: 10783884]
[58]
Liao, S.; Li, B.; Ma, Z.; Wei, H.; Chan, C.; Ramakrishna, S. Biomimetic electrospun nanofibers for tissue regeneration. Biomed. Mater., 2006, 1(3), R45-R53.
[http://dx.doi.org/10.1088/1748-6041/1/3/R01] [PMID: 18458387]
[59]
Mirjalili, M.; Zohoori, S. Review for application of electrospinning and electrospun nanofibers technology in textile industry. J. Nanostructure Chem., 2016, 6(3), 207-213.
[http://dx.doi.org/10.1007/s40097-016-0189-y]
[60]
Jiang, S.; Chen, Y.; Duan, G.; Mei, C.; Greiner, A.; Agarwal, S. Electrospun nanofiber reinforced composites: A review. Polym. Chem., 2018, 9(20), 2685-2720.
[http://dx.doi.org/10.1039/C8PY00378E]
[61]
He, J.H.; Kong, H.Y.; Yang, R.R.; Dou, H.; Faraz, N.; Wang, L.; Feng, C. Review on fiber morphology obtained by bubble electrospinning and blown bubble spinning. Therm. Sci., 2012, 16(5), 1263-1279.
[http://dx.doi.org/10.2298/TSCI1205263H]
[62]
Weitz, R.T.; Harnau, L.; Rauschenbach, S.; Burghard, M.; Kern, K. Polymer nanofibers via nozzle-free centrifugal spinning. Nano Lett., 2008, 8(4), 1187-1191.
[http://dx.doi.org/10.1021/nl080124q] [PMID: 18307320]
[63]
Xing, X.; Wang, Y.; Li, B. Nanofibers drawing and nanodevices assembly in poly(trimethylene terephthalate). Opt. Express, 2008, 16(14), 10815-10822.
[http://dx.doi.org/10.1364/OE.16.010815] [PMID: 18607497]
[64]
Liu, F.; Li, S.; Fang, Y.; Zheng, F.; Li, J.; He, J. Fabrication of highly oriented nanoporous fibers via airflow bubble-spinning. Appl. Surf. Sci., 2017, 421, 61-67.
[http://dx.doi.org/10.1016/j.apsusc.2017.01.204]
[65]
Verma, D.; Gulati, N.; Kaul, S.; Mukherjee, S.; Nagaich, U. Protein based nanostructures for drug delivery. J. Pharm., 2018, 2018, 9285854.
[http://dx.doi.org/10.1155/2018/9285854]
[66]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Protein-based nanocarriers as promising drug and gene delivery systems. J. Control. Release, 2012, 161(1), 38-49.
[http://dx.doi.org/10.1016/j.jconrel.2012.04.036] [PMID: 22564368]
[67]
Sala, M.; Locher, F.; Bonvallet, M.; Agusti, G.; Elaissari, A. Diclofenac Loaded Lipid Nanovesicles Prepared by Double Solvent Displacement for Skin. Drug Delivery Pharm. Res., 2017, 34, 1908-1924.
[http://dx.doi.org/10.1007/s11095-017-2201-8]
[68]
Kariduraganavar, M.Y.; Heggannavar, G.B.; Amado, S. Chapter 6 Protein nanocarriers for targeted drug delivery for cancer therapy. In: Nanocarriers for Drug Delivery; Elsevier, 2019; pp. 173-204.
[http://dx.doi.org/10.1016/B978-0-12-814033-8.00006-0]
[69]
Tavares Cardoso, M.A.; Talebi, M.; Soares, P.A.M.H.; Yurteri, C.U.; van Ommen, J.R. Functionalization of lactose as a biological carrier for bovine serum albumin by electrospraying. Int. J. Pharm., 2011, 414(1-2), 1-5.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.045] [PMID: 21536114]
[70]
Chakraborty, A.; Sain, M. Cellulose microfibrils: A novel method of preparation using high shear refining and cryocrushing. Holzforschung, 2005, 59(1), 102-107.
[http://dx.doi.org/10.1515/HF.2005.016]
[71]
Kamble, P.; Sadarani, B.; Majumdar, A.; Bhullar, S. Nanofiber based drug delivery systems for skin: A promising therapeutic approach. J. Drug Deliv. Sci. Technol., 2017, 41, 124-133.
[http://dx.doi.org/10.1016/j.jddst.2017.07.003]
[72]
Farage, M.A.; Miller, K.W.; Elsner, P.; Maibach, H.I. Structural characteristics of the aging skin: A review. Cutan. Ocul. Toxicol., 2007, 26(4), 343-357.
[http://dx.doi.org/10.1080/15569520701622951] [PMID: 18058308]
[73]
Cd, K.; Mo, A.; Doull, J.; Publishing, M. Casarett and Doull Casarett & Doull ’ s Toxicology: The basic science of poisons, 7th ed; McGraw-Hill, 2014.
[74]
Ryu, H.S.; Joo, Y.H.; Kim, S.O.; Park, K.C.; Youn, S.W. Influence of age and regional differences on skin elasticity as measured by the Cutometer. Skin Res. Technol., 2008, 14(3), 354-358.
[http://dx.doi.org/10.1111/j.1600-0846.2008.00302.x] [PMID: 19159383]
[75]
Diridollou, S.; Black, D.; Lagarde, JM.; Gre, JM. Gall, Y Skin ageing: Changes of physical properties of human skin in vivo. Int. J. Cosmet. Sci., 2001, 23(6), 353-362.
[http://dx.doi.org/10.1046/j.0412-5463.2001.00105.x]
[76]
Lephart, E.D.; Naftolin, F. Menopause and the skin: old favorites and new innovations in cosmeceuticals for estrogen-deficient skin. Dermatol. Ther., 2021, 11(1), 53-69.
[http://dx.doi.org/10.1007/s13555-020-00468-7] [PMID: 33242128]
[77]
Brandt, F.S.; Cazzaniga, A.; Hann, M. Cosmeceuticals: Current trends and market analysis. Semin. Cutan. Med. Surg., 2011, 30(3), 141-143.
[http://dx.doi.org/10.1016/j.sder.2011.05.006] [PMID: 21925366]
[78]
Draelos, Z.D. The cosmeceutical realm. Clin. Dermatol., 2008, 266, 627-632.
[http://dx.doi.org/10.1016/j.clindermatol.2007.09.005]
[79]
Mbituyimana, B.; Liu, L.; Ye, W.; Ode Boni, B.O.; Zhang, K.; Chen, J.; Thomas, S.; Vasilievich, R.V.; Shi, Z.; Yang, G. Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydr. Polym., 2021, 273(May), 118565.
[http://dx.doi.org/10.1016/j.carbpol.2021.118565] [PMID: 34560976]
[80]
Mu, L.; Sprando, R.L. Application of nanotechnology in cosmetics. Pharm. Res., 2010, 27(8), 1746-1749.
[http://dx.doi.org/10.1007/s11095-010-0139-1] [PMID: 20407919]
[81]
Santos, A.C.; Morais, F.; Simões, A.; Pereira, I.; Joana, A.D.; Pereira-silva, M. Nanotechnology for the development of new cosmetic formulations. Expert Opin. Drug Deliv., 2019, 16(4), 313-330.
[http://dx.doi.org/10.1080/17425247.2019.1585426] [PMID: 30793641]
[82]
Nuzhatun Nisa, T.A. Therapeutic and diagnostic applications of nanotechnology in dermatology and cosmetics. J. Nanomed. Biotherapeutic Discov., 2015, 5(3)
[http://dx.doi.org/10.4172/2155-983X.1000134]
[83]
Goyal, R.; Macri, L.K.; Kaplan, H.M.; Kohn, J. Nanoparticles and nanofibers for topical drug delivery. J. Control. Release, 2016, 240, 77-92.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.049] [PMID: 26518723]
[84]
Sheng, X.; Fan, L.; He, C.; Zhang, K.; Mo, X.; Wang, H. Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application. Int. J. Biol. Macromol., 2013, 56, 49-56.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.01.029] [PMID: 23396066]
[85]
Madhumathi, K.; Sudheesh Kumar, P.T.; Abhilash, S.; Sreeja, V.; Tamura, H.; Manzoor, K.; Nair, S.V.; Jayakumar, R. Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J. Mater. Sci. Mater. Med., 2010, 21(2), 807-813.
[http://dx.doi.org/10.1007/s10856-009-3877-z] [PMID: 19802687]
[86]
Osmond-McLeod, M.J.; Oytam, Y.; Kirby, J.K.; Gomez-Fernandez, L.; Baxter, B.; McCall, M.J. Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles. Nanotoxicology, 2014, 8(Suppl. 1), 72-84.
[http://dx.doi.org/10.3109/17435390.2013.855832] [PMID: 24266363]
[87]
Merwe, D.; Tawde, S.; Pickrell, J.A.; Erickson, L.E. Nanocrystalline titanium dioxide and magnesium oxide in vitro dermal absorption in human skin. Cutan. Ocul. Toxicol., 2009, 28(2), 78-82.
[http://dx.doi.org/10.1080/15569520902914926] [PMID: 19514931]
[88]
Xue, C.; Wu, J.; Lan, F.; Liu, W.; Yang, X.; Zeng, F.; Xu, H. Nano titanium dioxide induces the generation of ROS and potential damage in HaCaT cells under UVA irradiation. J. Nanosci. Nanotechnol., 2010, 10(12), 8500-8507.
[http://dx.doi.org/10.1166/jnn.2010.2682] [PMID: 21121359]
[89]
Manová, E.; von Goetz, N.; Hungerbuehler, K. Aggregate consumer exposure to UV filter ethylhexyl methoxycinnamate via personal care products. Environ. Int., 2015, 74, 249-257.
[http://dx.doi.org/10.1016/j.envint.2014.09.008] [PMID: 25454242]
[90]
Durand, L.; Habran, N.; Henschel, V.; Amighi, K. Encapsulation of ethylhexyl methoxycinnamate, a light-sensitive UV filter, in lipid nanoparticles. J. Microencapsul., 2010, 27(8), 714-725.
[http://dx.doi.org/10.3109/02652048.2010.513455] [PMID: 21034364]
[91]
Fathi-azarbayjani, A.; Qun, L.; Chan, Y.W.; Chan, S.Y. Novel vitamin and gold-loaded nanofiber facial mask for topical delivery. AAPS PharmSciTech, 2010, 11(3), 1164-1170.
[92]
Aranaz, I.; Acosta, N.; Civera, C.; Elorza, B.; Mingo, J.; Castro, C.; Gandía, M.; Heras Caballero, A. Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers, 2018, 10(2), 213.
[http://dx.doi.org/10.3390/polym10020213] [PMID: 30966249]
[93]
Kong, C.S.; Kim, J.A.; Ahn, B.; Byun, H.G.; Kim, S.K. Carboxymethylations of chitosan and chitin inhibit MMP expression and ROS scavenging in human fibrosarcoma cells. Process Biochem., 2010, 45(2), 179-186.
[http://dx.doi.org/10.1016/j.procbio.2009.09.004]
[94]
Souto, E.B.; Fernandes, A.R.; Martins-Gomes, C.; Coutinho, T.E.; Durazzo, A.; Lucarini, M.; Souto, S.B.; Silva, A.M.; Santini, A. Nanomaterials for skin delivery of cosmeceuticals and pharmaceuticals. Appl. Sci., 2020, 10(5), 1594.
[http://dx.doi.org/10.3390/app10051594]
[95]
Smijs, T.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl., 2011, 4(1), 95-112.
[http://dx.doi.org/10.2147/NSA.S19419] [PMID: 24198489]
[96]
Müller, RH.; Petersen, RD.; Hommoss, A. Pardeike, J Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev., 2007, 59(6), 522-530.
[97]
Borase, H.P.; Patil, C.D.; Salunkhe, R.B.; Suryawanshi, R.K.; Salunke, B.K.; Patil, S.V. Phytolatex synthesized gold nanoparticles as novel agent to enhance sun protection factor of commercial sunscreens. Int. J. Cosmet. Sci., 2014, 36(6), 571-578.
[http://dx.doi.org/10.1111/ics.12158] [PMID: 25124731]
[98]
Thakor, AS.; Jokerst, J.; Zavaleta, C.; Massoud, TF. Gambhir, SS Gold nanoparticles: A revival in precious metal administration to patients. Nano Lett., 2011, 11(10), 4029-4036.
[http://dx.doi.org/10.1021/nl202559p]
[99]
Choi, C.M.; Berson, D.S. Cosmeceuticals. Semin. Cutan. Med. Surg., 2006, 25(3), 163-168.
[http://dx.doi.org/10.1016/j.sder.2006.06.010] [PMID: 17055397]
[100]
Draelos, Z.D. Cosmetic formulation of skin care products; Routledge, 2005.
[http://dx.doi.org/10.3109/9781420020854]
[101]
Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S.V.; Tamura, H. Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr. Polym., 2010, 82(2), 227-232.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.074]
[102]
Song, H.Y.; Ko, K.K.; Oh, I.H.; Lee, B.T. Fabrication of silver nanoparticles and their antimicrobial mechanisms. Eur. Cell. Mater., 2006, 11(Suppl. 1), 58.
[103]
Kumar, P.T.S.; Abhilash, S.; Manzoor, K.; Nair, S.V.; Tamura, H.; Jayakumar, R. Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydr. Polym., 2010, 80(3), 761-767.
[http://dx.doi.org/10.1016/j.carbpol.2009.12.024]
[104]
Morganti, P.; Del Ciotto, P.; Carezzi, F.; Nunziata, M.L.; Morganti, G. A chitin nanofibril-based non-woven tissue as medical dressing: The role of bionanotechnology. Nanomater Regen Med., 2017, 2016, 123-142.
[105]
Packaging, S.F.; Textiles, S.; Haugen, H.J. Recent developments in chitosan-based micro/nanofibers for sustainable food packaging, smart textiles, cosmeceuticals, and biomedical applications. Molecules, 2021, 26(9), 2683.
[106]
Al-musawi, S.; Albukhaty, S.; Al-karagoly, H. Antibacterial activity of honey/chitosan nanofibers loaded with capsaicin and gold nanoparticles for wound dressing. Molecules, 2020, 25(20), 4770.
[107]
Ardekani, N.T.; Khorram, M.; Zomorodian, K.; Yazdanpanah, S.; Veisi, H.; Veisi, H. Evaluation of electrospun poly (vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing. Int. J. Biol. Macromol., 2019, 125, 743-750.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.085] [PMID: 30543881]
[108]
Yao, C.H.; Chen, K.Y.; Chen, Y.S.; Li, S.J.; Huang, C.H. Lithospermi radix extract-containing bilayer nanofiber scaffold for promoting wound healing in a rat model. Mater. Sci. Eng. C, 2019, 96, 850-858.
[http://dx.doi.org/10.1016/j.msec.2018.11.053] [PMID: 30606599]
[109]
Morganti, P.; Morganti, G.; Coltelli, M.B. Chitin nanomaterials and nanocomposites for tissue repair. In: Marine-Derived Biomaterials for Tissue Engineering Applications; Springer: Singapore, 2019; pp. 523-544.
[http://dx.doi.org/10.1007/978-981-13-8855-2_21]
[110]
Tchemtchoua, V.T.; Atanasova, G.; Aqil, A.; Filée, P.; Garbacki, N.; Vanhooteghem, O.; Deroanne, C.; Noël, A.; Jérome, C.; Nusgens, B.; Poumay, Y.; Colige, A. Development of a chitosan nanofibrillar scaffold for skin repair and regeneration. Biomacromolecules, 2011, 12(9), 3194-3204.
[http://dx.doi.org/10.1021/bm200680q] [PMID: 21761871]
[111]
Pulit-Prociak, J.; Grabowska, A.; Chwastowski, J.; Majka, T.M.; Banach, M. Safety of the application of nanosilver and nanogold in topical cosmetic preparations. Colloids Surf. B Biointerfaces, 2019, 183(August), 110416.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110416] [PMID: 31398622]
[112]
Jiménez, Z.; Kim, Y.J.; Mathiyalagan, R.; Seo, K.H.; Mohanan, P.; Ahn, J.C.; Kim, Y.J.; Yang, D.C. Assessment of radical scavenging, whitening and moisture retention activities of Panax ginseng berry mediated gold nanoparticles as safe and efficient novel cosmetic material. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 333-340.
[http://dx.doi.org/10.1080/21691401.2017.1307216] [PMID: 28393568]
[113]
Ayumi, N.S.; Sahudin, S.; Hussain, Z.; Hussain, M.; Samah, N.H.A. Polymeric nanoparticles for topical delivery of alpha and beta arbutin: Preparation and characterization. Drug Deliv. Transl. Res., 2019, 9(2), 482-496.
[http://dx.doi.org/10.1007/s13346-018-0508-6] [PMID: 29569027]
[114]
Vile, GF.; Hosie, IC.; Feasey, SV. Nanofibre and bioactive compositions and related methods. Active Fibres Ltd, 2017, U.S. Patent 9,775, 917
[115]
Eliton, S. Solution blow spinning: A new method to produce micro- and nanofibers from polymer solutions. J. Appl. Polym. Sci., 2009, 113(4), 232-2330.