Explore the Constituents and Mechanism of Traditional Chinese Medicine Preparation Zhachong Shisan Pills Based on HPLC-QTOF-MS and Network Pharmacology

Page: [712 - 734] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Introduction: This study aims to establish the chromatographic fingerprint of Zhachong Shisan pills (ZSP), and to explore its active components and mechanism of analgesic and anti-inflammatory action.

Method: First, the Personal Compound Database and Library (PCDL) of ZSP was constructed through literature mining, and then the chemical composition and fingerprint of methanol extractions from 8 batches of ZSP were studied using High-Performance Liquid Chromatography with Quadrupole Time-Of-Flight tandem Mass Spectrometry (HPLC-QTOF-MS) technology. Furthermore, network pharmacology was used to explore the active compounds, potential targets, and signal pathways of analgesic and anti-inflammatory activity of ZSP. A total of 102 compounds were detected in positive and negative ion mode.

Results: Fifty-six characteristic peaks in positive ion mode and 78 characteristic peaks in negative ion mode were confirmed as common peaks in the fingerprint of ZSP. Through network pharmacology research, the effective components, key targets, and signal pathways of ZSP for the treatment of cerebral apoplexy by analgesic and anti-inflammatory effects were all analyzed.

Conclusion: This study explained the substance basis of the analgesic and anti-inflammatory effects of Zhachong Shisan Pills, and explores its possible mechanisms, providing ideas for rational clinical medication and in-depth pharmacological research.

Graphical Abstract

[1]
Pharmacopoeia Commission, Ministry of Health. Ministry of Health of the People’s Republic of China Pharmaceutical Standards · Mongolian Medicine standards; China Medical And Technology Press, 1998, p. 70.
[2]
Ba, G.N. Mongolian Medicineand Pharmacology; Inner Mongolia People's Publishing House: Hohhot, 1986, p. 143.
[3]
Shao, F.P.; Tian, L.; Tian, M.; Dai, Y.Y.; Chen, L.G.; Yang, Q.S.; Gheng, W.X.; Wang, J.; Yang, K. The Research Progress of Shichangpu (Rhizoma Acori Graminei). Guiding Journal of Traditional Chinese Medicine and Pharmacy, 2018, 24(22), 65-69.
[http://dx.doi.org/10.13862/j.cnki.cn43-1446/r.2018.22.020]
[4]
Yao, C.; Zhong, F.R.; Liao, H.L.; Ma, Y.T. Research progress on chemical constituents and pharmacological activities of agarwood volatile oil. Natural Product Research and Development, 2020, 32(11), 1943-1953.
[http://dx.doi.org/10.16333/j.1001-6880.2020.11.019]
[5]
Yang, Y. Advances in chemical constituents, biological activities, and analytical methods of Terminalia chebula Retz. Tire Sci. Technol., 2016, 2016(9), 34-39.
[6]
Li, S.J. Identification and related research progress of Aconiti Radix and Aconiti Kusnezoffii Radix. Guangming J. Chin. Med., 2020, 35(16), 2608-2610.
[7]
Ma, C.; Xian, S.H.; Xiang, Y.; Lu, G.Y.; Liang, G.Y.; Yang, X.H. Research progress on pharmacological activities of Myristica fragrans Houtt. Zhongguo Xiandai Zhongyao, 2017, 19(8), 1200-1206.
[8]
Chen, J.Y.; Chen, Y.H. Research progress on the effects and contraindications of licorice. Renowned Doctor, 2020, 82(03), 217.
[9]
Mei, L.; Wang, F.; Wu, Z.F.; Zhang, X.F.; Du, Q.; Wang, X.M.; Zhu, Y.M.; Li, Y. The application and modern research progress of Radix aucklandiae in Han and Mongolian medicine. Zhongchengyao, 2019, 41(3), 635-639.
[10]
Tu, H.; Jiang, H.M.; Lu, J.Q.; Zhou, K.; Lin, J.; Xu, J.J.; Wan, L.J. Research progress on pharmacological activities of cloves. Flavour Fragrance Cosmetics, 2015, 152(05), 59-62.
[11]
Wang, L.; Wang, H.; Liu, H.P.; Liu, J.D.; Ning, H.; Wang, Q.Y.; Cheng, Z.Q.; Wang, Y.J. Research Status of Moschus. Resource Development &. Market., 2016, 32(01), 77-81.
[12]
Wang, H.; Xin, T.Y.; Yang, X.L.; Mei, L.; Yu, S.; Chen, H.M.; Wang, X.L. Study on analgesic and anti-inflammatory effects of Mongolian medicine Zhachong Shisanwei Pill. Journal of China Prescription Drug, 2021, 19(09), 38-40.
[13]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[14]
Stelzer, G.; Rosen, R.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The GeneCards Suite: From gene data mining to disease genome sequence analysis. Current. Protocols in Bioinformatics, 2016, 54 1.30.1-1.30.33.
[http://dx.doi.org/10.1002/cpbi.5]
[15]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[16]
Kim, B.H.; Cho, J.Y. Anti-inflammatory effect of honokiol is mediated by PI3K/Akt pathway suppression. Acta Pharmacol. Sin., 2008, 29(1), 113-122.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00725.x] [PMID: 18158873]
[17]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[18]
Guo, Y.Y.; Chang, N.W.; Niu, L.; Jiang, M.; Bai, G. Identification of anti-inflammatory substances in Zhachong shisanwei pills and investigation of the underlying mechanisms. Yao Xue Xue Bao, 2020, 55(06), 1265-1272.
[http://dx.doi.org/10.16438/j.0513-4870.2020-0007]
[19]
Facanali, R.; Colombo, C.A.; Teixeira, J.P.F.; Ming, L.C.; Zucchi, M.I.; Marques, M.O.M. Genetic and chemical diversity of native populations of Ocimum selloi Benth. Ind. Crops Prod., 2015, 76, 249-257.
[http://dx.doi.org/10.1016/j.indcrop.2015.06.045]
[20]
Kolbe, L.; Immeyer, J.; Batzer, J.; Wensorra, U.; Dieck, K.; Mundt, C.; Wolber, R.; Stäb, F.; Schönrock, U.; Ceilley, R.I.; Wenck, H. Anti-inflammatory efficacy of Licochalcone A: Correlation of clinical potency and in vitro effects. Arch. Dermatol. Res., 2006, 298(1), 23-30.
[http://dx.doi.org/10.1007/s00403-006-0654-4] [PMID: 16552540]
[21]
Germaine, C.G.S.; Bogaty, P.; Boyer, L.; Hanley, J.; Engert, J.C.; Brophy, J.M. Genetic polymorphisms and the cardiovascular risk of non-steroidal anti-inflammatory drugs. Am. J. Cardiol., 2010, 105(12), 1740-1745.
[http://dx.doi.org/10.1016/j.amjcard.2010.01.352] [PMID: 20538124]
[22]
Kim, M.H.; Son, Y.J.; Lee, S.Y.; Yang, W.S.; Yi, Y.S.; Yoon, D.H.; Yang, Y.; Kim, S.H.; Lee, D.; Rhee, M.H.; Kang, H.; Kim, T.W.; Sung, G.H.; Cho, J.Y. JAK2-targeted anti-inflammatory effect of a resveratrol derivative 2,4-dihydroxy-N-(4-hydroxyphenyl)benzamide. Biochem. Pharmacol., 2013, 86(12), 1747-1761.
[http://dx.doi.org/10.1016/j.bcp.2013.10.006] [PMID: 24144632]
[23]
Fan, Y.; Liu, J.; Miao, J.; Zhang, X.; Yan, Y.; Bai, L.; Chang, J.; Wang, Y.; Wang, L.; Bian, Y.; Zhou, H. Anti-inflammatory activity of the Tongmai Yangxin pill in the treatment of coronary heart disease is associated with estrogen receptor and NF-κB signaling pathway. J. Ethnopharmacol., 2021, 276, 114106.
[http://dx.doi.org/10.1016/j.jep.2021.114106] [PMID: 33838287]
[24]
Hiroi, M.; Sakaeda, Y.; Yamaguchi, H.; Ohmori, Y. Anti-inflammatory cytokine interleukin-4 inhibits inducible nitric oxide synthase gene expression in the mouse macrophage cell line RAW264.7 through the repression of octamer-dependent transcription. Mediators Inflamm., 2013, 2013, 1-14.
[http://dx.doi.org/10.1155/2013/369693] [PMID: 24459328]
[25]
Sia, A.T.; Sng, B.L.; Lim, E.C.; Law, H.; Tan, E.C. The influence of ATP-binding cassette sub-family B member -1 (ABCB1) genetic polymorphisms on acute and chronic pain after intrathecal morphine for caesarean section: A prospective cohort study. Int. J. Obstet. Anesth., 2010, 19(3), 254-260.
[http://dx.doi.org/10.1016/j.ijoa.2010.03.001] [PMID: 20627697]
[26]
Honjo, K.; Takahashi, K.A.; Mazda, O.; Kishida, T.; Hiraoka, N.; Inoue, A.; Saito, M.; Inoue, H.; Imanishi, J.; Kubo, T. Augmentation of anti-inflammatory effect of dexamethasone by suppressing ABCB1 gene expression. Osteoarthritis Cartilage, 2008, 16, S188.
[http://dx.doi.org/10.1016/S1063-4584(08)60472-0]
[27]
Ince, I.; Aksoy, M.; Ahiskalioglu, A.; Comez, M.; Dostbil, A.; Celik, M.; Yilmaz, I.; Mammadov, R.; Dogan, H.; Boztok Ozgermen, B.; Altuner, D. A comparative investigation of the analgesic effects of metamizole and paracetamol in rats. J. Invest. Surg., 2015, 28(3), 173-180.
[http://dx.doi.org/10.3109/08941939.2014.998798] [PMID: 26065593]
[28]
Tacchini, L.; Gammella, E.; De Ponti, C.; Recalcati, S.; Cairo, G. Role of HIF-1 and NF-kappaB transcription factors in the modulation of transferrin receptor by inflammatory and anti-inflammatory signals. J. Biol. Chem., 2008, 283(30), 20674-20686.
[http://dx.doi.org/10.1074/jbc.M800365200] [PMID: 18519569]
[29]
Botney, M.; Fields, H.L. Amitriptyline potentiates morphine analgesia by a direct action on the central nervous system. Ann. Neurol., 1983, 13(2), 160-164.
[http://dx.doi.org/10.1002/ana.410130209] [PMID: 6219612]