[2]
Hansch, C.; Maloney, P.P.; Fujita, T.; Muir, R.M. Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients. Nature, 1962, 194, 178-180.
[7]
Hansch, C.; Helmkamp, G. Organic Chemistry, 2nd; McGraw-Hill Book Co.: New York, 1963.
[9]
Karelson, M. Molecualr descriptors in QSAR/QSPR; Wiley: New York, Chichester, 2000.
[11]
Kode, D.R.A.G.O.N. (Software for Molecular Descriptor Calculation) Version 7.0; Kode, Pisa, Ed.; Italy, 2016.
[12]
Mauri, A. A tool to calculate and analyze molecular descriptors and fingerprints.Ecotoxicological QSARs; Roy, K., Ed.; Springer nature, 2020, pp. 801-820.
[14]
OECD; Guideline no. ENV/JM/MONO 2.Guidance on the Principle of Measure of Goodness-of-Fit; OECD. Robustness and Predictivity: Paris, France, 2007, p. 103.
[24]
Dayhoff, J. Neural network architectures, An introduction; Van Nostrand Reinhold: New York, 1990.
[29]
Drgan, V.; Župerl, Š.; Vračko, M.; Cappelli, C.I.; Novič, M. CPANNatNIC software for counter-propagation neural network to assist in read-across. J. Cheminform., 2017, 9.
[31]
Alexander Tropsha, P.G.; Vijay, K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR Models. QSAR Comb. Sci., 2003, 22, 9.
[42]
Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug Design; Wiley: Weinheim, 1999.
[62]
Devillers, J. Endocrine Disruption Modeling, CRC Press, 2009.
[63]
Novič, M.; Vračko, M. Kohonen and Counterpropagation Neural Networks Employed for Modeling Endocrine Disruptors. Endocrine Disruption Modeling; Devillers, J., Ed.; CRC Press, 2009.
[74]
Fjodorova, N.; Novič, M.; Župerl, Š.; Venko, K. Counter-propagation artificial neural network models for prediction of carcinogenicity of non-congeneric chemicals for regulatory uses, advances in qsar modeling: Applications in pharmaceutical, chemical, food. Agricul. Environ. Sci., 2017, 24, 503-527.
[91]
Roy, K. Chemometrics and Cheminformatics in Aquatic Toxicology; John Wiley & Sons, Inc, 2021.
[95]
Sacan, M.T.; Novič, M.; Ertürk, M.D.; Minovski, N. Marine algal toxicity models with dunaliella tertiolecta: in vivo and in silico.Advances in Mathematical Chemistry and Applications; Basak, S.C.; Restrepo, G.; Villaveces, J.L., Eds.; Bentham Science Publishers, 2014.
[98]
Hardy, B.; Douglas, N.; Helma, C.; Rautenberg, M.; Jeliazkova, N.; Jeliazkov, V.; Nikolova, I.; Benigni, R.; Tcheremenskaia, O.; Kramer, S.; Girschick, T.; Buchwald, F.; Wicker, J.; Karwath, A.; Gutlein, M.; Maunz, A.; Sarimveis, H.; Melagraki, G.; Afantitis, A.; Sopasakis, P.; Gallagher, D.; Poroikov, V.; Filimonov, D.; Zakharov, A.; Lagunin, A.; Gloriozova, T.; Novikov, S.; Skvortsova, N.; Druzhilovsky, D.; Chawla, S.; Ghosh, I.; Ray, S.; Patel, H.; Escher, S. Collaborative development of predictive toxicology applications. J. Cheminform., 2010, 2.