Synthesis and Characterization of Copper Nanoparticles Using Plant Extract of Mentha piperita Leaves, Anethum graveolens L., and Calotropis procera

Page: [65 - 72] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Synthesis of copper nanoparticles needs to be carried out with the use of environmentally safer alternatives. Plant-mediated nano-fabrication is a new area of nanotechnology that is favoured over traditional methods due to its effectiveness with respect to safety, affordability, environmental friendliness, and biocompatibility. Synthesis of copper nanoparticles using natural sources is the demand of this era.

Methods: In the present study, the synthesis of copper nanoparticles (CuNPs) was carried out using three different plant extracts, i.e., Mentha piperita, Anethum graveolens L., and Calotropis procera. This synthesis was carried out in different conditions and the visual colour change in the solution confirmed the presence of copper nanoparticles. The nanoparticles were also characterized with UV-vis absorption spectroscopy and scanning electron microscope (SEM).

Conclusion: In comparison to the synthetic route, the current work represents a cost-effective and sustainable way for the synthesis of nanoparticles.

Graphical Abstract

[1]
Merugu R, Garimella S, Velamakanni R, Vuppugalla P, Chitturi KL, Jyothi M. Synthesis, characterization and antimicrobial activity of bimetallic silver and copper nanoparticles using fruit pulp aqueous extracts of Moringa oleifera. Mater Today Proc 2021; 44: 153-6.
[http://dx.doi.org/10.1016/j.matpr.2020.08.549]
[2]
Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 2014; 44: 278-84.
[http://dx.doi.org/10.1016/j.msec.2014.08.031] [PMID: 25280707]
[3]
Maleki Dizaj S, Mennati A, Jafari S, Khezri K, Adibkia K. Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 2015; 5(1): 19-23.
[PMID: 25789215]
[4]
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int J Nanomedicine 2017; 12: 1227-49.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[5]
Zhou W, Chen B, Xie L, et al. Rapid and highly sensitive detection of hexavalent chromium based on silver nanowire arrays SERS substrate. Chin J Anal Chem 2022; 51(6): 100189.
[http://dx.doi.org/10.1016/j.cjac.2022.100189]
[6]
Sivakavinesan M, Vanaja M, Lateef R, et al. Citrus limetta Risso peel mediated green synthesis of gold nanoparticles and its antioxidant and catalytic activity. J King Saud Univ Sci 2022; 34(7): 102235.
[7]
Park JY, Aliaga C, Renzas JR, Lee H, Somorjai GA. The role of organic capping layers of platinum nanoparticles in catalytic activity of CO oxidation. Catal Lett 2009; 129(1-2): 1-6.
[http://dx.doi.org/10.1007/s10562-009-9871-8]
[8]
Wang Aili Y, Hengbo L, Huihong X, Jinjuan R, Min J. Effect of organic modifiers on the structure of nickel nanoparticles and catalytic activity in the hydrogenation of p-nitrophenol to p-aminophenol. Langmuir 2009; 25: 12736-41.
[9]
Sharma JK, Akhtar MS, Ameen S, Srivastava P, Singh G. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. J Alloys Compd 2015; 632: 321-5.
[http://dx.doi.org/10.1016/j.jallcom.2015.01.172]
[10]
Tala-Ighi R. Nanomaterials in Solar Cells. In: Handbook of Nanoelectrochemistry. 2015; p. 1-18.
[http://dx.doi.org/10.1007/978-3-319-15207-3_26-1]
[11]
Shaw S, Shit GC. Impact of drug carrier shape, size, porosity and blood rheology on magnetic nanoparticle-based drug delivery in a microvessel. In: Colloids and Surfaces A. Physicochemical and Engineering. Aspects 2022; Vol. 639.
[12]
Agnieszka P, Janusz S. Nanoparticles as carriers of proteins, peptides and other therapeutic molecules. Open Life Sci 2018; 13: 285-98.
[13]
Portioli C, Bovi M, Benati D, et al. Novel functionalization strategies of polymeric nanoparticles as carriers for brain medications. J Biomed Mater Res A 2017; 105(3): 847-58.
[http://dx.doi.org/10.1002/jbm.a.35961] [PMID: 27885823]
[14]
Yiwei ZX. Construction of ultrasmall gold nanoparticles based contrast agent via Host-Guest interaction for Tumor-targeted magnetic resonance imaging. Materials & Design 2022; Vol. 217.
[15]
Rümenapp C, Gleich B, Haase A. Magnetic nanoparticles in magnetic resonance imaging and diagnostics. Pharm Res 2012; 29(5): 1165-79.
[http://dx.doi.org/10.1007/s11095-012-0711-y] [PMID: 22392330]
[16]
Mao X, Xu J, Cui H. Functional nanoparticles for magnetic resonance imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(6): 814-41.
[http://dx.doi.org/10.1002/wnan.1400] [PMID: 27040463]
[17]
Kumari P, Masood A, Weqar AS. Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustain Mater Technol 2019; 22: e00128.
[18]
(a) Emelita Asuncion SD, Ching-Shan H, Rose MO. Mendoza, Ming-Chun L. Zinc oxide nanoparticles for water disinfection. Sustain Environ Res 2018; 28: 47-56.;
(b) Konstantinos S, Stefanos M, Manassis M, Lakshminarayana P. Inorganic engineered nanoparticles in drinking water treatment: A critical review. Royal Society of Chemistry 2016; 2: 43-70.
[19]
Sadaf AimanKhan. Marut J. Leveraging the potential of silver nanoparticles-based materials towards sustainable water treatment. J Environ Manage 2022; 319: 115675.
[20]
Sircar A, Rayavarapu K, Bist N, Yadav K, Singh S. Applications of nanoparticles in enhanced oil recovery. Petroleum Research 2022; 7(1): 77-90.
[http://dx.doi.org/10.1016/j.ptlrs.2021.08.004]
[21]
Stefanía B, Carol MO, Maximiliano P. A microfluidic study to investigate the effect of magnetic iron core-carbon shell nanoparticles on displacement mechanisms of crude oil for chemical enhanced oil recovery. J Petrol Sci Eng 2020; 184: 106589.
[22]
Marwan YR, Nageh KA. Impact of nanotechnology on enhanced oil recovery: A mini review. Ind Eng Chem Res 2019; 58: 16287-95.
[23]
Bansi DM. Chapter-1: Nanomaterials in Biosensors: Fundamentals and Applications. In: Willian Andrew Publishers 2018; pp. 1-74.
[24]
Doria G, Conde J, Veigas B, et al. Noble metal nanoparticles for biosensing applications. Sensors 2012; 12(2): 1657-87.
[http://dx.doi.org/10.3390/s120201657] [PMID: 22438731]
[25]
Thandapani G, Arthi K, Pazhanisamy P. Green synthesis of copper oxide nanoparticles using Spinacia oleracea leaf extract and evaluation of biological applications: Antioxidant, antibacterial, larvicidal and biosafety assay. Mater Today Commun 2022; 34: 105248.
[26]
Arijit KC, Ruchira C, Tarakdas B, et al. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 2014; 25(13): 135101.
[27]
Din MI, Arshad F, Hussain Z, et al. Green adeptness in the synthesis and stabilization of copper nanoparticles: Catalytic, antibacterial, cytotoxicity, and antioxidant activities. Nanoscale Res Lett 2017; 12(1): 638.
[28]
Raffi M, Mehrwan S, Bhatti TM, et al. Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 2010; 60(1): 75-80.
[http://dx.doi.org/10.1007/s13213-010-0015-6]
[29]
Lee HJ, Song JY, Kim BS. Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol 2013; 88(11): 1971-7.
[http://dx.doi.org/10.1002/jctb.4052]
[30]
Lee HJ, Song JY, Kim BS. Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. CJ Chem Technol Biotechnol 2013; 88: 1971-7.
[31]
Cioffi N, Torsi L, Ditaranto N, et al. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 2005; 17(21): 5255-62.
[http://dx.doi.org/10.1021/cm0505244]
[32]
Kanhed P, Birla S, Gaikwad S, et al. In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 2014; 115: 13-7.
[http://dx.doi.org/10.1016/j.matlet.2013.10.011]
[33]
Pariona N, Mtz-Enriquez AI, Sánchez-Rangel D, Carrión G, Paraguay-Delgado F, Rosas-Saito G. Green-synthesized copper nanoparticles as a potential antifungal against plant pathogens. RSC Advances 2019; 9(33): 18835-43.
[http://dx.doi.org/10.1039/C9RA03110C] [PMID: 35516870]
[34]
Ponmurugan P, Manjukarunambika K, Elango V, Gnanamangai BM. Antifungal activity of biosynthesised copper nanoparticles evaluated against red root-rot disease in tea plants. J Exp Nanosci 2016; 11(13): 1019-31.
[http://dx.doi.org/10.1080/17458080.2016.1184766]
[35]
Das Jana I, Kumbhakar P, Banerjee S, et al. Copper nanoparticle–graphene composite-based transparent surface coating with antiviral activity against influenza virus. ACS Appl Nano Mater 2021; 4(1): 352-62.
[http://dx.doi.org/10.1021/acsanm.0c02713]
[36]
Heli H, Zarghan M, Jabbari A, Parsaei A, Moosavi-Movahedi AA. Electrocatalytic oxidation of the antiviral drug acyclovir on a copper nanoparticles-modified carbon paste electrode. J Solid State Electrochem 2010; 14(5): 787-95.
[http://dx.doi.org/10.1007/s10008-009-0846-x]
[37]
Ha T, Pham TTM, Kim M, et al. Antiviral activities of high energy e-beam induced copper nanoparticles against H1N1 influenza virus. Nanomaterials 2022; 12(2): 268.
[http://dx.doi.org/10.3390/nano12020268] [PMID: 35055284]
[38]
Muthamil SS, Vijai AK, Govindaraju K, et al. Green synthesis of copper oxide nanoparticles and mosquito larvicidal activity against dengue, zika and chikungunya causing vector Aedes aegypti. IET nanobiotechnology 2018; 12: 1042-6.
[39]
Selvan SM, Anand KV, Govindaraju K, et al. Green synthesis of copper oxide nanoparticles and mosquito larvicidal activity against dengue, zika and chikungunya causing vector Aedes aegypti. IET 2019; 12: 1042-6.
[40]
Lisiecki I, Pileni MP. Synthesis of copper metallic clusters using reverse micelles as microreactors. J Am Chem Soc 1993; 115(10): 3887-96.
[http://dx.doi.org/10.1021/ja00063a006]
[41]
Lisiecki I, Billoudet F, Pileni MP. Control of the shape and the size of copper metallic particles. J Phys Chem 1996; 100(10): 4160-6.
[http://dx.doi.org/10.1021/jp9523837]
[42]
Wu SH, Chen DH. Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloid Interface Sci 2004; 273(1): 165-9.
[http://dx.doi.org/10.1016/j.jcis.2004.01.071] [PMID: 15051447]
[43]
Tang XF, Yang ZG, Wang WJ. A simple way of preparing high-concentration and high-purity nano copper colloid for conductive ink in inkjet printing technology. Colloids Surf A Physicochem Eng Asp 2010; 360(1-3): 99-104.
[http://dx.doi.org/10.1016/j.colsurfa.2010.02.011]
[44]
Rice KP, Walker EJ Jr, Stoykovich MP, Saunders AE. Solvent-dependent surface plasmon response and oxidation of copper nanocrystals. J Phys Chem C 2011; 115(5): 1793-9.
[http://dx.doi.org/10.1021/jp110483z]
[45]
Chandra S, Kumar A, Tomar PK. Synthesis and characterization of copper nanoparticles by reducing agent. J Saudi Chem Soc 2014; 18(2): 149-53.
[http://dx.doi.org/10.1016/j.jscs.2011.06.009]
[46]
Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC. Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Adv Nat Sci: Nanosci Nanotechnol 2011; 2(1): 015009.
[http://dx.doi.org/10.1088/2043-6262/2/1/015009]
[47]
Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA. Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 2012; 71: 114-6.
[http://dx.doi.org/10.1016/j.matlet.2011.12.055]
[48]
Nasrollahzadeh M, Mohammad Sajadi S. Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3 + 2] cycloaddition of azides and alkynes at room temperature. J Colloid Interface Sci 2015; 457: 141-7.
[http://dx.doi.org/10.1016/j.jcis.2015.07.004] [PMID: 26164245]