Articulating the Pharmacological and Nanotechnological Aspects of Genistein: Current and Future Prospectives

Page: [807 - 824] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Throughout the past several centuries, herbal constituents have been the subject of scientific interest and the latest research into their therapeutic potential is underway. Genistein is a soy-derived isoflavone found in huge amounts in soy, along with the plants of the Fabaceae family. Scientific studies have demonstrated the beneficial effects of genistein on various health conditions. Genistein presents a broad range of pharmacological activities, including anticancer, neuroprotective, cardioprotective, antiulcer, anti-diabetic, wound healing, anti-bacterial, antiviral, skin, and radioprotective effects. However, the hydrophobic nature of genistein results in constrained absorption and restricts its therapeutic potential. In this review, the number of nanocarriers for genistein delivery has been explored, such as polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles, liposomes, micelles, transferosomes, and nanoemulsions and nanofibers. These nano-formulations of genistein have been utilized as a potential strategy for various disorders, employing a variety of ex vivo, in vitro, and in vivo models and various administration routes. This review concluded that genistein is a potential therapeutic agent for treating various diseases, including cancer, neurodegenerative disorders, cardiovascular disorders, obesity, diabetes, ulcers, etc., when formulated in suitable nanocarriers.

Graphical Abstract

[1]
Rishton, G.M. Natural products as a robust source of new drugs and drug leads: Past successes and present day issues. Am J Cardiol., 2008, 101(10A), 43D-49D.
[http://dx.doi.org/10.1016/j.amjcard.2008.02.007]
[2]
Phytochemistry and pharmacology of dalbergia sissoo roxb. Ex DC: A Review. J. Pharm. Pharmacol., 2023, 75(4), 482-501.
[3]
Dixon, R.; Ferreira, D. Genistein. Phytochemistry, 2002, 60(3), 205-211.
[http://dx.doi.org/10.1016/S0031-9422(02)00116-4] [PMID: 12031439]
[4]
Murti, Y.; Agrawal, K.K.; Semwal, B.C.; Gupta, J.; Gupta, R. A review on novel herbal drug delivery system and its application. Curr. Tradit. Med., 2023, 9(2), e280422204154.
[http://dx.doi.org/10.2174/2215083808666220428092638]
[5]
Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S. Plant flavonoids: Chemical characteristics and biological activity. Molecules, 2021, 26(17), 5377.
[http://dx.doi.org/10.3390/molecules26175377] [PMID: 34500810]
[6]
Pierzynowska, K.; Gaffke, L.; Jankowska, E.; Rintz, E.; Witkowska, J.; Podlacha, M.; Wiśniewska, K. Proteasome composition and activity changes in cultured fibroblasts derived from mucopolysaccharidoses patients and their modulation by genistein. Front. Cell Dev. Biol., 2020, 8, 1-17.
[7]
Pierzynowska, K.; Cyske, Z.; Gaffke, L.; Rintz, E.; Mantej, J.; Podlacha, M.; Wiśniewska, K.; Ĺťabińska, M.; Sochocka, M.; Lorenc, P.; Bielańska, P.; Giecewicz, I.; Węgrzyn, G. [Potential of genistein-induced autophagy in the treatment of neurodegenerative diseases]. Postepy Biochem., 2021, 67(2), 117-129.
[PMID: 34378891]
[8]
Banerjee, S.; Li, Y.; Wang, Z.; Sarkar, F.H. Multi-targeted therapy of cancer by genistein. Cancer Lett., 2008, 269(2), 226-242.
[http://dx.doi.org/10.1016/j.canlet.2008.03.052] [PMID: 18492603]
[9]
Piotrowska, E.; Jakóbkiewicz-Banecka, J.; Barańska, S.; Tylki-Szymańska, A.; Czartoryska, B.; Węgrzyn, A.; Węgrzyn, G. Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses. Eur. J. Hum. Genet., 2006, 14(7), 846-852.
[http://dx.doi.org/10.1038/sj.ejhg.5201623] [PMID: 16670689]
[10]
Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular mechanisms of action of genistein in Cancer: Recent advances. Front. Pharmacol., 2019, 10, 1336.
[http://dx.doi.org/10.3389/fphar.2019.01336] [PMID: 31866857]
[11]
Bayat, F.; Hosseinpour-Moghadam, R.; Mehryab, F.; Fatahi, Y.; Shakeri, N.; Dinarvand, R.; Ten Hagen, T.L.M.; Haeri, A. Potential application of liposomal nanodevices for non-cancer diseases: An update on design, characterization and biopharmaceutical evaluation. Adv. Colloid Interface Sci., 2020, 277, 102121.
[http://dx.doi.org/10.1016/j.cis.2020.102121] [PMID: 32092487]
[12]
Daeihamed, M.; Dadashzadeh, S.; Haeri, A.; Akhlaghi, M.F. Potential of liposomes for enhancement of oral drug absorption. Curr. Drug Deliv., 2017, 14(2), 289-303.
[PMID: 26768542]
[13]
Sharifi-Rad, J.; Quispe, C.; Imran, M.; Rauf, A.; Nadeem, M.; Gondal, T.A.; Ahmad, B.; Atif, M.; Mubarak, M.S.; Sytar, O.; Zhilina, O.M.; Garsiya, E.R.; Smeriglio, A.; Trombetta, D.; Pons, D.G.; Martorell, M.; Cardoso, S.M.; Razis, A.F.A.; Sunusi, U.; Kamal, R.M.; Rotariu, L.S.; Butnariu, M.; Docea, A.O.; Calina, D. Genistein: An integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid. Med. Cell. Longev., 2021, 2021, 1-36.
[http://dx.doi.org/10.1155/2021/3268136] [PMID: 34336089]
[14]
Kumar, G.; Virmani, T.; Sharma, A.; Pathak, K. Codelivery of phytochemicals with conventional anticancer drugs in form of nanocarriers. Pharmaceutics, 2023, 15(3), 889.
[http://dx.doi.org/10.3390/pharmaceutics15030889] [PMID: 36986748]
[15]
Goh, Y.X.; Jalil, J.; Lam, K.W.; Husain, K.; Premakumar, C.M. Genistein: A review on its anti-inflammatory properties. Front. Pharmacol., 2022, 13, 820969.
[http://dx.doi.org/10.3389/fphar.2022.820969] [PMID: 35140617]
[16]
Jaiswal, N.; Akhtar, J.; Singh, S.P.; Ahsan, F. An overview on genistein and its various formulations. Drug Res., 2019, 69(6), 305-313.
[http://dx.doi.org/10.1055/a-0797-3657] [PMID: 30517965]
[17]
Coldham, N.G.; Zhang, A.Q.; Key, P.; Sauer, M.J. Absolute bioavailability of [14C] genistein in the rat; plasma pharmacokinetics of parent compound, genistein glucuronide and total radioactivity. Eur. J. Drug Metab. Pharmacokinet., 2002, 27(4), 249-258.
[http://dx.doi.org/10.1007/BF03192335] [PMID: 12587954]
[18]
Shelnutt, S.R.; Cimino, C.O.; Wiggins, P.A.; Ronis, M.J.J.; Badger, T.M. Pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein in men and women after consumption of a soy beverage. Am. J. Clin. Nutr., 2002, 76(3), 588-594.
[http://dx.doi.org/10.1093/ajcn/76.3.588] [PMID: 12198004]
[19]
Zhou, S.; Hu, Y.; Zhang, B.; Teng, Z.; Gan, H.; Yang, Z.; Wang, Q.; Huan, M.; Mei, Q. Dose-dependent absorption, metabolism, and excretion of genistein in rats. J. Agric. Food Chem., 2008, 56(18), 8354-8359.
[http://dx.doi.org/10.1021/jf801051d] [PMID: 18710250]
[20]
Ganai, A.A.; Farooqi, H. Bioactivity of genistein: A review of in vitro and in vivo studies. Biomed. Pharmacother., 2015, 76, 30-38.
[http://dx.doi.org/10.1016/j.biopha.2015.10.026] [PMID: 26653547]
[21]
Hassanpour, S.H.; Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Pract., 2017, 4(4), 127-129.
[http://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
[22]
Wang, S.D.; Chen, B.C.; Kao, S.T.; Liu, C.J.; Yeh, C.C. Genistein inhibits tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. BMC Complement. Altern. Med., 2014, 14(1), 26.
[http://dx.doi.org/10.1186/1472-6882-14-26] [PMID: 24433534]
[23]
Li, Y-S.; Wu, L-P.; Li, K-B.; Liu, Y-P.; Xiang, R.; Zhang, S-B.; Zhu, L-Y.; Zhang, L-Y. Involvement of nuclear factor κB (NF-κB) in the downregulation of cyclooxygenase-2 (COX-2) by genistein in gastric cancer cells. J. Int. Med. Res., 2011, 39(6), 2141-2150.
[http://dx.doi.org/10.1177/147323001103900610] [PMID: 22289529]
[24]
Huang, W.; Wan, C.; Luo, Q.; Huang, Z.; Luo, Q. Genistein-inhibited cancer stem cell-like properties and reduced chemoresistance of gastric cancer. Int. J. Mol. Sci., 2014, 15(3), 3432-3443.
[http://dx.doi.org/10.3390/ijms15033432] [PMID: 24573253]
[25]
Zhang, Y.; Chen, H. Genistein attenuates WNT signaling by up-regulating sFRP2 in a human colon cancer cell line. Exp. Biol. Med., 2011, 236(6), 714-722.
[http://dx.doi.org/10.1258/ebm.2011.010347] [PMID: 21571909]
[26]
Dhandayuthapani, S.; Marimuthu, P.; Hörmann, V.; Kumi-Diaka, J.; Rathinavelu, A. Induction of apoptosis in HeLa cells via caspase activation by resveratrol and genistein. J. Med. Food, 2013, 16(2), 139-146.
[http://dx.doi.org/10.1089/jmf.2012.0141] [PMID: 23356442]
[27]
Luo, Y.; Wang, S. Apoptotic effect of genistein on human colon cancer cells via inhibiting the nuclear factor-kappa B (NF-KB) pathway. Tumour Biol., 2014, 35(11), 11483-11488.
[http://dx.doi.org/10.1007/s13277-014-2487-7] [PMID: 25128065]
[28]
Panda, S.P.; Dhurandhar, Y.; Agrawal, M. The interplay of epilepsy with impaired mitophagy and autophagy linked dementia (MAD): A review of therapeutic approaches. Mitochondrion, 2022, 66, 27-37.
[http://dx.doi.org/10.1016/j.mito.2022.07.002] [PMID: 35842181]
[29]
Pathak, K.; Mishra, S.K.; Porwal, A.; Bahadur, S. Nanocarriers for Alzheimer’s Disease: Research and patent update. J. Appl. Pharm. Sci., 2021, 11(3), 1-21.
[30]
Teleanu, R.; Chircov, C.; Grumezescu, A.; Volceanov, A.; Teleanu, D. Antioxidant therapies for neuroprotection—a review. J. Clin. Med., 2019, 8(10), 1659.
[http://dx.doi.org/10.3390/jcm8101659] [PMID: 31614572]
[31]
Yavarpour-Bali, H.; Ghasemi-Kasman, M.; Pirzadeh, M. Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders. Int. J. Nanomedicine, 2019, 14, 4449-4460.
[http://dx.doi.org/10.2147/IJN.S208332] [PMID: 31417253]
[32]
Rumman, M.; Pandey, S.; Singh, B.; Gupta, M.; Ubaid, S.; Mahdi, A.A. Genistein prevents hypoxia-induced cognitive dysfunctions by ameliorating oxidative stress and inflammation in the hippocampus. Neurotox. Res., 2021, 39(4), 1123-1133.
[http://dx.doi.org/10.1007/s12640-021-00353-x] [PMID: 33740236]
[33]
Lu, C.; Lv, J.; Jiang, N.; Wang, H.; Huang, H.; Zhang, L.; Li, S.; Zhang, N.; Fan, B.; Liu, X.; Wang, F. Protective effects of genistein on the cognitive deficits induced by chronic sleep deprivation. Phytother. Res., 2020, 34(4), 846-858.
[http://dx.doi.org/10.1002/ptr.6567] [PMID: 32115816]
[34]
Pierzynowska, K.; Podlacha, M.; Gaffke, L.; Majkutewicz, I.; Mantej, J.; Węgrzyn, A.; Osiadły, M.; Myślińska, D.; Węgrzyn, G. Autophagy-dependent mechanism of genistein-mediated elimination of behavioral and biochemical defects in the rat model of sporadic Alzheimer’s disease. Neuropharmacology, 2019, 148, 332-346.
[http://dx.doi.org/10.1016/j.neuropharm.2019.01.030] [PMID: 30710571]
[35]
Gupta, J.; Gupta, R.; Sharma, P. Alzheimer’s Disease: Role of amyloid- β peptide in the pathogenesis of neurodisorder. 2022, 9(7), 7282-7290.
[36]
Breijyeh, Z.; Karaman, R. Comprehensive review on Alzheimer’s Disease: Causes and treatment. Molecules, 2020, 25(24), 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[37]
Abubakar, M.B.; Sanusi, K.O.; Ugusman, A.; Mohamed, W.; Kamal, H.; Ibrahim, N.H.; Khoo, C.S. Kumar, J. Alzheimer’s Disease: An update and insights into pathophysiology. Front. Aging Neurosci., 2022, 14, 742408.
[http://dx.doi.org/10.3389/fnagi.2022.742408] [PMID: 35431894]
[38]
Devi, K.P.; Shanmuganathan, B.; Manayi, A.; Nabavi, S.F.; Nabavi, S.M. Molecular and therapeutic targets of genistein in Alzheimer’s Disease. Mol. Neurobiol., 2017, 54(9), 7028-7041.
[http://dx.doi.org/10.1007/s12035-016-0215-6] [PMID: 27796744]
[39]
Sun, X.; Chen, W.D.; Wang, Y.D. β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front. Pharmacol., 2015, 6, 221.
[http://dx.doi.org/10.3389/fphar.2015.00221] [PMID: 26483691]
[40]
Cai, B.; Ye, S.; Wang, T.; Wang, Y.; Li, J.; Zhan, J.; Shen, G. Genistein protects hippocampal neurons against injury by regulating calcium/calmodulin dependent protein kinase IV protein levels in Alzheimer’s disease model rats. Neural Regen. Res., 2017, 12(9), 1479-1484.
[http://dx.doi.org/10.4103/1673-5374.215260] [PMID: 29089994]
[41]
Galvan, A.; Wichmann, T. Pathophysiology of parkinsonism. Clin. Neurophysiol., 2008, 119(7), 1459-1474.
[http://dx.doi.org/10.1016/j.clinph.2008.03.017] [PMID: 18467168]
[42]
Arbabi, E.; Hamidi, G.; Talaei, S.A.; Salami, M. Estrogen agonist genistein differentially influences the cognitive and motor disorders in an ovariectomized animal model of Parkinsonism. Iran. J. Basic Med. Sci., 2016, 19(12), 1285-1290.
[PMID: 28096960]
[43]
Liu, L.X.; Chen, W.F.; Xie, J.X.; Wong, M.S. Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson’s disease. Neurosci. Res., 2008, 60(2), 156-161.
[http://dx.doi.org/10.1016/j.neures.2007.10.005] [PMID: 18054104]
[44]
Siddique, Y.H.; Naz, F.; Jyoti, S.; Ali, F. Rahul, Effect of genistein on the transgenic Drosophila model of parkinson’s Disease. J. Diet. Suppl., 2019, 16(5), 550-563.
[http://dx.doi.org/10.1080/19390211.2018.1472706] [PMID: 29969325]
[45]
Beirão, D.; Monte, H.; Amaral, M.; Longras, A.; Matos, C.; Villas-Boas, F. Depression in adolescence: A review. MECP, 2020, 27(1), 50.
[http://dx.doi.org/10.1186/s43045-020-00050-z]
[46]
Chang, M.; Zhang, L.; Dai, H.; Sun, L. Genistein acts as antidepressant agent against chronic mild stress induced depression model of rats through augmentation of brain-derived neurotrophic factor. Brain Behav., 2021, 11(8), e2300.
[http://dx.doi.org/10.1002/brb3.2300] [PMID: 34333865]
[47]
Rodríguez-Landa, J.F.; Hernández-Figueroa, J.D.; Hernández-Calderón, B.C.; Saavedra, M. Anxiolytic-like effect of phytoestrogen genistein in rats with long-term absence of ovarian hormones in the black and white model. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(2), 367-372.
[http://dx.doi.org/10.1016/j.pnpbp.2008.12.024] [PMID: 19168113]
[48]
Aras, A.B.; Guven, M.; Akman, T.; Alacam, H.; Kalkan, Y.; Silan, C.; Cosar, M. Genistein exerts neuroprotective effect on focal cerebral ischemia injury in rats. Inflammation, 2015, 38(3), 1311-1321.
[http://dx.doi.org/10.1007/s10753-014-0102-0] [PMID: 25567369]
[49]
Sureda, A.; Sanches Silva, A.; Sánchez-Machado, D.I.; López-Cervantes, J.; Daglia, M.; Nabavi, S.F.; Nabavi, S.M. Hypotensive effects of genistein: From chemistry to medicine. Chem. Biol. Interact., 2017, 268, 37-46.
[http://dx.doi.org/10.1016/j.cbi.2017.02.012] [PMID: 28242380]
[50]
Zhao, L.; Mao, Z.; Brinton, R.D. A select combination of clinically relevant phytoestrogens enhances estrogen receptor beta-binding selectivity and neuroprotective activities in vitro and in vivo. Endocrinology, 2009, 150(2), 770-783.
[http://dx.doi.org/10.1210/en.2008-0715] [PMID: 18818291]
[51]
Gencel, V.B.; Benjamin, M.M.; Bahou, S.N.; Khalil, R.A. Vascular effects of phytoestrogens and alternative menopausal hormone therapy in cardiovascular disease. Mini Rev. Med. Chem., 2012, 12(2), 149-174.
[http://dx.doi.org/10.2174/138955712798995020] [PMID: 22070687]
[52]
Ambra, R.; Rimbach, G.; de Pascual Teresa, S.; Fuchs, D.; Wenzel, U.; Daniel, H.; Virgili, F. Genistein affects the expression of genes involved in blood pressure regulation and angiogenesis in primary human endothelial cells. Nutr. Metab. Cardiovasc. Dis., 2006, 16(1), 35-43.
[http://dx.doi.org/10.1016/j.numecd.2005.03.003] [PMID: 16399490]
[53]
Rafieian-Kopaei, M.; Setorki, M.; Doudi, M.; Baradaran, A.; Nasri, H. Atherosclerosis: Process, indicators, risk factors and new hopes. Int. J. Prev. Med., 2014, 5(8), 927-946.
[PMID: 25489440]
[54]
Noble, C.; Carlson, K.D.; Neumann, E.; Lewis, B.; Dragomir-Daescu, D.; Lerman, A.; Erdemir, A.; Young, M.D. Finite element analysis in clinical patients with atherosclerosis. J. Mech. Behav. Biomed. Mater., 2022, 125, 104927.
[http://dx.doi.org/10.1016/j.jmbbm.2021.104927] [PMID: 34740008]
[55]
Lee, C.S.; Kwon, S.J.; Na, S.Y.; Lim, S.P.; Lee, J.H. Genistein supplementation inhibits atherosclerosis with stabilization of the lesions in hypercholesterolemic rabbits. J. Korean Med. Sci., 2004, 19(5), 656-661.
[http://dx.doi.org/10.3346/jkms.2004.19.5.656] [PMID: 15483339]
[56]
Wang, J.; Zhang, R.; Xu, Y.; Zhou, H.; Wang, B.; Li, S. Genistein inhibits the development of atherosclerosis via inhibiting NFkappaB and VCAM-1 expression in LDLR knockout mice. Can J Physiol Pharmacol, 2008, 86(11), 777-784.
[57]
Pulipati, V.P.; Pannain, S. Pharmacotherapy of obesity in complex diseases. Clin. Obes., 2022, 12(1), e12497.
[http://dx.doi.org/10.1111/cob.12497] [PMID: 34889046]
[58]
Shen, H.H.; Huang, S.Y.; Kung, C.W.; Chen, S.Y.; Chen, Y.F.; Cheng, P.Y.; Lam, K.K.; Lee, Y.M. Genistein ameliorated obesity accompanied with adipose tissue browning and attenuation of hepatic lipogenesis in ovariectomized rats with high-fat diet. J. Nutr. Biochem., 2019, 67, 111-122.
[http://dx.doi.org/10.1016/j.jnutbio.2019.02.001] [PMID: 30884354]
[59]
Gan, M.; Chen, X.; Chen, Z.; Chen, L.; Zhang, S.; Zhao, Y.; Niu, L.; Li, X.; Shen, L.; Zhu, L. Genistein alleviates high-fat diet-induced obesity by inhibiting the process of gluconeogenesis in mice. Nutrients, 2022, 14(8), 1551.
[http://dx.doi.org/10.3390/nu14081551] [PMID: 35458112]
[60]
Liu, D.; Zhen, W.; Yang, Z.; Carter, J.D.; Si, H.; Reynolds, K.A. Genistein acutely stimulates insulin secretion in pancreatic beta-cells through a cAMP-dependent protein kinase pathway. Diabetes, 2006, 55(4), 1043-1050.
[http://dx.doi.org/10.2337/diabetes.55.04.06.db05-1089] [PMID: 16567527]
[61]
Yu, M.; Chen, X.; Liu, J.; Ma, Q.; Zhuo, Z.; Chen, H.; Zhou, L.; Yang, S.; Zheng, L.; Ning, C.; Xu, J.; Gao, T.; Hou, S.T. Gallic acid disruption of Aβ1–42 aggregation rescues cognitive decline of APP/PS1 double transgenic mouse. Neurobiol. Dis., 2019, 124, 67-80.
[http://dx.doi.org/10.1016/j.nbd.2018.11.009] [PMID: 30447302]
[62]
Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J., 2012, 27(4), 269-273.
[http://dx.doi.org/10.5001/omj.2012.68] [PMID: 23071876]
[63]
Elmarakby, A.A.; Ibrahim, A.S.; Faulkner, J.; Mozaffari, M.S.; Liou, G.I.; Abdelsayed, R. Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice. Vascul. Pharmacol., 2011, 55(5-6), 149-156.
[http://dx.doi.org/10.1016/j.vph.2011.07.007] [PMID: 21807121]
[64]
Park, Y.J.; Ko, J.; Jeon, S.; Kwon, Y. Protective effect of genistein against neuronal degeneration in ApoE−/− mice fed a high-fat diet. Nutrients, 2016, 8(11), 692.
[http://dx.doi.org/10.3390/nu8110692] [PMID: 27809235]
[65]
Li, R.; Ding, X.W.; Geetha, T.; Al-Nakkash, L.; Broderick, T.L.; Babu, J.R. Beneficial effect of genistein on diabetes-induced brain damage in the ob/ob mouse model. Drug Des. Devel. Ther., 2020, 14, 3325-3336.
[http://dx.doi.org/10.2147/DDDT.S249608] [PMID: 32884237]
[66]
Zhang, T.; Chi, X.X. The effect of genistein on lipid levels and LDLR, LXRα and ABCG1 expression in postmenopausal women with hyperlipidemia. Diabetol. Metab. Syndr., 2019, 11(1), 111.
[http://dx.doi.org/10.1186/s13098-019-0507-x]
[67]
Perumal, D.; Adhimoolam, M.; Ivan, E.; Rajamohammed, M. Effects of soy isoflavone genistein on lipid profile and hepatic steatosis in high-fat-fed Wistar rats. Natl. J. Physiol. Pharm. Pharmacol., 2019, 9(0), 1.
[http://dx.doi.org/10.5455/njppp.2019.9.0621617062019]
[68]
Deng, X.; Gould, M.; Ali, M.A. A review of current advancements for wound healing: Biomaterial applications and medical devices. J. Biomed. Mater. Res. B Appl. Biomater., 2022, 110(11), 2542-2573.
[http://dx.doi.org/10.1002/jbm.b.35086] [PMID: 35579269]
[69]
Čoma, M.; Lachová, V; Mitrengová, P; Gál, P Molecular changes underlying genistein treatment of wound healing: A review. Curr. Issues Mol. Biol., 2021, 43(1), 127-141.
[http://dx.doi.org/10.3390/cimb43010011] [PMID: 34067763]
[70]
Park, E.; Lee, S.M.; Jung, I.K.; Lim, Y.; Kim, J.H. Effects of genistein on early-stage cutaneous wound healing. Biochem. Biophys. Res. Commun., 2011, 410(3), 514-519.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.013] [PMID: 21679688]
[71]
Eo, H.; Lee, H.J.; Lim, Y. Ameliorative effect of dietary genistein on diabetes induced hyper-inflammation and oxidative stress during early stage of wound healing in alloxan induced diabetic mice. Biochem. Biophys. Res. Commun., 2016, 478(3), 1021-1027.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.039] [PMID: 27431618]
[72]
Hwang, K.; Chung, R.S.; Schmitt, J.M.; Buck, D.; Winn, S.R.; Hollinger, J.O. The effect of topical genistein on soft tissue wound healing in rats. J. Histotechnol., 2001, 24(2), 95-99.
[http://dx.doi.org/10.1179/his.2001.24.2.95]
[73]
Pawar, R.S.; Patil, U.K.; Gadekar, R.; Singour, P.K.; Chaurasiya, P.K. A potential of some medicinal plants as an antiulcer agents. Pharmacogn. Rev., 2010, 4(8), 136-146.
[http://dx.doi.org/10.4103/0973-7847.70906] [PMID: 22228953]
[74]
Hegab, I.I.; Abd-Ellatif, R.N.; Sadek, M.T. The gastroprotective effect of N -acetylcysteine and genistein in indomethacin-induced gastric injury in rats. Can. J. Physiol. Pharmacol., 2018, 96(11), 1161-1170.
[http://dx.doi.org/10.1139/cjpp-2017-0730] [PMID: 30011378]
[75]
Siriviriyakul, P.; Werawatganon, D.; Phetnoo, N.; Somanawat, K.; Chatsuwan, T.; Klaikeaw, N.; Chayanupatkul, M. Genistein attenuated gastric inflammation and apoptosis in Helicobacter pylori-induced gastropathy in rats. BMC Gastroenterol., 2020, 20(1), 410.
[http://dx.doi.org/10.1186/s12876-020-01555-x] [PMID: 33297977]
[76]
Abdel-raheem, I.T.; Bamagous, G.; Omran, G. Anti-ulcerogenic effect of genistein against indomethacin-induced gastric ulcer in rats. Asian J Pharm Clin Res, 2016, 9(2)
[77]
Salvati, A.L.; De Dominicis, A.; Tait, S.; Canitano, A.; Lahm, A.; Fiore, L. Mechanism of action at the molecular level of the antiviral drug 3(2H)-isoflavene against type 2 poliovirus. Antimicrob. Agents Chemother., 2004, 48(6), 2233-2243.
[http://dx.doi.org/10.1128/AAC.48.6.2233-2243.2004] [PMID: 15155227]
[78]
Andres, A.; Donovan, S.M.; Kuhlenschmidt, M.S. Soy isoflavones and virus infections. J. Nutr. Biochem., 2009, 20(8), 563-569.
[http://dx.doi.org/10.1016/j.jnutbio.2009.04.004] [PMID: 19596314]
[79]
Arabyan, E.; Hakobyan, A.; Kotsinyan, A.; Karalyan, Z.; Arakelov, V.; Arakelov, G.; Nazaryan, K.; Simonyan, A.; Aroutiounian, R.; Ferreira, F.; Zakaryan, H. Genistein inhibits African swine fever virus replication in vitro by disrupting viral DNA synthesis. Antiviral Res., 2018, 156, 128-137.
[http://dx.doi.org/10.1016/j.antiviral.2018.06.014] [PMID: 29940214]
[80]
Guo, X. Antibacterial and anti-inflammatory effects of genistein in Staphylococcus aureus induced osteomyelitis in rats. J. Biochem. Mol. Toxicol., 2023, 37(4), e23298.
[http://dx.doi.org/10.1002/jbt.23298] [PMID: 36727417]
[81]
Terra, V.A.; Souza-Neto, F.P.; Frade, M.A.C.; Ramalho, L.N.Z.; Andrade, T.A.M.; Pasta, A.A.C.; Conchon, A.C.; Guedes, F.A.; Luiz, R.C.; Cecchini, R.; Cecchini, A.L. Genistein prevents ultraviolet B radiation-induced nitrosative skin injury and promotes cell proliferation. J. Photochem. Photobiol. B, 2015, 144, 20-27.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.01.013] [PMID: 25668145]
[82]
Jahan, A.; Akhtar, J. Recapitulate genistein for topical applications including nanotechnology delivery. Inorg. Nano-Met. Chem, 2021, 52(9), 1306-1317.
[83]
Berbee, M.; Fu, Q.; Boerma, M.; Pathak, R.; Zhou, D.; Kumar, K.S.; Hauer-Jensen, M. Reduction of radiation-induced vascular nitrosative stress by the vitamin E analog γ-tocotrienol: evidence of a role for tetrahydrobiopterin. Int. J. Radiat. Oncol. Biol. Phys., 2011, 79(3), 884-891.
[http://dx.doi.org/10.1016/j.ijrobp.2010.08.032] [PMID: 20950957]
[84]
Hanedan Uslu, G.; Canyilmaz, E.; Serdar, L.; Ersöz, Ş. Protective effects of genistein and melatonin on mouse liver injury induced by whole-body ionising radiation. Mol. Clin. Oncol., 2019, 10(2), 261-266.
[PMID: 30680205]
[85]
Kim, J.S.; Heo, K.; Yi, J.M.; Gong, E.J.; Yang, K.; Moon, C.; Kim, S.H. Genistein mitigates radiation-induced testicular injury. Phytother. Res., 2012, 26(8), 1119-1125.
[http://dx.doi.org/10.1002/ptr.3689] [PMID: 22162311]
[86]
Bonferoni, M.; Rossi, S.; Sandri, G.; Ferrari, F.; Gavini, E.; Rassu, G.; Giunchedi, P. Nanoemulsions for “nose-to-brain” drug delivery. Pharmaceutics, 2019, 11(2), 84.
[http://dx.doi.org/10.3390/pharmaceutics11020084] [PMID: 30781585]
[87]
Brannon-Peppas, L.; Blanchette, J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev., 2004, 56(11), 1649-1659.
[http://dx.doi.org/10.1016/j.addr.2004.02.014] [PMID: 15350294]
[88]
Kayser, O.; Lemke, A.; Hernández-Trejo, N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr. Pharm. Biotechnol., 2005, 6(1), 3-5.
[http://dx.doi.org/10.2174/1389201053167158] [PMID: 15727551]
[89]
Yeligar, R.R.; Sarwa, K.K.; Chandrakar, M.; Jangde, M.S. Nanotechnology-based delivery of genistein to overcome physicochemical hindrance and enhance therapeutic response in skin cancer. BioNanoSci., 2023, 13, 1339-1358.
[90]
George, A.; Shah, P.A.; Shrivastav, P.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int. J. Pharm., 2019, 561, 244-264.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.011] [PMID: 30851391]
[91]
Zhang, T.; Wang, H.; Ye, Y.; Zhang, X.; Wu, B. Micellar emulsions composed of mPEG-PCL/MCT as novel nanocarriers for systemic delivery of genistein: A comparative study with micelles. Int. J. Nanomedicine, 2015, 10, 6175-6184.
[PMID: 26491290]
[92]
Xiao, Y.; Ho, C-.T.; Chen, Y.; Wang, Y.; Wei, Z.; Dong, M.; Huang, Q. Synthesis, characterization, and evaluation of genisteinloaded zein/carboxymethyl chitosan nanoparticles with improved water dispersibility, enhanced antioxidant activity, and controlled release property. Foods, 2020, 9(11), 1-26.
[93]
Langasco, R.; Fancello, S.; Rassu, G.; Cossu, M.; Cavalli, R.; Galleri, G.; Giunchedi, P.; Migheli, R.; Gavini, E. Increasing protective activity of genistein by loading into transfersomes: A new potential adjuvant in the oxidative stress-related neurodegenerative diseases? Phytomedicine, 2019, 52, 23-31.
[http://dx.doi.org/10.1016/j.phymed.2018.09.207] [PMID: 30599903]
[94]
Ravikumara, N.R.; Madhusudhan, B. Fabrication and characterization of genistein encapsulated poly (D, L) lactic acid nanoparticles for pharmaceutical application. Curr. Nanosci., 2013, 9(2), 293-302.
[http://dx.doi.org/10.2174/1573413711309020021]
[95]
Patra, A.; Satpathy, S.; Naik, P.K.; Kazi, M.; Hussain, M.D. Folate receptor-targeted PLGA-PEG nanoparticles for enhancing the activity of genistein in ovarian cancer. Artif. Cells Nanomed. Biotechnol., 2022, 50(1), 228-239.
[http://dx.doi.org/10.1080/21691401.2022.2118758] [PMID: 36330543]
[96]
Tang, J.; Xu, N.; Ji, H.; Liu, H.; Wang, Z.; Wu, L. Eudragit nanoparticles containing genistein: Formulation, development, and bioavailability assessment. Int. J. Nanomedicine, 2011, 6, 2429-2435.
[PMID: 22072878]
[97]
Bakhsh, S.; Khan, B.A.; Safdar, M.; Alam, S.; Ramzan, M.; Rashid, S.A.; Tariq, M.; Anwer, Z.; Ahmad, N. Formulation, development, evaluation, and characterization of chitosan-pgapec nanoparticles containing genistein. Lat. Am. J. Pharm., 2016, 35(9), 1913-1921.
[98]
Botet-Carreras, A.; Tamames-Tabar, C.; Salles, F.; Rojas, S.; Imbuluzqueta, E.; Lana, H.; Blanco-Prieto, M.J.; Horcajada, P. Improving the genistein oral bioavailability via its formulation into the metal–organic framework MIL-100(Fe). J. Mater. Chem. B Mater. Biol. Med., 2021, 9(9), 2233-2239.
[http://dx.doi.org/10.1039/D0TB02804E] [PMID: 33596280]
[99]
Zhang, H.; Liu, G.; Zeng, X.; Wu, Y.; Yang, C.; Mei, L.; Wang, Z.; Huang, L. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells. Int. J. Nanomedicine, 2015, 10, 2461-2473.
[PMID: 25848264]
[100]
Rassu, G.; Porcu, E.; Fancello, S.; Obinu, A.; Senes, N.; Galleri, G.; Migheli, R.; Gavini, E.; Giunchedi, P. Intranasal delivery of genistein-loaded nanoparticles as a potential preventive system against neurodegenerative disorders. Pharmaceutics, 2018, 11(1), 8.
[http://dx.doi.org/10.3390/pharmaceutics11010008] [PMID: 30597930]
[101]
Patel, N.V.; Sheth, N.R.; Mohddesi, B. Formulation and evaluation of genistein – a novel isoflavone loaded chitosan and eudragit® nanoparticles for cancer therapy. Mater. Today Proc., 2015, 2(9), 4477-4482.
[http://dx.doi.org/10.1016/j.matpr.2015.10.055]
[102]
Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front. Mol. Biosci., 2020, 7, 587997.
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]
[103]
Das, S.; Chaudhury, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 2011, 12(1), 62-76.
[http://dx.doi.org/10.1208/s12249-010-9563-0] [PMID: 21174180]
[104]
Obinu, A.; Burrai, G.P.; Cavalli, R.; Galleri, G.; Migheli, R.; Antuofermo, E.; Rassu, G.; Gavini, E.; Giunchedi, P. Transmucosal solid lipid nanoparticles to improve genistein absorption via intestinal lymphatic transport. Pharmaceutics, 2021, 13(2), 267.
[http://dx.doi.org/10.3390/pharmaceutics13020267] [PMID: 33669306]
[105]
Kim, J.T.; Barua, S.; Kim, H.; Hong, S.C.; Yoo, S.Y.; Jeon, H.; Cho, Y.; Gil, S.; Oh, K.; Lee, J. Absorption study of genistein using solid lipid microparticles and nanoparticles: Control of oral bioavailability by particle sizes. Biomol. Ther., 2017, 25(4), 452-459.
[http://dx.doi.org/10.4062/biomolther.2017.095] [PMID: 28605834]
[106]
Patel, P.; Patel, M. Nanostructured lipid carriers- a versatile carrier for oral delivery of lipophilic drugs. Recent Pat. Nanotechnol., 2021, 15(2), 154-164.
[http://dx.doi.org/10.2174/1872210514666200909154959] [PMID: 32912129]
[107]
Talegaonkar, S.; Bhattacharyya, A. Potential of lipid nanoparticles (SLNs and NLCs) in enhancing oral bioavailability of drugs with poor intestinal permeability. AAPS PharmSciTech, 2019, 20(3), 121.
[http://dx.doi.org/10.1208/s12249-019-1337-8] [PMID: 30805893]
[108]
Mittal, P.; Vrdhan, H.; Ajmal, G.; Bonde, G.; Kapoor, R.; Mishra, B. Formulation and characterization of genistein-loaded nanostructured lipid carriers: pharmacokinetic, biodistribution and In vitro cytotoxicity studies. Curr. Drug Deliv., 2019, 16(3), 215-225.
[http://dx.doi.org/10.2174/1567201816666181120170137] [PMID: 30465502]
[109]
Liu, J.L.; Zhang, W.J.; Li, X.D.; Yang, N.; Pan, W.S.; Kong, J.; Zhang, J.S. Sustained-release genistein from nanostructured lipid carrier suppresses human lens epithelial cell growth. Int. J. Ophthalmol., 2016, 9(5), 643-649.
[http://dx.doi.org/10.18240/ijo.2021.05.02] [PMID: 27275415]
[110]
Dewangan, H.K.; Maurya, L.; Soni, S.; Singh, S. Genistein loaded long circulating nanostructured lipid carriers: Optimization, evaluation and delivery to meloma cells for treatment of cancer. SSRN, 2022.
[http://dx.doi.org/10.2139/ssrn.3999218]
[111]
Witika, B.A.; Mweetwa, L.L.; Tshiamo, K.O.; Edler, K.; Matafwali, S.K.; Ntemi, P.V.; Chikukwa, M.T.R.; Makoni, P.A. Vesicular drug delivery for the treatment of topical disorders: Current and future perspectives. J. Pharm. Pharmacol., 2021, 73(11), 1427-1441.
[http://dx.doi.org/10.1093/jpp/rgab082] [PMID: 34132342]
[112]
Liu, P.; Chen, G.; Zhang, J. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules, 2022, 27(4), 1372.
[http://dx.doi.org/10.3390/molecules27041372] [PMID: 35209162]
[113]
Andra, V.V.S.N.L.; Pammi, S.V.N.; Bhatraju, L.V.K.P.; Ruddaraju, L.K. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. Bionanoscience, 2022, 12(1), 274-291.
[http://dx.doi.org/10.1007/s12668-022-00941-x] [PMID: 35096502]
[114]
Phan, V.; Walters, J.; Brownlow, B.; Elbayoumi, T. Enhanced cytotoxicity of optimized liposomal genistein via specific induction of apoptosis in breast, ovarian and prostate carcinomas. J. Drug Target., 2013, 21(10), 1001-1011.
[http://dx.doi.org/10.3109/1061186X.2013.847099] [PMID: 24151835]
[115]
Song, X.; Gan, K.; Qin, S.; Chen, L.; Liu, X.; Chen, T.; Liu, H. Preparation and characterization of general-purpose gelatin-based co-loading flavonoids nano-core structure. Sci. Rep., 2019, 9(1), 6365.
[http://dx.doi.org/10.1038/s41598-019-42909-0] [PMID: 31019215]
[116]
Lopes de Azambuja, C.R.; dos Santos, L.G.; Rodrigues, M.R.; Rodrigues, R.F.M.; da Silveira, E.F.; Azambuja, J.H.; Flores, A.F.C.; Horn, A.P.; Dora, C.L.; Muccillo-Baisch, A.L.; Braganhol, E.; da Silva Pinto, L.; Parize, A.L.; de Lima, V.R. Physico-chemical characterization of asolectin–genistein liposomal system: An approach to analyze its in vitro antioxidant potential and effect in glioma cells viability. Chem. Phys. Lipids, 2015, 193, 24-35.
[http://dx.doi.org/10.1016/j.chemphyslip.2015.10.001] [PMID: 26453973]
[117]
Tian, J.; Guo, F.; Chen, Y.; Li, Y.; Yu, B.; Li, Y. Nanoliposomal formulation encapsulating celecoxib and genistein inhibiting COX-2 pathway and Glut-1 receptors to prevent prostate cancer cell proliferation. Cancer Lett., 2019, 448, 1-10.
[http://dx.doi.org/10.1016/j.canlet.2019.01.002] [PMID: 30673592]
[118]
Tian, J.; Chi, C.; Bian, G.; Xing, D.; Guo, F.; Wang, X. PSMA conjugated combinatorial liposomal formulation encapsulating genistein and plumbagin to induce apoptosis in prostate cancer cells. Colloids Surf. B Biointerfaces, 2021, 203, 111723.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111723] [PMID: 33839474]
[119]
Komeil, I.A.; El-Refaie, W.M.; Gowayed, M.A.; El-Ganainy, S.O.; El Achy, S.N.; Huttunen, K.M.; Abdallah, O.Y. Oral genistein-loaded phytosomes with enhanced hepatic uptake, residence and improved therapeutic efficacy against hepatocellular carcinoma. Int. J. Pharm., 2021, 601, 120564.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120564] [PMID: 33812970]
[120]
Perumal, S.; Atchudan, R.; Lee, W. A review of polymeric micelles and their applications. Polymers, 2022, 14(12), 2510.
[http://dx.doi.org/10.3390/polym14122510] [PMID: 35746086]
[121]
Barbosa-Barros, L.; Barba, C.; Rodríguez, G.; Cócera, M.; Coderch, L.; López-Iglesias, C.; de la Maza, A.; López, O. Lipid nanostructures: Self-assembly and effect on skin properties. Mol. Pharm., 2009, 6(4), 1237-1245.
[http://dx.doi.org/10.1021/mp9000734] [PMID: 19432456]
[122]
Cheng, Q.; Qin, W.; Yu, Y.; Li, G.; Wu, J.; Zhuo, L. Preparation and characterization of PEG-PLA genistein micelles using a modified emulsion-evaporation method. J. Nanomater., 2020, 2020, 1-15.
[http://dx.doi.org/10.1155/2020/3278098]
[123]
Shen, H.; He, D.; Wang, S.; Ding, P.; Wang, J.; Ju, J. Preparation, characterization, and pharmacokinetics study of a novel genistein-loaded mixed micelles system. Drug Dev. Ind. Pharm., 2018, 44(9), 1536-1542.
[http://dx.doi.org/10.1080/03639045.2018.1483384] [PMID: 29848136]
[124]
Kwon, S.H.; Kim, S.Y.; Ha, K.W.; Kang, M.J.; Huh, J.S.; Tae Jong, I.; Kim, Y.M.; Park, Y.M.; Kang, K.H.; Lee, S.; Chang, J.Y.; Lee, J.; Choi, Y.W. Pharmaceutical evaluation of genistein-loaded pluronic micelles for oral delivery. Arch. Pharm. Res., 2007, 30(9), 1138-1143.
[http://dx.doi.org/10.1007/BF02980249] [PMID: 17958332]
[125]
Hou, Y.; Xin, M.; Li, Q.; Wu, X. Glycyrrhizin micelle as a genistein nanocarrier: Synergistically promoting corneal epithelial wound healing through blockage of the HMGB1 signaling pathway in diabetic mice. Exp. Eye Res., 2021, 204, 108454.
[http://dx.doi.org/10.1016/j.exer.2021.108454] [PMID: 33497689]
[126]
Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics, 2020, 12(9), 855.
[http://dx.doi.org/10.3390/pharmaceutics12090855] [PMID: 32916782]
[127]
Benson, H.A.E. Transfersomes for transdermal drug delivery. Expert Opin. Drug Deliv., 2006, 3(6), 727-737.
[http://dx.doi.org/10.1517/17425247.3.6.727] [PMID: 17076595]
[128]
Che Marzuki, N.H.; Wahab, R.A.; Abdul Hamid, M.; Hamid, M.A. An overview of nanoemulsion: Concepts of development and cosmeceutical applications. Biotechnol. Biotechnol. Equip., 2019, 33(1), 779-797.
[http://dx.doi.org/10.1080/13102818.2019.1620124]
[129]
Dinshaw, I.J.; Ahmad, N.; Salim, N.; Leo, B.F. Nanoemulsions: A review on the conceptualization of treatment for psoriasis using a ‘green’ surfactant with low-energy emulsification method. Pharmaceutics, 2021, 13(7), 1024.
[http://dx.doi.org/10.3390/pharmaceutics13071024] [PMID: 34371716]
[130]
Silva, A.P.C.; Nunes, B.R.; De Oliveira, M.C.; Koester, L.S.; Mayorga, P.; Bassani, V.L.; Teixeira, H.F. Development of topical nanoemulsions containing the isoflavone genistein. Pharmazie, 2009, 64(1), 32-35.
[PMID: 19216228]
[131]
de Vargas, B.A.; Bidone, J.; Oliveira, L.K.; Koester, L.S.; Bassani, V.L.; Teixeira, H.F. Development of topical hydrogels containing genistein-loaded nanoemulsions. J. Biomed. Nanotechnol., 2012, 8(2), 330-336.
[http://dx.doi.org/10.1166/jbn.2012.1386] [PMID: 22515085]
[132]
Huang, Z.M.; Zhang, Y.Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2003, 63(15), 2223-2253.
[http://dx.doi.org/10.1016/S0266-3538(03)00178-7]
[133]
Ismail, M.; Ibrahim, S.; El-Amir, A. EL-Rafei, A.; Allam, N.; Abdellatif, A. Genistein loaded nanofibers protect spinal cord tissue following experimental injury in rats. Biomedicines, 2018, 6(4), 96.
[http://dx.doi.org/10.3390/biomedicines6040096] [PMID: 30287760]
[134]
Landauer, M.R.; Harvey, A.J.; Kaytor, M.D.; Day, R.M. Mechanism and therapeutic window of a genistein nanosuspension to protect against hematopoietic-acute radiation syndrome. J. Radiat. Res., 2019, 60(3), 308-317.
[http://dx.doi.org/10.1093/jrr/rrz014] [PMID: 31038675]
[135]
Kaytor, M.D.; Serebrenik, A.A.; Lapanowski, K.; McFall, D.; Jones, M.; Movsas, B.; Simone, C.B., II; Brown, S.L. The radioprotectant nano-genistein enhances radiotherapy efficacy of lung tumors in mice. Transl. Lung Cancer Res., 2023, 12(5), 999-1010.
[http://dx.doi.org/10.21037/tlcr-22-856] [PMID: 37323169]
[136]
Wacker, M.G.; Proykova, A.; Santos, G.M.L. Dealing with nanosafety around the globe—Regulation vs. innovation. Int. J. Pharm., 2016, 509(1-2), 95-106.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.015] [PMID: 27184102]
[137]
Ventola, C.L. Progress in nanomedicine: Approved and investigational nanodrugs. P&T, 2017, 42(12), 742-755.
[PMID: 29234213]
[138]
Grossman, J.H.; Crist, R.M.; Clogston, J.D. Early development challenges for drug products containing nanomaterials. AAPS J., 2017, 19(1), 92-102.
[http://dx.doi.org/10.1208/s12248-016-9980-4] [PMID: 27612680]
[139]
Liggins, J.; Bluck, L.J.C.; Runswick, S.; Atkinson, C.; Coward, W.A.; Bingham, S.A. Daidzein and genistein contents of vegetables. Br. J. Nutr., 2000, 84(5), 717-725.
[http://dx.doi.org/10.1017/S0007114500002075] [PMID: 11177186]
[140]
Liggins, J.; Bluck, L.J.C.; Runswick, S.; Atkinson, C.; Coward, W.A.; Bingham, S.A. Daidzein and genistein content of fruits and nuts. J. Nutr. Biochem., 2000, 11(6), 326-331.
[http://dx.doi.org/10.1016/S0955-2863(00)00085-1] [PMID: 11002128]
[141]
Ahmad, S.; Pathak, D.K. Nutritional changes in soybean during germination. J. Food Sci. Technol., 2000, 37(6), 665-666.
[142]
Quinhone, A.; Ida, E.I. Profile of the contents of different forms of soybean isoflavones and the effect of germination time on these compounds and the physical parameters in soybean sprouts. Food Chem., 2015, 166, 173-178.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.012] [PMID: 25053043]