Gut Microbiota Exchange in Domestic Animals and Rural-urban People Axis

Page: [825 - 837] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

In recent years, one of the most critical topics in microbiology that can be addressed is microbiome and microbiota. The term microbiome contains both the microbiota and structural elements, metabolites/signal molecules, and the surrounding environmental conditions, and the microbiota consists of all living members forming the microbiome. Among; the intestinal microbiota is one of the most important microbiota, also called the gut microbiota. After colonization, the gut microbiota can have different functions, including resistance to pathogens, maintaining the intestinal epithelium, metabolizing dietary and pharmaceutical compounds, and controlling immune function. Recently, studies have shown that the gut microbiota can prevent the formation of fat in the body. In this study, we examined the gut microbiota in various animals, including dogs, cats, dairy cows, sheep, chickens, horses, and people who live in urban and rural areas. Based on the review of various studies, it has been determined that the population of microbiota in animals and humans is different, and various factors such as the environment, nutrition, and contact with animals can affect the microbiota of people living in urban and rural areas.

Graphical Abstract

[1]
Gholizadeh, P.; Mahallei, M.; Pormohammad, A.; Varshochi, M.; Ganbarov, K.; Zeinalzadeh, E.; Yousefi, B.; Bastami, M.; Tanomand, A.; Mahmood, S.S.; Yousefi, M.; Asgharzadeh, M.; Kafil, H.S. Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease. Microb. Pathog., 2019, 127, 48-55.
[http://dx.doi.org/10.1016/j.micpath.2018.11.031] [PMID: 30503960]
[2]
Ozma, M.A. Postbiotics as the key mediators of the gut microbiota-host interactions. Infez. Med., 2022, 30(2), 180-193.
[3]
Feizi, H. Gut microbiota and colorectal cancer risk factors. Curr. Pharm. Biotechnol., 2022, 24(8), 1018-1034.
[PMID: 36200153]
[4]
Hajiagha, M.N.; Taghizadeh, S.; Asgharzadeh, M.; Dao, S.; Ganbarov, K.; Köِse, Ş.; Kafil, H.S. Gut microbiota and human body interactions; Its impact on health: A review. Curr. Pharm. Biotechnol., 2022, 23(1), 4-14.
[http://dx.doi.org/10.2174/1389201022666210104115836] [PMID: 33397232]
[5]
Khiabani, S.A.; Haghighat, S.; Khosroshahi, H.T.; Asgharzadeh, M.; Kafil, H.S. Clostridium species diversity in gut microbiota of patients with renal failure. Microb. Pathog., 2022, 169, 105667.
[http://dx.doi.org/10.1016/j.micpath.2022.105667] [PMID: 35793779]
[6]
Kennedy, M.S.; Chang, E.B. The microbiome: Composition and locations. Prog. Mol. Biol. Transl. Sci., 2020, 176, 1-42.
[http://dx.doi.org/10.1016/bs.pmbts.2020.08.013] [PMID: 33814111]
[7]
Gholizadeh, P.; Eslami, H.; Yousefi, M.; Asgharzadeh, M.; Aghazadeh, M.; Kafil, H.S. Role of oral microbiome on oral cancers, a review. Biomed. Pharmacother., 2016, 84, 552-558.
[http://dx.doi.org/10.1016/j.biopha.2016.09.082] [PMID: 27693964]
[8]
Gholizadeh, P.; Pormohammad, A.; Eslami, H.; Shokouhi, B.; Fakhrzadeh, V.; Kafil, H.S. Oral pathogenesis of aggregatibacter actinomycetemcomitans. Microb. Pathog., 2017, 113, 303-311.
[http://dx.doi.org/10.1016/j.micpath.2017.11.001] [PMID: 29117508]
[9]
Moszak, M.; Szulińska, M.; Bogdański, P. You are what you eat-the relationship between diet, microbiota, and metabolic disorders a review. Nutrients, 2020, 12(4), 1096.
[http://dx.doi.org/10.3390/nu12041096] [PMID: 32326604]
[10]
Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Abbasi, A. Postbiotics: A novel strategy in food allergy treatment. Crit. Rev. Food Sci. Nutr., 2021, 61(3), 492-499.
[http://dx.doi.org/10.1080/10408398.2020.1738333] [PMID: 32160762]
[11]
Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Fathi Zavoshti, H.; Abbasi, A. Postbiotics as a safe alternative to live probiotic bacteria in the food and pharmaceutical industries. Scientific J. Kurdistan Univ. Med. Sci., 2018, 26(4), 132-157.
[12]
Homayouni Rad, A.; Aghebati Maleki, L.; Samadi Kafil, H.; Fathi Zavoshti, H.; Abbasi, A. Postbiotics as novel health-promoting ingredients in functional foods. Health Promot. Perspect., 2020, 10(1), 3-4.
[http://dx.doi.org/10.15171/hpp.2020.02] [PMID: 32104650]
[13]
Guarner, F.; Malagelada, J.R. Gut flora in health and disease. Lancet, 2003, 361(9356), 512-519.
[http://dx.doi.org/10.1016/S0140-6736(03)12489-0] [PMID: 12583961]
[14]
Petraroli, M.; Castellone, E.; Patianna, V.; Esposito, S. Gut microbiota and obesity in adults and children: The state of the art. Front Pediatr., 2021, 9, 657020.
[http://dx.doi.org/10.3389/fped.2021.657020] [PMID: 33816411]
[15]
Ortega, M.A.; Alvarez-Mon, M.A.; García-Montero, C.; Fraile-Martinez, O.; Guijarro, L.G.; Lahera, G.; Monserrat, J.; Valls, P.; Mora, F.; Rodríguez-Jiménez, R.; Quintero, J.; Álvarez-Mon, M. Gut microbiota metabolites in major depressive disorder—Deep insights into their pathophysiological role and potential translational applications. Metabolites, 2022, 12(1), 50.
[http://dx.doi.org/10.3390/metabo12010050] [PMID: 35050172]
[16]
Trinh, P.; Zaneveld, J.R.; Safranek, S.; Rabinowitz, P.M. One health relationships between human, animal, and environmental microbiomes: A mini-review. Front. Public Health, 2018, 6, 235.
[http://dx.doi.org/10.3389/fpubh.2018.00235] [PMID: 30214898]
[17]
Turnbaugh, P.J. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006, 444(7122), 1027-1031.
[http://dx.doi.org/10.1038/nature05414]
[18]
David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; Biddinger, S.B.; Dutton, R.J.; Turnbaugh, P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484), 559-563.
[http://dx.doi.org/10.1038/nature12820] [PMID: 24336217]
[19]
Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; Suez, J.; Mahdi, J.A.; Matot, E.; Malka, G.; Kosower, N.; Rein, M.; Zilberman-Schapira, G.; Dohnalová, L.; Pevsner-Fischer, M.; Bikovsky, R.; Halpern, Z.; Elinav, E.; Segal, E. Personalized nutrition by prediction of glycemic responses. Cell, 2015, 163(5), 1079-1094.
[http://dx.doi.org/10.1016/j.cell.2015.11.001] [PMID: 26590418]
[20]
Coelho, L.P.; Kultima, J.R.; Costea, P.I.; Fournier, C.; Pan, Y.; Czarnecki-Maulden, G.; Hayward, M.R.; Forslund, S.K.; Schmidt, T.S.B.; Descombes, P.; Jackson, J.R.; Li, Q.; Bork, P. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome, 2018, 6(1), 72.
[http://dx.doi.org/10.1186/s40168-018-0450-3] [PMID: 29669589]
[21]
Pilla, R.; Suchodolski, J.S. The gut microbiome of dogs and cats, and the influence of diet. Vet. Clin. North Am. Small Anim. Pract., 2021, 51(3), 605-621.
[http://dx.doi.org/10.1016/j.cvsm.2021.01.002]
[22]
Alexander, C.; Cross, T.W.L.; Devendran, S.; Neumer, F.; Theis, S.; Ridlon, J.M.; Suchodolski, J.S.; de Godoy, M.R.C.; Swanson, K.S. Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. Br. J. Nutr., 2018, 120(6), 711-720.
[http://dx.doi.org/10.1017/S0007114518001952] [PMID: 30064535]
[23]
Middelbos, I.S.; Vester Boler, B.M.; Qu, A.; White, B.A.; Swanson, K.S.; Fahey, G.C. Jr Phylogenetic characterization of fecal microbial communities of dogs fed diets with or without supplemental dietary fiber using 454 pyrosequencing. PLoS One, 2010, 5(3), e9768.
[http://dx.doi.org/10.1371/journal.pone.0009768] [PMID: 20339542]
[24]
Panasevich, M.R.; Rossoni Serao, M.C.; de Godoy, M.R.C.; Swanson, K.S.; Guérin-Deremaux, L.; Lynch, G.L.; Wils, D.; Fahey, G.C., Jr; Dilger, R.N. Potato fiber as a dietary fiber source in dog foods. J. Anim. Sci., 2013, 91(11), 5344-5352.
[http://dx.doi.org/10.2527/jas.2013-6842] [PMID: 24045465]
[25]
Beloshapka, A.N.; Dowd, S.E.; Suchodolski, J.S.; Steiner, J.M.; Duclos, L.; Swanson, K.S. Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing. FEMS Microbiol. Ecol., 2013, 84(3), 532-541.
[http://dx.doi.org/10.1111/1574-6941.12081] [PMID: 23360519]
[26]
Bermingham, E.N.; Maclean, P.; Thomas, D.G.; Cave, N.J.; Young, W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ, 2017, 5, e3019.
[http://dx.doi.org/10.7717/peerj.3019] [PMID: 28265505]
[27]
Schmidt, M.; Unterer, S.; Suchodolski, J.S.; Honneffer, J.B.; Guard, B.C.; Lidbury, J.A.; Steiner, J.M.; Fritz, J.; Kölle, P. The fecal microbiome and metabolome differs between dogs fed Bones and Raw Food (BARF) diets and dogs fed commercial diets. PLoS One, 2018, 13(8), e0201279.
[http://dx.doi.org/10.1371/journal.pone.0201279] [PMID: 30110340]
[28]
Kim, J.; An, J.U.; Kim, W.; Lee, S.; Cho, S. Differences in the gut microbiota of dogs (Canis lupus familiaris) fed a natural diet or a commercial feed revealed by the Illumina MiSeq platform. Gut Pathog., 2017, 9(1), 68.
[http://dx.doi.org/10.1186/s13099-017-0218-5] [PMID: 29201150]
[29]
Herstad, K.M.V.; Gajardo, K.; Bakke, A.M.; Moe, L.; Ludvigsen, J.; Rudi, K.; Rud, I.; Sekelja, M.; Skancke, E. A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. BMC Vet. Res., 2017, 13(1), 147.
[http://dx.doi.org/10.1186/s12917-017-1073-9] [PMID: 28558792]
[30]
Amini Khiabani, S.; Asgharzadeh, M.; Kafil, H.S. Diversity of Bacteroidaceae family in gut microbiota of patients with chronic kidney disease and end stage renal disease. Health Promot. Perspect., 2023, 13(3)
[31]
Barry, K.A.; Middelbos, I.S.; Vester Boler, B.M.; Dowd, S.E.; Suchodolski, J.S.; Henrissat, B.; Coutinho, P.M.; White, B.A.; Fahey, G.C., Jr; Swanson, K.S. Effects of dietary fiber on the feline gastrointestinal metagenome. J. Proteome Res., 2012, 11(12), 5924-5933.
[http://dx.doi.org/10.1021/pr3006809] [PMID: 23075436]
[32]
Garcia-Mazcorro, J.F.; Barcenas-Walls, J.R.; Suchodolski, J.S.; Steiner, J.M. Molecular assessment of the fecal microbiota in healthy cats and dogs before and during supplementation with fructo-oligosaccharides (FOS) and inulin using high-throughput 454-pyrosequencing. PeerJ, 2017, 5, e3184.
[http://dx.doi.org/10.7717/peerj.3184] [PMID: 28439463]
[33]
Kanakupt, K.; Vester Boler, B.M.; Dunsford, B.R.; Fahey, G.C., Jr Effects of short-chain fructooligosaccharides and galactooligosaccharides, individually and in combination, on nutrient digestibility, fecal fermentative metabolite concentrations, and large bowel microbial ecology of healthy adults cats. J. Anim. Sci., 2011, 89(5), 1376-1384.
[http://dx.doi.org/10.2527/jas.2010-3201] [PMID: 21216981]
[34]
Hooda, S.; Vester Boler, B.M.; Kerr, K.R.; Dowd, S.E.; Swanson, K.S. The gut microbiome of kittens is affected by dietary protein: Carbohydrate ratio and associated with blood metabolite and hormone concentrations. Br. J. Nutr., 2013, 109(9), 1637-1646.
[http://dx.doi.org/10.1017/S0007114512003479] [PMID: 22935193]
[35]
Young, W.; Moon, C.D.; Thomas, D.G.; Cave, N.J.; Bermingham, E.N. Pre- and post-weaning diet alters the faecal metagenome in the cat with differences in vitamin and carbohydrate metabolism gene abundances. Sci. Rep., 2016, 6(1), 34668.
[http://dx.doi.org/10.1038/srep34668] [PMID: 27876765]
[36]
Kerr, K.R.; Dowd, S.E.; Swanson, K.S. Faecal microbiota of domestic cats fed raw whole chicks v. an extruded chicken-based diet. J. Nutr. Sci., 2014, 3, e22.
[http://dx.doi.org/10.1017/jns.2014.21] [PMID: 26101591]
[37]
Vester, B.M.; Dalsing, B.L.; Middelbos, I.S.; Apanavicius, C.J.; Lubbs, D.C.; Swanson, K.S. Faecal microbial populations of growing kittens fed high- or moderate-protein diets. Arch. Anim. Nutr., 2009, 63(3), 254-265.
[http://dx.doi.org/10.1080/17450390902860000]
[38]
Xu, Q.; Qiao, Q.; Gao, Y.; Hou, J.; Hu, M.; Du, Y.; Zhao, K.; Li, X. Gut microbiota and their role in health and metabolic disease of dairy cow. Front. Nutr., 2021, 8, 701511.
[http://dx.doi.org/10.3389/fnut.2021.701511] [PMID: 34422882]
[39]
Mackie, R.I. Mutualistic fermentative digestion in the gastrointestinal tract: Diversity and evolution. Integr. Comp. Biol., 2002, 42(2), 319-326.
[http://dx.doi.org/10.1093/icb/42.2.319] [PMID: 21708724]
[40]
Li, F.; Li, C.; Chen, Y.; Liu, J.; Zhang, C.; Irving, B.; Fitzsimmons, C.; Plastow, G.; Guan, L.L. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome, 2019, 7(1), 92.
[http://dx.doi.org/10.1186/s40168-019-0699-1] [PMID: 31196178]
[41]
Suttle, N. Ruminant nutrition-digestion and absorption of minerals and vitamins. In: Reference Module in Food Science; Elsevier, 2016.
[42]
Flint, H.J.; Bayer, E.A. Plant cell wall breakdown by anaerobic microorganisms from the Mammalian digestive tract. Ann. N. Y. Acad. Sci., 2008, 1125(1), 280-288.
[http://dx.doi.org/10.1196/annals.1419.022] [PMID: 18378598]
[43]
McALLISTER, T.A.; Rode, L.M.; Major, D.J.; Cheng, K-J.; Buchanan-Smith, J.G. Effect of ruminal microbial colonization on cereal grain digestion. Can. J. Anim. Sci., 1990, 70(2), 571-579.
[http://dx.doi.org/10.4141/cjas90-069]
[44]
Flint, H.J.; Bayer, E.A.; Rincon, M.T.; Lamed, R.; White, B.A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol., 2008, 6(2), 121-131.
[http://dx.doi.org/10.1038/nrmicro1817] [PMID: 18180751]
[45]
Strom, E.; Øskov, E.R. The nutritive value of rumen micro-organisms in ruminants. Br. J. Nutr., 1984, 52(3), 613-620.
[http://dx.doi.org/10.1079/BJN19840128] [PMID: 6498152]
[46]
Kay, R.N.B. Digestion of protein in the intestines of adult ruminants. Proc. Nutr. Soc., 1969, 28(1), 140-151.
[http://dx.doi.org/10.1079/PNS19690025] [PMID: 4891847]
[47]
Li, F.; Wang, Z.; Dong, C.; Li, F.; Wang, W.; Yuan, Z.; Mo, F.; Weng, X. Rumen bacteria communities and performances of fattening lambs with a lower or greater subacute ruminal acidosis risk. Front. Microbiol., 2017, 8, 2506.
[http://dx.doi.org/10.3389/fmicb.2017.02506] [PMID: 29312208]
[48]
Zhou, M.; Chen, Y.; Guan, L. Rumen bacteria. In: Romanian Microbiology: From Evolution to Revolution; Springer: New Delhi, 2015.
[http://dx.doi.org/10.1007/978-81-322-2401-3_6]
[49]
Brulc, J.M.; Antonopoulos, D.A.; Berg Miller, M.E.; Wilson, M.K.; Yannarell, A.C.; Dinsdale, E.A.; Edwards, R.E.; Frank, E.D.; Emerson, J.B.; Wacklin, P.; Coutinho, P.M.; Henrissat, B.; Nelson, K.E.; White, B.A. Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc. Natl. Acad. Sci., 2009, 106(6), 1948-1953.
[http://dx.doi.org/10.1073/pnas.0806191105] [PMID: 19181843]
[50]
Mizrahi, I.; Jami, E. Review: The compositional variation of the rumen microbiome and its effect on host performance and methane emission. Animal, 2018, 12(s2), s220-s232.
[http://dx.doi.org/10.1017/S1751731118001957] [PMID: 30139398]
[51]
Cai, S.; Li, J.; Hu, F.Z.; Zhang, K.; Luo, Y.; Janto, B.; Boissy, R.; Ehrlich, G.; Dong, X. Cellulosilyticum ruminicola, a newly described rumen bacterium that possesses redundant fibrolytic-protein-encoding genes and degrades lignocellulose with multiple carbohydrate- borne fibrolytic enzymes. Appl. Environ. Microbiol., 2010, 76(12), 3818-3824.
[http://dx.doi.org/10.1128/AEM.03124-09] [PMID: 20400560]
[52]
Rychlik, J.L.; Russell, J.B. Bacteriocin-like activity of Butyrivibrio fibrisolvens JL5 and its effect on other ruminal bacteria and ammonia production. Appl. Environ. Microbiol., 2002, 68(3), 1040-1046.
[http://dx.doi.org/10.1128/AEM.68.3.1040-1046.2002] [PMID: 11872448]
[53]
Chen, J.; Stevenson, D.M.; Weimer, P.J. Albusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus 7 that inhibits growth of Ruminococcus flavefaciens. Appl. Environ. Microbiol., 2004, 70(5), 3167-3170.
[http://dx.doi.org/10.1128/AEM.70.5.3167-3170.2004] [PMID: 15128585]
[54]
Erickson, D.L.; Nsereko, V.L.; Morgavi, D.P.; Selinger, L.B.; Rode, L.M.; Beauchemin, K.A. Evidence of quorum sensing in the rumen ecosystem: Detection of N -acyl homoserine lactone autoinducers in ruminal contents. Can. J. Microbiol., 2002, 48(4), 374-378.
[http://dx.doi.org/10.1139/w02-022] [PMID: 12030712]
[55]
Mitsumori, M.; Xu, L.; Kajikawa, H.; Kurihara, M.; Tajima, K.; Hai, J.; Takenaka, A. Possible quorum sensing in the rumen microbial community: Detection of quorum-sensing signal molecules from rumen bacteria. FEMS Microbiol. Lett., 2003, 219(1), 47-52.
[http://dx.doi.org/10.1016/S0378-1097(02)01192-8] [PMID: 12594022]
[56]
Krause, D.O.; Denman, S.E.; Mackie, R.I.; Morrison, M.; Rae, A.L.; Attwood, G.T.; McSweeney, C.S. Opportunities to improve fiber degradation in the rumen: Microbiology, ecology, and genomics. FEMS Microbiol. Rev., 2003, 27(5), 663-693.
[http://dx.doi.org/10.1016/S0168-6445(03)00072-X] [PMID: 14638418]
[57]
Callaway, T.R.; Dowd, S.E.; Edrington, T.S.; Anderson, R.C.; Krueger, N.; Bauer, N.; Kononoff, P.J.; Nisbet, D.J. Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tagencoded FLX amplicon pyrosequencing1. J. Anim. Sci., 2010, 88(12), 3977-3983.
[http://dx.doi.org/10.2527/jas.2010-2900] [PMID: 20729286]
[58]
Fernando, S.C.; Purvis, H.T., II; Najar, F.Z.; Sukharnikov, L.O.; Krehbiel, C.R.; Nagaraja, T.G.; Roe, B.A.; DeSilva, U. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol., 2010, 76(22), 7482-7490.
[http://dx.doi.org/10.1128/AEM.00388-10] [PMID: 20851965]
[59]
Johns, A.T. Isolation of a bacterium, producing propionic acid, from the rumen of sheep. J. Gen. Microbiol., 1951, 5(2), 317-325.
[http://dx.doi.org/10.1099/00221287-5-2-317] [PMID: 14832420]
[60]
Rojas-Tapias, D.F.; Brown, E.M.; Temple, E.R.; Onyekaba, M.A.; Mohamed, A.M.T.; Duncan, K.; Schirmer, M.; Walker, R.L.; Mayassi, T.; Pierce, K.A.; Ávila-Pacheco, J.; Clish, C.B.; Vlamakis, H.; Xavier, R.J. Inflammation-associated nitrate facilitates ectopic colonization of oral bacterium Veillonella parvula in the intestine. Nat. Microbiol., 2022, 7(10), 1673-1685.
[http://dx.doi.org/10.1038/s41564-022-01224-7] [PMID: 36138166]
[61]
Muegge, B.D.; Kuczynski, J.; Knights, D.; Clemente, J.C.; González, A.; Fontana, L.; Henrissat, B.; Knight, R.; Gordon, J.I. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 2011, 332(6032), 970-974.
[http://dx.doi.org/10.1126/science.1198719] [PMID: 21596990]
[62]
Stevenson, D.M.; Weimer, P.J. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol., 2007, 75(1), 165-174.
[http://dx.doi.org/10.1007/s00253-006-0802-y] [PMID: 17235560]
[63]
Tanca, A.; Fraumene, C.; Manghina, V.; Palomba, A.; Abbondio, M.; Deligios, M.; Pagnozzi, D.; Addis, M.F.; Uzzau, S. Diversity and functions of the sheep faecal microbiota: A multi-omic characterization. Microb. Biotechnol., 2017, 10(3), 541-554.
[http://dx.doi.org/10.1111/1751-7915.12462] [PMID: 28165194]
[64]
Chang, J.; Yao, X.; Zuo, C.; Qi, Y.; Chen, D.; Ma, W. The gut bacterial diversity of sheep associated with different breeds in Qinghai province. BMC Vet. Res., 2020, 16(1), 254.
[http://dx.doi.org/10.1186/s12917-020-02477-2] [PMID: 32703277]
[65]
Wei, S.; Morrison, M.; Yu, Z. Bacterial census of poultry intestinal microbiome. Poult. Sci., 2013, 92(3), 671-683.
[http://dx.doi.org/10.3382/ps.2012-02822] [PMID: 23436518]
[66]
Kumar, S.; Chen, C.; Indugu, N.; Werlang, G.O.; Singh, M.; Kim, W.K.; Thippareddi, H. Effect of antibiotic withdrawal in feed on chicken gut microbial dynamics, immunity, growth performance and prevalence of foodborne pathogens. PLoS One, 2018, 13(2), e0192450.
[http://dx.doi.org/10.1371/journal.pone.0192450] [PMID: 29444134]
[67]
Mancabelli, L.; Ferrario, C.; Milani, C.; Mangifesta, M.; Turroni, F.; Duranti, S.; Lugli, G.A.; Viappiani, A.; Ossiprandi, M.C.; van Sinderen, D.; Ventura, M. Insights into the biodiversity of the gut microbiota of broiler chickens. Environ. Microbiol., 2016, 18(12), 4727-4738.
[http://dx.doi.org/10.1111/1462-2920.13363] [PMID: 27129897]
[68]
Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature, 2011, 474(7351), 327-336.
[http://dx.doi.org/10.1038/nature10213] [PMID: 21677749]
[69]
Gerritsen, J.; Smidt, H.; Rijkers, G.T.; de Vos, W.M. Intestinal microbiota in human health and disease: The impact of probiotics. Genes Nutr., 2011, 6(3), 209-240.
[http://dx.doi.org/10.1007/s12263-011-0229-7] [PMID: 21617937]
[70]
Yegani, M.; Korver, D.R. Factors affecting intestinal health in poultry. Poult. Sci., 2008, 87(10), 2052-2063.
[http://dx.doi.org/10.3382/ps.2008-00091] [PMID: 18809868]
[71]
Jeurissen, S.H.; Lewis, F.; van der Klis, J.D.; Mroz, Z.; Rebel, J.M.; ter Huurne, A.A. Parameters and techniques to determine intestinal health of poultry as constituted by immunity, integrity, and functionality. Curr. Issues Intest. Microbiol., 2002, 3(1), 1-14.
[PMID: 12022808]
[72]
Apajalahti, J. Comparative gut microflora, metabolic challenges, and potential opportunities. J. Appl. Poult. Res., 2005, 14(2), 444-453.
[http://dx.doi.org/10.1093/japr/14.2.444]
[73]
Gaskins, H.R.; Collier, C.T.; Anderson, D.B. Antibiotics as growth promotants: Mode of action. Anim. Biotechnol., 2002, 13(1), 29-42.
[http://dx.doi.org/10.1081/ABIO-120005768] [PMID: 12212942]
[74]
Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci., 2005, 84(4), 634-643.
[http://dx.doi.org/10.1093/ps/84.4.634] [PMID: 15844822]
[75]
Koopman, J.P.; Kennis, H.M.; Mullink, J.W.M.A.; Prins, R.A.; Stadhouders, A.M.; De Boer, H.; Hectors, M.P. ‘Normalization’ of germfree mice with anaerobically cultured caecal flora of ‘normal’ mice. Lab. Anim., 1984, 18(2), 188-194.
[http://dx.doi.org/10.1258/002367784780891253] [PMID: 6379286]
[76]
Shakouri, M.D.; Iji, P.A.; Mikkelsen, L.L.; Cowieson, A.J. Intestinal function and gut microflora of broiler chickens as influenced by cereal grains and microbial enzyme supplementation. J. Anim. Physiol. Anim. Nutr., 2009, 93(5), 647-658.
[http://dx.doi.org/10.1111/j.1439-0396.2008.00852.x] [PMID: 18700849]
[77]
Oakley, B.B.; Lillehoj, H.S.; Kogut, M.H.; Kim, W.K.; Maurer, J.J.; Pedroso, A.; Lee, M.D.; Collett, S.R.; Johnson, T.J.; Cox, N.A. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett., 2014, 360(2), 100-112.
[http://dx.doi.org/10.1111/1574-6968.12608] [PMID: 25263745]
[78]
Ricke, S.C. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poult. Sci., 2003, 82(4), 632-639.
[http://dx.doi.org/10.1093/ps/82.4.632] [PMID: 12710485]
[79]
Christl, S.U.; Bartram, P.; Paul, A.; Kelber, E.; Scheppach, W.; Kasper, H. Bile acid metabolism by colonic bacteria in continuous culture: Effects of starch and pH. Ann. Nutr. Metab., 1997, 41(1), 45-51.
[http://dx.doi.org/10.1159/000177977] [PMID: 9195000]
[80]
Lu, J.; Idris, U.; Harmon, B.; Hofacre, C.; Maurer, J.J.; Lee, M.D. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl. Environ. Microbiol., 2003, 69(11), 6816-6824.
[http://dx.doi.org/10.1128/AEM.69.11.6816-6824.2003] [PMID: 14602645]
[81]
Xiao, Y.; Xiang, Y.; Zhou, W.; Chen, J.; Li, K.; Yang, H. Microbial community mapping in intestinal tract of broiler chicken. Poult. Sci., 2017, 96(5), 1387-1393.
[http://dx.doi.org/10.3382/ps/pew372] [PMID: 28339527]
[82]
Lumpkins, B.S.; Batal, A.B.; Lee, M.D. Evaluation of the bacterial community and intestinal development of different genetic lines of chickens. Poult. Sci., 2010, 89(8), 1614-1621.
[http://dx.doi.org/10.3382/ps.2010-00747] [PMID: 20634515]
[83]
Gong, J.; Si, W.; Forster, R.J.; Huang, R.; Yu, H.; Yin, Y.; Yang, C.; Han, Y. 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: From crops to ceca. FEMS Microbiol. Ecol., 2007, 59(1), 147-157.
[http://dx.doi.org/10.1111/j.1574-6941.2006.00193.x] [PMID: 17233749]
[84]
Siegerstetter, S.C.; Schmitz-Esser, S.; Magowan, E.; Wetzels, S.U.; Zebeli, Q.; Lawlor, P.G.; O’Connell, N.E.; Metzler-Zebeli, B.U. Intestinal microbiota profiles associated with low and high residual feed intake in chickens across two geographical locations. PLoS One, 2017, 12(11), e0187766.
[http://dx.doi.org/10.1371/journal.pone.0187766] [PMID: 29141016]
[85]
Qu, A.; Brulc, J.M.; Wilson, M.K.; Law, B.F.; Theoret, J.R.; Joens, L.A.; Konkel, M.E.; Angly, F.; Dinsdale, E.A.; Edwards, R.A.; Nelson, K.E.; White, B.A. Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One, 2008, 3(8), e2945.
[http://dx.doi.org/10.1371/journal.pone.0002945] [PMID: 18698407]
[86]
Sergeant, M.J.; Constantinidou, C.; Cogan, T.A.; Bedford, M.R.; Penn, C.W.; Pallen, M.J. Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One, 2014, 9(3), e91941.
[http://dx.doi.org/10.1371/journal.pone.0091941] [PMID: 24657972]
[87]
Saengkerdsub, S.; Anderson, R.C.; Wilkinson, H.H.; Kim, W.K.; Nisbet, D.J.; Ricke, S.C. Identification and quantification of methanogenic Archaea in adult chicken ceca. Appl. Environ. Microbiol., 2007, 73(1), 353-356.
[http://dx.doi.org/10.1128/AEM.01931-06] [PMID: 17085694]
[88]
Costa, M.C.; Weese, J.S. Understanding the intestinal microbiome in health and disease. Vet. Clin. North Am. Equine Pract., 2018, 34(1), 1-12.
[http://dx.doi.org/10.1016/j.cveq.2017.11.005] [PMID: 29402480]
[89]
Ursell, L.K.; Metcalf, J.L.; Parfrey, L.W.; Knight, R. Defining the human microbiome. Nutr. Rev., 2012, 70(Suppl. 1), S38-S44.
[http://dx.doi.org/10.1111/j.1753-4887.2012.00493.x] [PMID: 22861806]
[90]
D’Argenio, V.; Salvatore, F. The role of the gut microbiome in the healthy adult status. Clin. Chim. Acta, 2015, 451(Pt A), 97-102.
[http://dx.doi.org/10.1016/j.cca.2015.01.003] [PMID: 25584460]
[91]
Young, V.B. The role of the microbiome in human health and disease: An introduction for clinicians. BMJ, 2017, 356, j831.
[http://dx.doi.org/10.1136/bmj.j831] [PMID: 28298355]
[92]
Argenzio, R.A.; Southworth, M.; Stevens, C.E. Sites of organic acid production and absorption in the equine gastrointestinal tract. Am. J. Physiol., 1974, 226(5), 1043-1050.
[http://dx.doi.org/10.1152/ajplegacy.1974.226.5.1043] [PMID: 4824856]
[93]
Biddle, A.S.; Black, S.J.; Blanchard, J.L. An in vitro model of the horse gut microbiome enables identification of lactate-utilizing bacteria that differentially respond to starch induction. PLoS One, 2013, 8(10), e77599.
[http://dx.doi.org/10.1371/journal.pone.0077599] [PMID: 24098591]
[94]
Dougal, K.; de la Fuente, G.; Harris, P.A.; Girdwood, S.E.; Pinloche, E.; Newbold, C.J. Identification of a core bacterial community within the large intestine of the horse. PLoS One, 2013, 8(10), e77660.
[http://dx.doi.org/10.1371/journal.pone.0077660] [PMID: 24204908]
[95]
Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The healthy human microbiome. Genome Med., 2016, 8(1), 51.
[http://dx.doi.org/10.1186/s13073-016-0307-y] [PMID: 27122046]
[96]
Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal; Springer, 2015.
[97]
De Sordi, L.; Lourenço, M.; Debarbieux, L. The battle within: Interactions of bacteriophages and bacteria in the gastrointestinal tract. Cell Host Microbe, 2019, 25(2), 210-218.
[http://dx.doi.org/10.1016/j.chom.2019.01.018] [PMID: 30763535]
[98]
Peterson, J.; Garges, S.; Giovanni, M.; McInnes, P.; Wang, L.; Schloss, J.A.; Bonazzi, V.; McEwen, J.E.; Wetterstrand, K.A.; Deal, C.; Baker, C.C.; Di Francesco, V.; Howcroft, T.K.; Karp, R.W.; Lunsford, R.D.; Wellington, C.R.; Belachew, T.; Wright, M.; Giblin, C.; David, H.; Mills, M.; Salomon, R.; Mullins, C.; Akolkar, B.; Begg, L.; Davis, C.; Grandison, L.; Humble, M.; Khalsa, J.; Little, A.R.; Peavy, H.; Pontzer, C.; Portnoy, M.; Sayre, M.H.; Starke-Reed, P.; Zakhari, S.; Read, J.; Watson, B.; Guyer, M. The NIH human microbiome project. Genome Res., 2009, 19(12), 2317-2323.
[http://dx.doi.org/10.1101/gr.096651.109] [PMID: 19819907]
[99]
Partney, H.; Yissachar, N. Regulation of host immunity by the gut microbiota. In: Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis; Springer, 2022; pp. 105-140.
[http://dx.doi.org/10.1007/978-3-030-91051-8_4]
[100]
Biesalski, H.K. Nutrition meets the microbiome: Micronutrients and the microbiota. Ann. N. Y. Acad. Sci., 2016, 1372(1), 53-64.
[http://dx.doi.org/10.1111/nyas.13145] [PMID: 27362360]
[101]
Bedu-Ferrari, C.; Biscarrat, P.; Langella, P.; Cherbuy, C. Prebiotics and the human gut microbiota: From breakdown mechanisms to the impact on metabolic health. Nutrients, 2022, 14(10), 2096.
[http://dx.doi.org/10.3390/nu14102096] [PMID: 35631237]
[102]
Conlon, M.; Bird, A. The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2014, 7(1), 17-44.
[http://dx.doi.org/10.3390/nu7010017] [PMID: 25545101]
[103]
Das, B.; Ghosh, T.S.; Kedia, S.; Rampal, R.; Saxena, S.; Bag, S.; Mitra, R.; Dayal, M.; Mehta, O.; Surendranath, A.; Travis, S.P.L.; Tripathi, P.; Nair, G.B.; Ahuja, V. Analysis of the gut microbiome of rural and urban healthy Indians living in sea level and high altitude areas. Sci. Rep., 2018, 8(1), 10104.
[http://dx.doi.org/10.1038/s41598-018-28550-3] [PMID: 29973712]
[104]
Tyakht, A.V.; Kostryukova, E.S.; Popenko, A.S.; Belenikin, M.S.; Pavlenko, A.V.; Larin, A.K.; Karpova, I.Y.; Selezneva, O.V.; Semashko, T.A.; Ospanova, E.A.; Babenko, V.V.; Maev, I.V.; Cheremushkin, S.V.; Kucheryavyy, Y.A.; Shcherbakov, P.L.; Grinevich, V.B.; Efimov, O.I.; Sas, E.I.; Abdulkhakov, R.A.; Abdulkhakov, S.R.; Lyalyukova, E.A.; Livzan, M.A.; Vlassov, V.V.; Sagdeev, R.Z.; Tsukanov, V.V.; Osipenko, M.F.; Kozlova, I.V.; Tkachev, A.V.; Sergienko, V.I.; Alexeev, D.G.; Govorun, V.M. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun., 2013, 4(1), 2469.
[http://dx.doi.org/10.1038/ncomms3469] [PMID: 24036685]
[105]
Tyakht, A.V.; Alexeev, D.G.; Popenko, A.S.; Kostryukova, E.S.; Govorun, V.M. Rural and urban microbiota. Gut Microbes, 2014, 5(3), 351-356.
[http://dx.doi.org/10.4161/gmic.28685] [PMID: 24691073]
[106]
Teyssier, A.; Matthysen, E.; Hudin, N.S.; de Neve, L.; White, J.; Lens, L. Diet contributes to urban-induced alterations in gut microbiota: Experimental evidence from a wild passerine. Proc. Biol. Sci., 2020, 287(1920), 20192182.
[http://dx.doi.org/10.1098/rspb.2019.2182] [PMID: 32019440]
[107]
Lu, J. Chinese gut microbiota and its associations with staple food type, ethnicity, and urbanization. NPJ Biofilms Microbiomes, 2021, 7(1), 71.
[http://dx.doi.org/10.1038/s41522-021-00245-0]
[108]
Ayeni, F.A.; Biagi, E.; Rampelli, S.; Fiori, J.; Soverini, M.; Audu, H.J.; Cristino, S.; Caporali, L.; Schnorr, S.L.; Carelli, V.; Brigidi, P.; Candela, M.; Turroni, S. Infant and adult gut microbiome and metabolome in rural Bassa and urban settlers from Nigeria. Cell Rep., 2018, 23(10), 3056-3067.
[http://dx.doi.org/10.1016/j.celrep.2018.05.018] [PMID: 29874590]
[109]
Berg, G. Microbiome definition re-visited: Old concepts and new challenges. Microbiome, 2020, 8, 1-22.
[110]
Jeyanathan, J.; Kirs, M.; Ronimus, R.S.; Hoskin, S.O.; Janssen, P.H. Methanogen community structure in the rumens of farmed sheep, cattle and red deer fed different diets. FEMS Microbiol. Ecol., 2011, 76(2), 311-326.
[http://dx.doi.org/10.1111/j.1574-6941.2011.01056.x] [PMID: 21255054]
[111]
Pfister, P.; Wasserfallen, A.; Stettler, R.; Leisinger, T. Molecular analysis of Methanobacterium phage ΨM2. Mol. Microbiol., 1998, 30(2), 233-244.
[http://dx.doi.org/10.1046/j.1365-2958.1998.01073.x] [PMID: 9791169]
[112]
Luo, Y.; Pfister, P.; Leisinger, T.; Wasserfallen, A. The genome of archaeal prophage PsiM100 encodes the lytic enzyme responsible for autolysis of Methanothermobacter wolfeii. J. Bacteriol., 2001, 183(19), 5788-5792.
[http://dx.doi.org/10.1128/JB.183.19.5788-5792.2001] [PMID: 11544247]
[113]
Kamra, D.N. Rumen microbial ecosystem. Curr. Sci., 2005, 124-135.
[114]
Wright, A.D.G.; Klieve, A.V. Does the complexity of the rumen microbial ecology preclude methane mitigation? Anim. Feed Sci. Technol., 2011, 166-167, 248-253.
[http://dx.doi.org/10.1016/j.anifeedsci.2011.04.015]
[115]
Kumar, S.; Choudhury, P.K.; Carro, M.D.; Griffith, G.W.; Dagar, S.S.; Puniya, M.; Calabro, S.; Ravella, S.R.; Dhewa, T.; Upadhyay, R.C.; Sirohi, S.K.; Kundu, S.S.; Wanapat, M.; Puniya, A.K. New aspects and strategies for methane mitigation from ruminants. Appl. Microbiol. Biotechnol., 2014, 98(1), 31-44.
[http://dx.doi.org/10.1007/s00253-013-5365-0] [PMID: 24247990]
[116]
Fuentes, M.C.; Calsamiglia, S.; Cardozo, P.W.; Vlaeminck, B. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. J. Dairy Sci., 2009, 92(9), 4456-4466.
[http://dx.doi.org/10.3168/jds.2008-1722] [PMID: 19700707]
[117]
Dusková, D.; Marounek, M. Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rumen bacterium Lachnospira multiparus. Lett. Appl. Microbiol., 2001, 33(2), 159-163.
[http://dx.doi.org/10.1046/j.1472-765x.2001.00970.x] [PMID: 11472526]
[118]
Sales-Duval, M.; Lucas, F.; Blanchart, G. Effects of exogenous ammonia or free amino acids on proteolytic activity and protein breakdown products in Streptococcus bovis, Prevotella albensis, and Butyrivibrio fibrisolvens. Curr. Microbiol., 2002, 44(6), 435-443.
[http://dx.doi.org/10.1007/s00284-001-0013-9] [PMID: 12000995]
[119]
Cotta, M.A.; Hespell, R.B. Proteolytic activity of the ruminal bacterium Butyrivibrio fibrisolvens. Appl. Environ. Microbiol., 1986, 52(1), 51-58.
[http://dx.doi.org/10.1128/aem.52.1.51-58.1986] [PMID: 3524460]
[120]
Diaz Carrasco, J.M.; Casanova, N.A.; Fernández Miyakawa, M.E. Microbiota, gut health and chicken productivity: What is the connection? Microorganisms, 2019, 7(10), 374.
[http://dx.doi.org/10.3390/microorganisms7100374] [PMID: 31547108]
[121]
Aruwa, C.E.; Pillay, C.; Nyaga, M.M.; Sabiu, S. Poultry gut health - microbiome functions, environmental impacts, microbiome engineering and advancements in characterization technologies. J. Anim. Sci. Biotechnol., 2021, 12(1), 119.
[http://dx.doi.org/10.1186/s40104-021-00640-9] [PMID: 34857055]
[122]
Kauter, A.; Epping, L.; Semmler, T.; Antao, E.M.; Kannapin, D.; Stoeckle, S.D.; Gehlen, H.; Lübke-Becker, A.; Günther, S.; Wieler, L.H.; Walther, B. The gut microbiome of horses: Current research on equine enteral microbiota and future perspectives. Anim. Microbiome, 2019, 1(1), 14.
[http://dx.doi.org/10.1186/s42523-019-0013-3] [PMID: 33499951]