In Silico Screening and Molecular Dynamics Simulations against Tyrosine-protein Kinase Fyn Reveal Potential Novel Therapeutic Candidates for Bovine Papillomatosis

Page: [6172 - 6186] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Decreased beef productivity due to papillomatosis has led to the development and identification of novel targets and molecules to treat the disease. Protein kinases are promising targets for the design of numerous chemotherapy drugs.

Objective: This study aimed to screen and design new inhibitors of bovine Fyn, a protein kinase, using structure-based computational methods, such as molecular docking and molecular dynamics simulation (MDS).

Methods: To carry out the molecular docking analysis, five ligands obtained through structural similarity between active compounds along with the cross-inhibition function between the ChEMBL and Drugbank databases were used. Molecular modeling was performed, and the generated models were validated using PROCHECK and Verify 3D. Molecular docking was performed using Autodock Vina. The complexes formed between Fyn and the three best ligands had their stability assessed by MDS. In these simulations, the complexes were stabilized for 100 ns in relation to a pressure of 1 atm, with an average temperature of 300 k and a potential energy of 1,145,336 kJ/m converged in 997 steps.

Results: Docking analyses showed that all selected ligands had a high binding affinity with Fyn and presented hydrogen bonds at important active sites. MDS results support the docking results, as the ligand showed similar and stable interactions with amino acids present at the binding site of the protein. In all simulations, sorafenib obtained the best results of interaction with the bovine Fyn.

Conclusion: The results highlight the identification of possible bovine Fyn inhibitors; however, further studies are important to confirm these results experimentally.

[1]
Borzacchiello, G.; Roperto, F. Bovine papillomaviruses, papillomas and cancer in cattle. Vet. Res., 2008, 39(5), 45.
[http://dx.doi.org/10.1051/vetres:2008022] [PMID: 18479666]
[2]
Medeiros-Fonseca, B.; Abreu-Silva, A.L.; Medeiros, R.; Oliveira, P.A.; Gil da Costa, R.M. Pteridium spp. and bovine papillomavirus: Partners in cancer. Front. Vet. Sci., 2021, 8, 758720.
[http://dx.doi.org/10.3389/fvets.2021.758720] [PMID: 34796228]
[3]
Kono, T.; Laimins, L. Genomic instability and DNA damage repair pathways induced by human papillomaviruses. Viruses, 2021, 13(9), 1821.
[http://dx.doi.org/10.3390/v13091821] [PMID: 34578402]
[4]
Moody, C.A. Regulation of the innate immune response during the human papillomavirus life cycle. Viruses, 2022, 14(8), 1797.
[http://dx.doi.org/10.3390/v14081797] [PMID: 36016419]
[5]
Gallina, L.; Savini, F.; Canziani, S.; Frasnelli, M.; Lavazza, A.; Scagliarini, A.; Lelli, D. Bovine papillomatosis hiding a zoonotic infection: Epitheliotropic viruses in bovine skin lesions. Pathogens, 2020, 9(7), 583.
[http://dx.doi.org/10.3390/pathogens9070583] [PMID: 32709033]
[6]
Ugochukwu, I.C.I.; Aneke, C.I.; Idoko, I.S.; Sani, N.A.; Amoche, A.J.; Mshiela, W.P.; Ede, R.E.; Ibrahim, N.D.G.; Njoku, C.I.O.; Sackey, A.K.B. Bovine papilloma: Aetiology, pathology, immunology, disease status, diagnosis, control, prevention and treatment: A review. Comp. Clin. Pathol., 2019, 28(3), 737-745.
[http://dx.doi.org/10.1007/s00580-018-2785-3]
[7]
Daudt, C.; Da Silva, F.R.C.; Lunardi, M.; Alves, C.B.D.T.; Weber, M.N.; Cibulski, S.P.; Alfieri, A.F.; Alfieri, A.A.; Canal, C.W. Papillomaviruses in ruminants: An update. Transbound. Emerg. Dis., 2018, 65(5), 1381-1395.
[http://dx.doi.org/10.1111/tbed.12868] [PMID: 29603890]
[8]
Lunardi, M.; de Camargo Tozato, C.; Alfieri, A.F.; de Alcântara, B.K.; Vilas-Boas, L.A.; Otonel, R.A.A.; Headley, S.A.; Alfieri, A.A. Genetic diversity of bovine papillomavirus types, including two putative new types, in teat warts from dairy cattle herds. Arch. Virol., 2016, 161(6), 1569-1577.
[http://dx.doi.org/10.1007/s00705-016-2820-0] [PMID: 26997614]
[9]
Bauermann, F.V.; Joshi, L.R.; Mohr, K.A.; Kutish, G.F.; Meier, P.; Chase, C.; Christopher-Hennings, J.; Diel, D.G. A novel bovine papillomavirus type in the genus Dyokappapapillomavirus. Arch. Virol., 2017, 162(10), 3225-3228.
[http://dx.doi.org/10.1007/s00705-017-3443-9] [PMID: 28616671]
[10]
Sant’Ana, F.J.F.; Leal, F.A.A.; Rabelo, R.E.; Vulcani, V.A.S.; Moreira, C.A., Jr; Cargnelutti, J.F.; Flores, E.F. Coinfection by Vaccinia virus and an Orf virus –like parapoxvirus in an outbreak of vesicular disease in dairy cows in midwestern Brazil. J. Vet. Diagn. Invest., 2013, 25(2), 267-272.
[http://dx.doi.org/10.1177/1040638713475799] [PMID: 23404478]
[11]
Turk, N.; Župančić, Ž.; Starešina, V.; Kovač, S.; Babić, T.; Kreszinger, M.; Milas, Z. Severe bovine papillomatosis: detection of bovine papillomavirus in tumour tissue and efficacy of treatment using autogenous vaccine and parammunity inducer. Veterinarski arhiv, 2005, 75(5), 391-397. Available from: https://hrcak.srce.hr/31727
[12]
Celegato, M.; Messa, L.; Goracci, L.; Mercorelli, B.; Bertagnin, C.; Spyrakis, F.; Suarez, I.; Cousido-Siah, A.; Travé, G.; Banks, L.; Cruciani, G.; Palù, G.; Loregian, A. A novel small-molecule inhibitor of the human papillomavirus E6-p53 interaction that reactivates p53 function and blocks cancer cells growth. Cancer Lett., 2020, 470, 115-125.
[http://dx.doi.org/10.1016/j.canlet.2019.10.046] [PMID: 31693922]
[13]
Soumia, M.; Hajji, H.; El Mzibri, M.; Younes, F.Z.; Mohammed, B.; Mohamed, B.; Benaissa, M. In silico molecular modeling studies to identify novel potential inhibitors of HPV E6 protein. Vaccines, 2022, 10(9), 1452.
[http://dx.doi.org/10.3390/vaccines10091452] [PMID: 36146532]
[14]
Sepehri, S.; Razzaghi-Asl, N.; Mirzayi, S.; Mahnam, K.; Adhami, V. In silico screening and molecular dynamics simulations toward new human papillomavirus 16 type inhibitors. Res. Pharm. Sci., 2022, 17(2), 189-208.
[http://dx.doi.org/10.4103/1735-5362.335177] [PMID: 35280831]
[15]
Krug, S.; Parveen, S.; Bishai, W.R. Host-directed therapies: Modulating inflammation to treat tuberculosis. Front. Immunol., 2021, 12, 660916.
[http://dx.doi.org/10.3389/fimmu.2021.660916] [PMID: 33953722]
[16]
Kaufmann, S.H.E.; Dorhoi, A.; Hotchkiss, R.S.; Bartenschlager, R. Host-directed therapies for bacterial and viral infections. Nat. Rev. Drug Discov., 2018, 17(1), 35-56.
[http://dx.doi.org/10.1038/nrd.2017.162] [PMID: 28935918]
[17]
Eguchi, R.; Kubo, S.; Takeda, H.; Ohta, T.; Tabata, C.; Ogawa, H.; Nakano, T.; Fujimori, Y. Deficiency of Fyn protein is prerequisite for apoptosis induced by Src family kinase inhibitors in human mesothelioma cells. Carcinogenesis, 2012, 33(5), 969-975.
[http://dx.doi.org/10.1093/carcin/bgs109] [PMID: 22354875]
[18]
Barreto, D.M.; Barros, G.S.; Santos, L.A.B.O.; Soares, R.C.; Batista, M.V.A. Comparative transcriptomic analysis of bovine papillomatosis. BMC Genomics, 2018, 19(1), 949.
[http://dx.doi.org/10.1186/s12864-018-5361-y] [PMID: 30567500]
[19]
Li, S.; Liu, C.; Tang, Y. Role of Fyn in hematological malignancies. J. Cancer Res. Clin. Oncol., 2023, 149(9), 6759-6767.
[http://dx.doi.org/10.1007/s00432-023-04608-2] [PMID: 36754870]
[20]
Ninio-Many, L.; Grossman, H.; Levi, M.; Zilber, S.; Tsarfaty, I.; Shomron, N.; Tuvar, A.; Chuderland, D.; Stemmer, S.M.; Ben-Aharon, I.; Shalgi, R. MicroRNA miR-125a-3p modulates molecular pathway of motility and migration in prostate cancer cells. Oncoscience, 2014, 1(4), 250-261.
[http://dx.doi.org/10.18632/oncoscience.30] [PMID: 25594017]
[21]
Nisar, A.; Kayani, M.A.; Nasir, W.; Mehmood, A.; Ahmed, M.W.; Parvez, A.; Mahjabeen, I. Fyn and Lyn gene polymorphisms impact the risk of thyroid cancer. Mol. Genet. Genomics, 2022, 297(6), 1649-1659.
[http://dx.doi.org/10.1007/s00438-022-01946-7] [PMID: 36058999]
[22]
Elias, D.; Vever, H.; Lænkholm, A.V.; Gjerstorff, M.F.; Yde, C.W.; Lykkesfeldt, A.E.; Ditzel, H.J. Correction: Gene expression profiling identifies FYN as an important molecule in tamoxifen resistance and a predictor of early recurrence in patients treated with endocrine therapy. Oncogene, 2018, 37(41), 5585-5586.
[http://dx.doi.org/10.1038/s41388-018-0495-6] [PMID: 30242243]
[23]
Yu, B.; Xu, L.; Chen, L.; Wang, Y.; Jiang, H.; Wang, Y.; Yan, Y.; Luo, S.; Zhai, Z. FYN is required for ARHGEF16 to promote proliferation and migration in colon cancer cells. Cell Death Dis., 2020, 11(8), 652.
[http://dx.doi.org/10.1038/s41419-020-02830-1] [PMID: 32811808]
[24]
Xie, Y.G.; Yu, Y.; Hou, L.K.; Wang, X.; Zhang, B.; Cao, X.C. FYN promotes breast cancer progression through epithelial-mesenchymal transition. Oncol. Rep., 2016, 36(2), 1000-1006.
[http://dx.doi.org/10.3892/or.2016.4894] [PMID: 27349276]
[25]
Polanco, J.C.; Li, C.; Bodea, L.G.; Martinez-Marmol, R.; Meunier, F.A.; Götz, J. Amyloid-β and tau complexity : Towards improved biomarkers and targeted therapies. Nat. Rev. Neurol., 2018, 14(1), 22-39.
[http://dx.doi.org/10.1038/nrneurol.2017.162] [PMID: 29242522]
[26]
Angelopoulou, E.; Paudel, Y.N.; Julian, T.; Shaikh, M.F.; Piperi, C. Pivotal role of Fyn kinase in parkinson’s disease and levodopa-induced dyskinesia: A novel therapeutic target? Mol. Neurobiol., 2021, 58(4), 1372-1391.
[http://dx.doi.org/10.1007/s12035-020-02201-z] [PMID: 33175322]
[27]
Löwenberg, M.; Tuynman, J.; Bilderbeek, J.; Gaber, T.; Buttgereit, F.; van Deventer, S.; Peppelenbosch, M.; Hommes, D. Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood, 2005, 106(5), 1703-1710.
[http://dx.doi.org/10.1182/blood-2004-12-4790] [PMID: 15899916]
[28]
Marotta, G.; Basagni, F.; Rosini, M.; Minarini, A. Role of Fyn kinase inhibitors in switching neuroinflammatory pathways. Curr. Med. Chem., 2022, 29(27), 4738-4755.
[http://dx.doi.org/10.2174/0929867329666211221153719] [PMID: 34939537]
[29]
Gaulton, A.; Hersey, A.; Nowotka, M.; Bento, A.P.; Chambers, J.; Mendez, D.; Mutowo, P.; Atkinson, F.; Bellis, L.J.; Cibrián-Uhalte, E.; Davies, M.; Dedman, N.; Karlsson, A.; Magariños, M.P.; Overington, J.P.; Papadatos, G.; Smit, I.; Leach, A.R. The ChEMBL database in 2017. Nucleic Acids Res., 2017, 45(D1), D945-D954.
[http://dx.doi.org/10.1093/nar/gkw1074] [PMID: 27899562]
[30]
Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform., 2015, 7(1), 20.
[http://dx.doi.org/10.1186/s13321-015-0069-3] [PMID: 26052348]
[31]
Webb, B.; Sali, A. Comparative protein structure modeling using modeller. Curr. prot. bioinform., 2016, 54, 5.6.1-5.6.37.
[http://dx.doi.org/10.1002/cpbi.3]
[32]
Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc., 2021, 16(12), 5634-5651.
[http://dx.doi.org/10.1038/s41596-021-00628-9] [PMID: 34759384]
[33]
Capriles, P.V.S.Z.; Baptista, L.P.R.; Guedes, I.A.; Guimarães, A.C.R.; Custódio, F.L.; Alves-Ferreira, M.; Dardenne, L.E. Structural modeling and docking studies of ribose 5-phosphate isomerase from Leishmania major and Homo sapiens: A comparative analysis for Leishmaniasis treatment. J. Mol. Graph. Model., 2015, 55, 134-147.
[http://dx.doi.org/10.1016/j.jmgm.2014.11.002] [PMID: 25528729]
[34]
Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods, 2011, 8(10), 785-786.
[http://dx.doi.org/10.1038/nmeth.1701] [PMID: 21959131]
[35]
Colovos, C.; Yeates, T. O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci, 1993, 2(9), 1511-1519.
[http://dx.doi.org/10.1002/pro.5560020916]
[36]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[37]
Xu, D.; Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J., 2011, 101(10), 2525-2534.
[http://dx.doi.org/10.1016/j.bpj.2011.10.024] [PMID: 22098752]
[38]
Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res., 2016, 44(W1), W344-W350.
[http://dx.doi.org/10.1093/nar/gkw408] [PMID: 27166375]
[39]
Hao, G.; Xu, Z.P.; Li, L. Manipulating extracellular tumour pH: An effective target for cancer therapy. RSC Adv., 2018, 8(39), 22182-22192.
[http://dx.doi.org/10.1039/C8RA02095G] [PMID: 35541713]
[40]
Dolinsky, T. J.; Czodrowski, P.; Li, H.; Nielsen, J. E.; Jensen, J. H.; Klebe, G.; Baker, N. A. PDB2PQR:Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucl. acid. res., 2007, 35(Web Server issue), W522-W525.
[http://dx.doi.org/10.1093/nar/gkm276]
[41]
Li, H.; Robertson, A.D.; Jensen, J.H. Very fast empirical prediction and rationalization of protein pKa values. Proteins, 2005, 61(4), 704-721.
[http://dx.doi.org/10.1002/prot.20660] [PMID: 16231289]
[42]
MacKerell, A.D., Jr; Bashford, D.; Bellott, M.; Dunbrack, R.L., Jr; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F.T.K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.T.; Prodhom, B.; Reiher, W.E.; Roux, B.; Schlenkrich, M.; Smith, J.C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B, 1998, 102(18), 3586-3616.
[http://dx.doi.org/10.1021/jp973084f] [PMID: 24889800]
[43]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[44]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), NA.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[45]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[46]
Hennequin, L.F.; Allen, J.; Breed, J.; Curwen, J.; Fennell, M.; Green, T.P.; Lambert-van der Brempt, C.; Morgentin, R.; Norman, R.A.; Olivier, A.; Otterbein, L.; Plé, P.A.; Warin, N.; Costello, G. N -(5-Chloro-1,3-benzodioxol-4-yl)-7-[2-(4-methylpiperazin-1-yl)ethoxy]-5- (tetrahydro-2 H -pyran-4-yloxy)quinazolin-4-amine, a novel, highly selective, orally available, dual-specific c-Src/Abl Kinase Inhibitor. J. Med. Chem., 2006, 49(22), 6465-6488.
[http://dx.doi.org/10.1021/jm060434q] [PMID: 17064066]
[47]
Kinoshita, T.; Matsubara, M.; Ishiguro, H.; Okita, K.; Tada, T. Structure of human Fyn kinase domain complexed with staurosporine. Biochem. Biophys. Res. Commun., 2006, 346(3), 840-844.
[http://dx.doi.org/10.1016/j.bbrc.2006.05.212] [PMID: 16782058]
[48]
Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, 26(16), 1781-1802.
[http://dx.doi.org/10.1002/jcc.20289] [PMID: 16222654]
[49]
Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüller, H.; MacKerell, A.D., Jr CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods, 2017, 14(1), 71-73.
[http://dx.doi.org/10.1038/nmeth.4067] [PMID: 27819658]
[50]
Lee, J.; Cheng, X.; Swails, J.M.; Yeom, M.S.; Eastman, P.K.; Lemkul, J.A.; Wei, S.; Buckner, J.; Jeong, J.C.; Qi, Y.; Jo, S.; Pande, V.S.; Case, D.A.; Brooks, C.L., III; MacKerell, A.D., Jr; Klauda, J.B.; Im, W. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput., 2016, 12(1), 405-413.
[http://dx.doi.org/10.1021/acs.jctc.5b00935] [PMID: 26631602]
[51]
Lee, J.; Hitzenberger, M.; Rieger, M.; Kern, N.R.; Zacharias, M.; Im, W. CHARMM-GUI supports the amber force fields. J. Chem. Phys., 2020, 153(3), 035103.
[http://dx.doi.org/10.1063/5.0012280] [PMID: 32716185]
[52]
Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem., 2008, 29(11), 1859-1865.
[http://dx.doi.org/10.1002/jcc.20945] [PMID: 18351591]
[53]
Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983, 79(2), 926-935.
[http://dx.doi.org/10.1063/1.445869]
[54]
Davidchack, R.L.; Handel, R.; Tretyakov, M.V. Langevin thermostat for rigid body dynamics. J. Chem. Phys., 2009, 130(23), 234101.
[http://dx.doi.org/10.1063/1.3149788] [PMID: 19548705]
[55]
Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph., 1996, 14(1), 33-38, 27-28.
[http://dx.doi.org/10.1016/0263-7855(96)00018-5] [PMID: 8744570]
[56]
Senapathi, T.; Bray, S.; Barnett, C.B.; Grüning, B.; Naidoo, K.J. Biomolecular reaction and interaction dynamics global environment (BRIDGE). Bioinformatics, 2019, 35(18), 3508-3509.
[http://dx.doi.org/10.1093/bioinformatics/btz107] [PMID: 30759217]
[57]
Grant, B.J.; Rodrigues, A.P.C.; ElSawy, K.M.; McCammon, J.A.; Caves, L.S.D. Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics, 2006, 22(21), 2695-2696.
[http://dx.doi.org/10.1093/bioinformatics/btl461] [PMID: 16940322]
[58]
Jensen, A.R.; David, S.Y.; Liao, C.; Dai, J.; Keller, E.T.; Al-Ahmadie, H.; Dakin-Haché, K.; Usatyuk, P.; Sievert, M.F.; Paner, G.P.; Yala, S.; Cervantes, G.M.; Natarajan, V.; Salgia, R.; Posadas, E.M. Fyn is downstream of the HGF/MET signaling axis and affects cellular shape and tropism in PC3 cells. Clin. Cancer Res., 2011, 17(10), 3112-3122.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1264] [PMID: 21364031]
[59]
Druker, B.J.; Sawyers, C.L.; Kantarjian, H.; Resta, D.J.; Reese, S.F.; Ford, J.M.; Capdeville, R.; Talpaz, M. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med., 2001, 344(14), 1038-1042.
[http://dx.doi.org/10.1056/NEJM200104053441402] [PMID: 11287973]
[60]
Boggon, T.J.; Eck, M.J. Structure and regulation of Src family kinases. Oncogene, 2004, 23(48), 7918-7927.
[http://dx.doi.org/10.1038/sj.onc.1208081] [PMID: 15489910]
[61]
Musacchio, A.; Noble, M.; Pauptit, R.; Wierenga, R.; Saraste, M. Crystal structure of a Src-homology 3 (SH3) domain. Nature, 1992, 359(6398), 851-855.
[http://dx.doi.org/10.1038/359851a0] [PMID: 1279434]
[62]
Dalal, V.; Dhankhar, P.; Singh, V.; Singh, V.; Rakhaminov, G.; Golemi-Kotra, D.; Kumar, P. Structure-based identification of potential drugs against FmtA of staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM. Protein J., 2021, 40(2), 148-165.
[http://dx.doi.org/10.1007/s10930-020-09953-6] [PMID: 33421024]
[63]
Jensen, B.C.; Parry, T.L.; Huang, W.; Beak, J.Y.; Ilaiwy, A.; Bain, J.R.; Newgard, C.B.; Muehlbauer, M.J.; Patterson, C.; Johnson, G.L.; Willis, M.S. Effects of the kinase inhibitor sorafenib on heart, muscle, liver and plasma metabolism in vivo using non-targeted metabolomics analysis. Br. J. Pharmacol., 2017, 174(24), 4797-4811.
[http://dx.doi.org/10.1111/bph.14062] [PMID: 28977680]
[64]
Motzer, R.J.; Escudier, B.; Gannon, A.; Figlin, R.A. Sunitinib: Ten years of successful clinical use and study in advanced renal cell carcinoma. Oncologist, 2017, 22(1), 41-52.
[http://dx.doi.org/10.1634/theoncologist.2016-0197] [PMID: 27807302]
[65]
Draghiciu, O.; Boerma, A.; Hoogeboom, B.N.; Nijman, H.W.; Daemen, T. A rationally designed combined treatment with an alphavirus-based cancer vaccine, sunitinib and low-dose tumor irradiation completely blocks tumor development. OncoImmunology, 2015, 4(10), e1029699.
[http://dx.doi.org/10.1080/2162402X.2015.1029699] [PMID: 26451295]
[66]
Amir, M.; Mohammad, T.; Kumar, V.; Alajmi, M.F.; Rehman, M.T.; Hussain, A.; Alam, P.; Dohare, R.; Islam, A.; Ahmad, F.; Hassan, M.I. Structural analysis and conformational dynamics of STN1 gene mutations involved in coat plus syndrome. Front. Mol. Biosci., 2019, 6, 41.
[http://dx.doi.org/10.3389/fmolb.2019.00041] [PMID: 31245382]
[67]
Hong, L.; Jain, N.; Cheng, X.; Bernal, A.; Tyagi, M.; Smith, J.C. Determination of functional collective motions in a protein at atomic resolution using coherent neutron scattering. Sci. Adv., 2016, 2(10), e1600886.
[http://dx.doi.org/10.1126/sciadv.1600886] [PMID: 27757419]